• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    巨介電常數(shù)材料 CCTO 的可變程跳躍電導(dǎo)研究

    2014-07-24 18:58:09鵬黃海濤葉茂曾燮榕柯善明1
    集成技術(shù) 2014年6期
    關(guān)鍵詞:香港理工大學(xué)物理系深圳大學(xué)

    林 鵬黃海濤葉 茂曾燮榕柯善明1

    (深圳大學(xué)材料學(xué)院 深圳 518060)2(深圳特種功能材料重點實驗室 深圳 518060)3(香港理工大學(xué)應(yīng)用物理系 香港 999077)

    巨介電常數(shù)材料 CCTO 的可變程跳躍電導(dǎo)研究

    林 鵬1,2黃海濤3葉 茂1,2曾燮榕1,2柯善明1,21

    (深圳大學(xué)材料學(xué)院 深圳 518060)2(深圳特種功能材料重點實驗室 深圳 518060)3(香港理工大學(xué)應(yīng)用物理系 香港 999077)

    文章研究了巨介電常數(shù)材料 CaCu3Ti4O12(CCTO)在寬溫區(qū)(—120℃~300℃)及寬頻域(1 Hz~10MHz)的交流電導(dǎo)及介電性能。在低溫區(qū)和高溫區(qū),CCTO 表現(xiàn)出兩種不同的導(dǎo)電過程,均可以由 Mott 提出的可變程跳躍電導(dǎo)機制(Variable-Range-Hopping,VRH)來描述。研究發(fā)現(xiàn)高溫VRH 過程與氧空位的二次離子化相關(guān),而低溫過程符合普適介電響應(yīng)方程,其介電弛豫行為起源于極化子的弛豫。

    CCTO;巨介電常數(shù);可變程跳躍電導(dǎo);極化子弛豫

    1 Introduction

    CaCu3Ti4O12(CCTO) has been reported to have a perovskite structure and a colossal dielectric constant (CDC) in the order of 105, which is almost independent of temperature from 400 K to 100 K but drops dramatically to less than 102 below 100 K[1]. Since then a huge amount of work[1-5]has been accomplished in an attempt to understand the origin of these remarkable dielectric properties. Similar dielectric behavior has been observed in chargedensity-wave (CDW) systems[6]. CDW materials are generally metals in low dimensions with a critical temperature, below which an insulating state could be observed. CCTO is unlikely a CDW material, because it is cubic and does not display any metallicity[2]. An internal barrier layer capacitance (IBLC) mechanism has been widely used to explain the colossal dielectric constants[5]. In the IBLC picture, the insulating grain boundary layers between semiconducting grains act as barrier layers which block the current flow.

    However, Ramirez et al. argued that the Maxwell-Wagner (MW) type mechanism could not be solely responsible for the anomalous relaxation near 100 K in CCTO[2]. The CDC behavior has also been reported on a number of materials, such as A2FeBO6(A=Ba, Sr, and Ca; B=Nb, and Ta, etc.)[7], La1-xSrxMnO3[8], Pr0.7Ca0.3MnO3[9], TbMnO3[10], and Li/Ti doped NiO[11]. It indicates that this phenomenon may be governed by a unified mechanism of relaxational excitations. The anomalous low temperature relaxation in manganites has been attributed to localized hopping of polarons between lattice sites within a characteristic timescale[8,9]. Zhang and Tang[12]also found that the state of mixed valences of Ti ions in CCTO induces a bulk polaron conduction by variable range hopping (VRH) at low temperatures.

    The complex frequency-dependent ac conductivity characterizes in depth of the charge transport behavior by hopping of localized charge carriers (such as polarons)[13,14]. In the present letter, we report measurements of the complex ac conductivity of CCTO over a temperature range from —130℃to 300℃. Besides the low temperature polaronic conduction[12], a high temperature polaronic conduction behavior was also detected with a higher hopping energy. The low temperature dielectric properties of CCTO could be described by the socalled universal dielectric response when a polaron relaxation is considered.

    2 Experimental

    Single phase CCTO ceramics were prepared through a conventional mixed oxide route and the detailed processing parameters can be found elsewhere[4]. The single phase was confirmed by X-ray diffraction (XRD). Silver paint was coated on both surfaces of the sintered disks and fired at 650℃ for 20 minutes. The sample pellets are 12 mm in diameter and about 1 mm in thickness. The dielectric properties and ac conductivity were measured by using a frequencyresponse analyzer (Novocontrol Alpha-analyzer) over a broad frequency range (1 Hz—10 MHz) at different temperatures from —130℃ to 300℃.

