• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    effects of Rotational Isomerism and Bond Length Alternation on Optical Spectra of FTC Chromophore in Solution

    2014-07-19 11:17:08KeZhaoGuangchaoHanLiliZhangHaihongJia
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Ke Zhao,Guang-chao Han,Li-li Zhang,Hai-hong Jia

    College of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    effects of Rotational Isomerism and Bond Length Alternation on Optical Spectra of FTC Chromophore in Solution

    Ke Zhao?,Guang-chao Han,Li-li Zhang,Hai-hong Jia

    College of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chromophore 2-dicyanomethylen-3-cyano-4-{2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinyl}-5,5-dimethyl-2,5-dihydrofuran(FTC)in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model.It is shown that the maximum absorption peaks of the rotamers have difference of nearly 30 nm both in vacuum and in solutions.The population of the rotamers changes a lot in different solvents.Based on the geometries optimized by Hartree-Fock method,the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment.It indicates that the bond length alternation can have an important effect on the optical spectra.

    Rotational isomerism,Bond length alternation,One-photon absorption,Polarizable continuum model

    I.INTRODUCTION

    Organic chromophores possessing a high degree of π-conjugation have become one of the most important candidates for nonlinear optical(NLO)materials [1-3].Extensive research has been carried out to explore the so-called structure-to-property relationships at the molecular level[1,3-5].The accurate calculations of one-photon absorption(OPA)properties not only provide the assessment of various computational methods[6,7]compared with experimental results,but also are the prerequisite for the further study of NLO properties,such as the f i rst-order hyperpolarizability and two-photon absorption(TPA)[8,9].

    It is well known that the linear absorption spectra of charge-transfer conjugated molecules may be influenced by the surrounding medium,and solvents can bring about a change in the position,intensity,and even the shape of absorption bands,which is termed as solvatochromism[10].A large number of solvatochromic behaviors have been observed for many organic chromophores with strong NLO responses[10,11].The signif i cant modif i cations of the spectra can be understood from the changes in the geometries and electronic structures of the solute molecule due to the intermolecular interactions in condensed phase.It has been demonstrated that some important conformational parameters including the bond length alternation(BLA)[12],the main torsional/dihedral angles[13,14],and the orientations of branches[15,16]are responsible for the solvent effects on linear and nonlinear optical properties. In some cases,the solvatochromic behaviors can be attributed to the electronic structures such as ground and excited state dipole moments[17].

    Recently,the influence of isomerism on optical properties has been investigated[7,18-24].We have analyzed the isomer dependence of optical absorptions on a V-shaped hydroxypyrimidine molecule in tetrahydrofuran and chloroform solutions at length[19].It was shown that the experimentally observed large spectral shift in OPA and large enhancement in TPA cross sections in different solutions can be well interpreted by the involvement of molecular isomers.Guillaume and coworkers studied the effects of conformational averaging on OPA,TPA and circular dichroism[23]. The comparison between the Maxwell-Boltzmann(MB) weighted spectra and experimental linear spectroscopy turned out to be rather satisfactory.In the work of Nguyen et al.,the computed OPA spectrum obtained by Boltzmann average over multiple low-lying isomers gets better agreement with experimental observations than that of the lowest-energy conformer[24].

    Itisexpectedthatmanyf l exibleconjugated moleculeswithsinglebondshavethermalpopulations of rotational isomers(rotamers)[22].The 2-dicyanomethylen-3-cyano-4-{2-[E-(4-N,N-di(2-acetoxy-ethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-

    vinyl}-5,5-dimethyl-2,5-dihydrofuran(FTC)chromophore is a candidate f l exible molecule and has been well-studied[7,21,22,25].This push-pull chromophore exhibits nice NLO properties,