    3 Results and Discussions

    Fig. 1 shows the frequency dependence of the conductivityat various temperatures. For theconductivityshown in Fig. 1(a), similar to an earlier report[12], there is a rapid increase at low frequencies and a slow increase at high frequencies. Thein the high frequency range can be described by the “universal dielectric response” (UDR)[15]

    Fig. 1. Frequency dependence of conductivityof CCTO in two temperature ranges∶ (a) —130℃ to 10℃; (b) 50℃ to 290℃

    The steplike increase in Fig. 1(a) shifts to higher frequencies with increasing temperature. The localized charge carriers contribute to the conductivity by a hopping process. The frequency dependence of the conductivity in the hopping regime for only one hopping center has been given by Pollak[16], Where N is the number of charge carriers, E is the magnitude of the applied electric field, τ is the relaxation time related to the critical frequency. Equation (2) clearly predicts a steplike increase ofin Fig. 1(a). Such a steplike increase inis accompanied by a loss peak in the imaginary part of the permittivitythrough the Kramors-Kronig relationship and is also related to the steplike increase in the real part of the dielectric permittivity

    The frequency dependence of the conductivityfrom 50℃ to 290℃ is shown in Fig. 1(b). The loglog curves are flat in the low frequency region as the conductivity values approach those of. As the frequency increases, the curves become dispersive and can be parameterized using the UDR power law with exponential s<1. With further increase in frequency, the conductivity could be fitted by using a superlinear power law (SLPL)[17], a law which is universal for all classes of disordered condensed matters. Usually the exponential is less than 2. Our results show that CCTO can be regarded as a disorder system (oxygen vacancy doped semiconductor) with localized charge carriers that satisfy the superlinear power law. The exponential in the SLPL calculated is s≈1.7 for CCTO (Fig. 1(b)), which sits within the range of less than 2.

    In the hopping conduction of charge carriers, the nearest-neighbor hopping obeys the Arrhenius law and the VRH obeys the Mott’s VRH equation[18],

    Fig. 2. Temperature dependence of dc conductivity(solid squares, bottom and left axes) and the hopping energies W

    It is worth noting that the VRH equation with the exponential γ=2 could also be used to fit the bulk conductivity of CCTO in the high temperature range but not in the low temperature one (The figure was not shown here.). In the VRH model[18], γ=4 is predicted for isotropic charge transport, while γ=2 and 3 arise from the VRH conduction in twodimension and one-dimension, respectively. As pointed out by Efros and Shklovskii[19], an alternative explanation for γ=2 can also be given when the Coulomb interaction between the charge carriers is taken into account in the three-dimensional Mott’s model. It should be noted that in the framework of Mott’s model, when samples are close to the Anderson transition, a transition of the exponential γ from 2 to 4 could occur[18].

    From Mott’s VRH model[18], we can also obtain the hopping energy,

    The temperature dependence of the hopping W is also plotted in Fig. 2. The hopping energy W is from 0.08 to 0.13 eV in the low temperature range and from 0.52 to 0.8 eV in the high temperature range. The large difference of W between the low temperature and high temperature ranges implies that there are two different VRH processes in CCTO or two different types of polarons. Usually the VRH mechanism is valid below room temperature in crystals with defects, where the thermal energy is insufficient to excite the charge carrier across the Coulomb gap[18]. The conduction is then taken place by hopping of small region (~kBT) in the vicinity of Fermi level. In Bidault’s work[20], it hasbeen shown that the activation energy of the polaron relaxation is nearly the same (≈0.075 eV) for all the investigated perovskites. This is consistent with the low temperature behavior of CCTO. Zhang and Tang suggested that the low temperature polaron should be induced by the mixed valences of Ti ions associated with oxygen vacancies[12]. The high temperature VRH of CCTO has not been reported before. We argue that it should also be associated with oxygen vacancies in CCTO. It is well known that in perovskite materials including titanate, the ionization of the oxygen vacancy will donate electrons and can be written asfor the first ionization andfor the second ionization, whereandrepresents the oxygen vacancy carrying one and two excess positive charges, respectively. The activation energy for the first ionization of oxygen vacancy is 0.1 eV in perovskite oxides while it is 0.7 eV for the second ionization of oxygen vacancy. The observed hopping energy at low temperature is close to 0.1 eV, which indicates that the charge carriers are electrons from the first ionization of oxygen vacancies. The high temperature VRH hopping energy in CCTO is close to the second ionization energy of oxygen vacancy 0.7 eV. Although such a high temperature hopping could be different in detail from that happened at low temperature, it may takes place throughout the crystal, similar to the long range hopping process observed in NiO at room temperature[21]. In a typical perovskite material, n-type doped BaTiO3, it is found that nonadiabatic small polarons are the major charge carriers up to a temperature of 400 K[22]. It is also predicted that the polaron conduction dominates even up to a temperature of 1000 K since the electron transfer integral between neighboring Ti ions is still below the “classic limit”[22]. Therefore the observed high temperature polaron conduction in CCTO is not an experiment artifact although the detailed physics picture is still unclear.

    It is well known that in semiconductors, the hopping of localized charge carriers between spatially fluctuating lattice potentials not only produce conductivity but also give rise to dipolar effects. As a result, the dielectric properties are closely related to the polaron conduction. As mentioned above, the anomalous dielectric relaxation near 100 K in CCTO is directly related to the hopping regime. The imaginary part of the permittivity can be described by UDR through the relation. From the UDR model[15can be expressed aswhere f is the measuring frequency,and s are the temperature-dependent constants. Equation (6) can be rewritten as

    Therefore, at a given temperature, a straight line with a slop of s should be obtained in the log-log plot of vs. f as is shown in Fig. 3. It can be seen that when the relaxation takes place,starts to deviate from the straight line. It is interesting to note that the linear relation holds again when the frequency is further increased. The two straight lines are parallel and there is a crossover from a higher conductivityto a lower one whenswitches from one straight line to another. The relaxation shifts to lower frequency with decreasing temperature. Similar results have also been found by Wang and Zhang[10]. Moreover, as is shown in Fig. 3, the local maximum ofcorresponds to the position of a peak in

    Fig. 3. Plot ofagainst f for CCTO at a number oftemperatures (left and bottom axes) and frequency dependence of the imaginary dielectric permittivity at —130℃(right and bottom axes)

    4 Conclusions

    In summary, the ac conductivity of CCTO ceramics has been measured over a broad temperature range. The temperature dependence of the bulk ac conductivity can be well described by the VRH mechanism. The high temperature VRH conduction is related to the second ionization of oxygen vacancy. The low temperature dielectric relaxation in CCTO can be well understood by the UDR relation considering a polaron relaxation process.

    [1] Subramanian MA, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12and ACu3Ti3FeO12phases [J]. Journal of Solid State Chemistry, 2000, 151(2)∶ 323-325.

    [2] Ramirez AP, Subramanian MA, Gardel M, et al. Giant dielectric constant response in a coppertitanate [J]. Solid State Communications, 2000, 115(5)∶ 217-220.

    [3] Lu ZY, Li XM, Wu JQ. Voltage-current nonlinearity of CaCu3Ti4O12ceramics [J]. Journal of the American Ceramics Society, 2012, 95(2)∶ 476-479.

    [4] Ke S, Huang H, Fan H. Relaxor behavior in CaCu3Ti4O12ceramics [J]. Applied Physics Letters, 2006, 89(18)∶ 182904.

    [5] Almeida-Didry SD, Autret C, Lucas A, et al. Leading role of grain boundaries in colossal permittivity of doped and undoped CCTO [J]. Journal of the European Ceramic Society, 2014, 34(15)∶ 3649-3654.

    [6] Lunkenheimer P, Krohns S, Riegg S, et al. Colossal dielectric constants in transition-metal oxides [J]. The European Physical Journal Special Topics, 2010, 180(1)∶ 61-89.

    [7] Ke S, Lin P, Fan HQ, et al. Variable-range-hopping conductivity in high-k Ba(Fe0.5Nb0.5)O3ceramics [J]. Journal of Applied Physics, 2013, 114(10)∶ 104106.

    [8] Mamin RF, Egami T, Marton Z, et al. Giant dielectric permittivity and magnetocapacitance in La0.875Sr0.125MnO3single crystals [J]. Physical Review B, 2007, 75(11)∶ 115129.

    [9] Freitas RS, Mitchell JF, Schiffer P. Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3[J]. Physical Review B, 2005, 72(14)∶ 144429.

    [10] Wang CC, Cui YM, Zhang LW. Dielectric properties of TbMnO3ceramics [J]. Applied Physics Letters, 2007, 90(1)∶ 012904.

    [11] Wu JB, Nan CW, Lin YH, et al. Giant dielectric permittivity observed in Li and Ti doped NiO [J]. Physics Review Letters, 2002, 89(21)∶ 217601.

    [12] Zhang L, Tang ZJ. Polaron relaxation and variablerange-hopping conductivity in the giant-dielectricconstant material CaCu3Ti4O12[J]. Physical Review B, 2004, 70(17)∶ 174306.

    [13] Elliott SR. Frequency-dependent conductivity in ionically and electronically conducting amorphous solids [J]. Solid State Ionics, 1994, 70-71(1)∶ 27-40.

    [14] Long AR. Frequency-dependent loss in amorphous semiconductors [J]. Advances in Physics, 1982, 31(5)∶ 553-637.

    [15] Jonscher AK. Dielectric relaxation in solids [J]. Journal Physics D∶ Applied Physics, 1999, 32(14)∶R57-R70.

    [16] Ovadyahu Z, Pollak M. History-dependent relaxation and the energy scale of correlation in the electron glass [J]. Physical Review B, 2003, 68(18)∶184204.

    [17] Lunkenheimer P, Loidl A. Response of disordered matter to electromagnetic fields [J]. Physics Review Letters, 2003, 91(20)∶ 207601.

    [18] Mott NF. Electrons in disordered structures [J]. Advances in Physics, 2001, 50(7)∶ 865-945.

    [19] Efros AL, Shklovskii BI. Coulomb gap and low temperature conductivity of disordered systems [J]. Journal of Physics C∶ Solid State Physics, 1975, 8(4)∶ L49-L51.

    [20] Bidault O, Maglione M, Actis M, et al. Polaronic relaxation in perovskites [J]. Physical Review B, 1995, 52(6)∶ 4191-4197.

    [21] Snowden DP, Saltsburg H. Hopping conduction in NiO [J]. Physics Review Letters, 1965, 14(13)∶497-499.

    [22] Iguchi E, Kubota N, Nakamori T, et al. Polaronic conduction in n-type BaTiO3doped with La2O3or Ge2O3[J]. Physical Review B, 1991, 43(10)∶ 8646-8649.

    Variable-Range-Hopping Conduction of CCTO over Broad Temperature Range

    LIN Peng1,2HUANG Haitao3YE Mao1,2ZENG Xierong1,2KE Shanming1,21

    ( College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China )2( Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China )3( Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong 999077, China )

    The ac conductivity and dielectric properties of CaCu3Ti4O12(CCTO) ceramics were investigated in a temperature range of —120℃ to 300℃ and a frequency range of 1 Hz to 10 MHz. Two different conduction processes, which can be well described by Mott’s variable-range-hopping (VRH) mechanism, were observed in different temperature regions. The high temperature VRH conduction is related to the second ionization of oxygen vacancy. The low temperature dielectric properties of CCTO could be described by the so-called universal dielectric response (UDR) when a polaron relaxation is considered.

    CCTO; colossal dielectric constants; variable-range-hopping; polaron relaxation

    2014-08-16

    TB 34

    A

    Foundation:National Natural Science Foundation of China(51302172);National Natural Science Foundation of China(51272161)

    Author:Lin Peng, Ph. D., Associate Professor. His research interests include functional thin films and their applications in optoelectronics, organic solar cells, and organic & graphene transistors; Huang Haitao, Ph.D., Associate Professor. His research interests include ferroelectric and multiferroic materials & devices, materials for energy conversion and storage, and density functional theory (DFT) on perovskite materials; Ye Mao, Ph.D., Postdoc. His research interest is ferroelectric materials; Zeng Xierong, Ph.D., Professor. His research interests include new carbon materials, metal glasses, and thermoelectric materials; Ke Shanming (corresponding author), Ph.D., Associate Professor. His research interests include complex oxide thin films and heterointerfaces, inorganic & graphene transistors for optoelectronic applications, and high-k dielectrics, E-mail:smke@szu.edu.cn.

    猜你喜歡
    香港理工大學(xué)物理系深圳大學(xué)
    香港理工大學(xué)無錫科技創(chuàng)新研究院啟用
    華人時刊(2023年19期)2023-12-27 01:09:44
    《深圳大學(xué)學(xué)報理工版》2023 年分類總目次
    香港理工大學(xué)無錫科技創(chuàng)新研究院簽約落地無錫空港經(jīng)開區(qū)
    華人時刊(2022年19期)2022-02-15 03:28:20
    《深圳大學(xué)學(xué)報理工版》2021 年分類總目次
    《深圳大學(xué)學(xué)報理工版》2020年分類總目次
    電子信息與物理系簡介
    香港理工大學(xué)護理本科教育見聞及啟示
    《深圳大學(xué)學(xué)報理工版》2017年征稿細則
    行在科研 育在四方——記清華大學(xué)工程物理系副教授黃善仿
    酷漫
    漢語世界(2015年2期)2015-01-18 02:44:07
    插阴视频在线观看视频| 99热这里只有是精品在线观看| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 国产av麻豆久久久久久久| 97超级碰碰碰精品色视频在线观看| 亚洲七黄色美女视频| 男女做爰动态图高潮gif福利片| 国产老妇女一区| 成人综合一区亚洲| 一级黄片播放器| 色播亚洲综合网| 欧美精品国产亚洲| 免费看a级黄色片| 久久久久国产精品人妻aⅴ院| 丝袜喷水一区| 成年女人毛片免费观看观看9| 日本a在线网址| 亚洲综合色惰| 人人妻,人人澡人人爽秒播| 久久久久国产精品人妻aⅴ院| 91精品国产九色| 六月丁香七月| 97超视频在线观看视频| 久久中文看片网| 免费av毛片视频| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av涩爱 | 免费黄网站久久成人精品| 最近2019中文字幕mv第一页| 国产精品日韩av在线免费观看| 国产精品一区二区三区四区免费观看 | 麻豆国产97在线/欧美| 午夜a级毛片| 精品福利观看| 天堂av国产一区二区熟女人妻| 99热这里只有精品一区| 久久久国产成人免费| 六月丁香七月| 亚洲av熟女| 岛国在线免费视频观看| 97碰自拍视频| 亚洲不卡免费看| 亚洲国产色片| 美女cb高潮喷水在线观看| 少妇猛男粗大的猛烈进出视频 | 久久精品夜色国产| 欧美成人一区二区免费高清观看| 日韩强制内射视频| АⅤ资源中文在线天堂| 国内揄拍国产精品人妻在线| 成人国产麻豆网| 成年女人看的毛片在线观看| 小蜜桃在线观看免费完整版高清| 一级av片app| 1024手机看黄色片| av在线播放精品| 精品久久久久久久久av| 亚洲人成网站高清观看| 亚洲在线自拍视频| 免费看av在线观看网站| 亚洲va在线va天堂va国产| 国产精品精品国产色婷婷| 久久精品综合一区二区三区| 男人舔女人下体高潮全视频| 国产精品久久久久久亚洲av鲁大| 又粗又爽又猛毛片免费看| 亚洲精品日韩av片在线观看| 欧美日韩精品成人综合77777| 国产高清不卡午夜福利| 91狼人影院| 国产探花在线观看一区二区| 欧美高清成人免费视频www| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av涩爱 | 亚洲成人久久爱视频| 国产视频内射| 午夜精品国产一区二区电影 | 亚洲av不卡在线观看| 在线免费十八禁| 亚洲欧美中文字幕日韩二区| 午夜激情欧美在线| 成人亚洲精品av一区二区| 在线看三级毛片| 给我免费播放毛片高清在线观看| 天天躁日日操中文字幕| 乱人视频在线观看| 久久久久久国产a免费观看| 欧美性猛交╳xxx乱大交人| av视频在线观看入口| 日本a在线网址| 精品一区二区三区视频在线观看免费| 国产在线男女| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 99热全是精品| 99久久精品国产国产毛片| 久久综合国产亚洲精品| 成年女人永久免费观看视频| 国产高清视频在线观看网站| 婷婷色综合大香蕉| 人人妻,人人澡人人爽秒播| 亚洲人成网站在线播放欧美日韩| 久久久久国产精品人妻aⅴ院| 可以在线观看毛片的网站| 国产乱人偷精品视频| 欧美成人精品欧美一级黄| 欧美xxxx性猛交bbbb| 国产精品嫩草影院av在线观看| 久久天躁狠狠躁夜夜2o2o| 一夜夜www| or卡值多少钱| 变态另类丝袜制服| 精品乱码久久久久久99久播| 最新中文字幕久久久久| 日韩欧美精品v在线| 婷婷精品国产亚洲av在线| 国内少妇人妻偷人精品xxx网站| 一个人看视频在线观看www免费| 真人做人爱边吃奶动态| 日韩在线高清观看一区二区三区| 国产成人freesex在线 | 亚洲成人久久性| 久久久久国产网址| 午夜免费男女啪啪视频观看 | 最近中文字幕高清免费大全6| 毛片女人毛片| 国产单亲对白刺激| 老司机午夜福利在线观看视频| 乱码一卡2卡4卡精品| 少妇的逼水好多| 伦理电影大哥的女人| 亚洲精品亚洲一区二区| 丰满的人妻完整版| 97超视频在线观看视频| 亚洲成人精品中文字幕电影| 日本黄大片高清| 麻豆久久精品国产亚洲av| 日韩一本色道免费dvd| 91麻豆精品激情在线观看国产| 国产一区二区在线av高清观看| 丝袜美腿在线中文| 亚洲欧美清纯卡通| 中国美女看黄片| 日韩 亚洲 欧美在线| 干丝袜人妻中文字幕| 少妇熟女欧美另类| 亚洲欧美精品综合久久99| 99久久精品一区二区三区| 色综合色国产| 亚洲精品日韩在线中文字幕 | 欧美另类亚洲清纯唯美| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 亚洲在线观看片| 亚洲中文日韩欧美视频| 成年版毛片免费区| 波多野结衣高清无吗| 国产高潮美女av| 日本黄大片高清| 日韩人妻高清精品专区| 男女啪啪激烈高潮av片| 久久精品人妻少妇| 国产三级在线视频| 久久精品久久久久久噜噜老黄 | 国产v大片淫在线免费观看| a级毛色黄片| 国产精品伦人一区二区| 国产欧美日韩精品一区二区| 一级毛片aaaaaa免费看小| 日本一本二区三区精品| 国产大屁股一区二区在线视频| 国产 一区 欧美 日韩| 国产在线精品亚洲第一网站| 男女那种视频在线观看| 亚洲在线自拍视频| 成人一区二区视频在线观看| 一级毛片aaaaaa免费看小| 麻豆一二三区av精品| 久久鲁丝午夜福利片| 日韩av不卡免费在线播放| 亚洲av免费在线观看| 我要搜黄色片| 99在线人妻在线中文字幕| 亚洲精品色激情综合| 女生性感内裤真人,穿戴方法视频| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久久久久久久| 精品久久久久久久久久免费视频| 成人永久免费在线观看视频| 人妻夜夜爽99麻豆av| 国产蜜桃级精品一区二区三区| 一区二区三区四区激情视频 | 欧美xxxx黑人xx丫x性爽| 一级毛片我不卡| 亚洲欧美日韩卡通动漫| 日日干狠狠操夜夜爽| 免费搜索国产男女视频| 国产亚洲欧美98| 亚洲欧美日韩高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 在线天堂最新版资源| 欧美又色又爽又黄视频| 亚洲av.av天堂| 久久精品综合一区二区三区| 亚洲婷婷狠狠爱综合网| 国产日本99.免费观看| 尤物成人国产欧美一区二区三区| av在线亚洲专区| 免费观看在线日韩| 一级a爱片免费观看的视频| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区 | 久久久久久九九精品二区国产| 日本-黄色视频高清免费观看| 国产精品综合久久久久久久免费| 国产午夜精品久久久久久一区二区三区 | 久久久久久九九精品二区国产| 18禁黄网站禁片免费观看直播| 国产成年人精品一区二区| 我要搜黄色片| 禁无遮挡网站| 国产69精品久久久久777片| av在线老鸭窝| 联通29元200g的流量卡| 亚洲专区国产一区二区| 国产不卡一卡二| 亚洲av一区综合| 少妇猛男粗大的猛烈进出视频 | 在线观看免费视频日本深夜| 99久久九九国产精品国产免费| 免费av不卡在线播放| 一区二区三区高清视频在线| 精品人妻视频免费看| 男人舔女人下体高潮全视频| 一区福利在线观看| 国产精品福利在线免费观看| 欧美日本亚洲视频在线播放| 少妇人妻一区二区三区视频| 欧美精品国产亚洲| 国产成人影院久久av| 国产欧美日韩一区二区精品| 少妇熟女欧美另类| 国产aⅴ精品一区二区三区波| 久久久久免费精品人妻一区二区| 欧美一区二区精品小视频在线| 深夜精品福利| 成人无遮挡网站| 久久久久性生活片| 免费观看精品视频网站| 麻豆一二三区av精品| h日本视频在线播放| 国产蜜桃级精品一区二区三区| 日本免费a在线| 欧美中文日本在线观看视频| 国产亚洲精品综合一区在线观看| 久久精品人妻少妇| 国产男人的电影天堂91| 嫩草影院入口| 久99久视频精品免费| 精品午夜福利视频在线观看一区| 国产av麻豆久久久久久久| 亚洲色图av天堂| 搡老岳熟女国产| 一级毛片久久久久久久久女| 日本撒尿小便嘘嘘汇集6| 国产成人一区二区在线| 波多野结衣高清无吗| 在线免费观看的www视频| 两个人视频免费观看高清| 国产精品久久久久久久久免| 成人一区二区视频在线观看| 欧美不卡视频在线免费观看| 搡老岳熟女国产| 免费观看人在逋| 欧美成人免费av一区二区三区| 大香蕉久久网| av国产免费在线观看| 国产男人的电影天堂91| 免费大片18禁| 亚洲精品国产av成人精品 | 你懂的网址亚洲精品在线观看 | 日本爱情动作片www.在线观看 | 日韩国内少妇激情av| 22中文网久久字幕| 在线免费观看的www视频| 欧美zozozo另类| 最新在线观看一区二区三区| 可以在线观看毛片的网站| 高清午夜精品一区二区三区 | 久久久久久九九精品二区国产| 十八禁网站免费在线| 色播亚洲综合网| 韩国av在线不卡| 国产高清三级在线| 少妇高潮的动态图| 欧美+亚洲+日韩+国产| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆 | 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看 | 悠悠久久av| 亚洲精品粉嫩美女一区| 少妇人妻精品综合一区二区 | 在线观看美女被高潮喷水网站| 美女cb高潮喷水在线观看| 男女那种视频在线观看| 三级国产精品欧美在线观看| 欧美性猛交黑人性爽| 99热全是精品| 欧美日韩国产亚洲二区| 黄片wwwwww| 一区二区三区免费毛片| 国产高清三级在线| 老熟妇仑乱视频hdxx| 亚洲自偷自拍三级| 午夜免费激情av| 99久久成人亚洲精品观看| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 中文字幕精品亚洲无线码一区| 美女被艹到高潮喷水动态| 在线a可以看的网站| 亚洲精品日韩av片在线观看| 国产成人福利小说| 日韩av在线大香蕉| 最新在线观看一区二区三区| 欧美日本视频| 国产真实伦视频高清在线观看| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 国产免费男女视频| 日本五十路高清| 久久久久久大精品| av女优亚洲男人天堂| 免费观看精品视频网站| 午夜福利在线观看免费完整高清在 | 午夜久久久久精精品| 亚洲中文字幕一区二区三区有码在线看| 男女做爰动态图高潮gif福利片| 久久久久久久午夜电影| 美女内射精品一级片tv| 国产精品伦人一区二区| 黄色日韩在线| 婷婷六月久久综合丁香| 午夜精品在线福利| 联通29元200g的流量卡| 国产高清不卡午夜福利| 18禁黄网站禁片免费观看直播| 一级毛片久久久久久久久女| 久久精品夜色国产| 国产在视频线在精品| 国语自产精品视频在线第100页| 国产不卡一卡二| 久久韩国三级中文字幕| 内地一区二区视频在线| 日本熟妇午夜| avwww免费| 一区二区三区免费毛片| 男人狂女人下面高潮的视频| 久久鲁丝午夜福利片| 高清日韩中文字幕在线| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 网址你懂的国产日韩在线| 日本精品一区二区三区蜜桃| 最后的刺客免费高清国语| av黄色大香蕉| 国产熟女欧美一区二区| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 亚洲av电影不卡..在线观看| 搞女人的毛片| 黄片wwwwww| 少妇猛男粗大的猛烈进出视频 | 人人妻,人人澡人人爽秒播| 中文字幕熟女人妻在线| 久久99热6这里只有精品| 在线播放无遮挡| 午夜影院日韩av| 亚洲av第一区精品v没综合| 欧美成人精品欧美一级黄| 国产精品国产高清国产av| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 极品教师在线视频| 在线观看66精品国产| 久久99热这里只有精品18| 午夜老司机福利剧场| 亚洲在线观看片| 99国产极品粉嫩在线观看| 最近视频中文字幕2019在线8| 高清毛片免费看| 亚洲精品亚洲一区二区| 欧美一区二区亚洲| 国产精品一二三区在线看| 色5月婷婷丁香| 搡女人真爽免费视频火全软件 | 成年免费大片在线观看| 亚洲av二区三区四区| 色哟哟·www| 成人亚洲精品av一区二区| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 亚洲国产精品合色在线| 国产欧美日韩精品亚洲av| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 国产精品一区二区三区四区久久| 熟女人妻精品中文字幕| 亚洲精华国产精华液的使用体验 | 91午夜精品亚洲一区二区三区| 狠狠狠狠99中文字幕| 国产色爽女视频免费观看| 最好的美女福利视频网| 免费搜索国产男女视频| 又黄又爽又刺激的免费视频.| 国产午夜精品久久久久久一区二区三区 | av在线天堂中文字幕| 中出人妻视频一区二区| 国产视频一区二区在线看| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人妻少妇| 成人无遮挡网站| av在线亚洲专区| 日韩制服骚丝袜av| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 亚洲av中文av极速乱| 久久6这里有精品| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 天天一区二区日本电影三级| 色在线成人网| 久久久久国内视频| 少妇的逼水好多| 欧美日韩精品成人综合77777| 97热精品久久久久久| 看片在线看免费视频| 一级a爱片免费观看的视频| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 搡老岳熟女国产| 最近手机中文字幕大全| 美女被艹到高潮喷水动态| 美女大奶头视频| 午夜免费激情av| 免费av观看视频| 亚洲综合色惰| 在线免费观看不下载黄p国产| av福利片在线观看| 淫秽高清视频在线观看| 国产高清三级在线| 黄片wwwwww| a级毛色黄片| 成人毛片a级毛片在线播放| av视频在线观看入口| 亚洲av成人精品一区久久| av在线观看视频网站免费| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 亚洲精品国产成人久久av| 久久人妻av系列| 在线观看一区二区三区| 夜夜夜夜夜久久久久| 日韩欧美 国产精品| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美成人精品一区二区| 男女做爰动态图高潮gif福利片| 三级毛片av免费| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| a级毛片免费高清观看在线播放| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| 热99re8久久精品国产| 小说图片视频综合网站| 欧美性猛交╳xxx乱大交人| 久久精品国产鲁丝片午夜精品| 波多野结衣高清无吗| 卡戴珊不雅视频在线播放| 日韩成人伦理影院| 亚洲国产欧美人成| 久久久久久久亚洲中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲成人av在线免费| 少妇猛男粗大的猛烈进出视频 | 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 久久久成人免费电影| 欧美极品一区二区三区四区| 亚洲成人精品中文字幕电影| 好男人在线观看高清免费视频| 日韩,欧美,国产一区二区三区 | 欧美日韩国产亚洲二区| 九九热线精品视视频播放| 一级毛片aaaaaa免费看小| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 99久久精品热视频| 91精品国产九色| 久久欧美精品欧美久久欧美| 亚洲欧美清纯卡通| 欧美激情国产日韩精品一区| 亚洲熟妇熟女久久| 国产色爽女视频免费观看| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 国产美女午夜福利| 国产高潮美女av| 六月丁香七月| 国产伦一二天堂av在线观看| 亚洲内射少妇av| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| 麻豆av噜噜一区二区三区| 12—13女人毛片做爰片一| 日韩欧美精品免费久久| 熟妇人妻久久中文字幕3abv| 国产一区二区激情短视频| 久久久a久久爽久久v久久| 最新中文字幕久久久久| 美女高潮的动态| 一进一出抽搐gif免费好疼| 国产成人影院久久av| 伦理电影大哥的女人| 日韩欧美免费精品| 小蜜桃在线观看免费完整版高清| 十八禁网站免费在线| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 成年免费大片在线观看| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 午夜福利在线观看免费完整高清在 | 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 成人av一区二区三区在线看| 一级毛片我不卡| 三级经典国产精品| 久久6这里有精品| 国产成人一区二区在线| 欧美性猛交黑人性爽| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 内地一区二区视频在线| 亚洲精品成人久久久久久| 韩国av在线不卡| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 亚洲专区国产一区二区| а√天堂www在线а√下载| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 九九久久精品国产亚洲av麻豆| 夜夜夜夜夜久久久久| 99视频精品全部免费 在线| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 久久久久久国产a免费观看| 免费观看精品视频网站| 亚洲自偷自拍三级| 天堂网av新在线| 女生性感内裤真人,穿戴方法视频| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 免费av观看视频| 免费看美女性在线毛片视频| 欧美绝顶高潮抽搐喷水| 我要搜黄色片| 久久精品国产亚洲av涩爱 | 99在线人妻在线中文字幕| 国内精品久久久久精免费| 97在线视频观看| 国产成人一区二区在线| 日本a在线网址| 免费无遮挡裸体视频| 久久午夜福利片| 欧美区成人在线视频| 亚洲四区av| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| 久久久久久九九精品二区国产| 一进一出抽搐动态| 国产男靠女视频免费网站| 一级av片app| 国产高清激情床上av| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 少妇的逼水好多| 成人漫画全彩无遮挡| 97超碰精品成人国产| 深爱激情五月婷婷| 不卡视频在线观看欧美| 搡老妇女老女人老熟妇| 国产成人freesex在线 | 中文字幕av在线有码专区| 久久综合国产亚洲精品| 黄色配什么色好看| 成人无遮挡网站| 国产免费一级a男人的天堂| 非洲黑人性xxxx精品又粗又长|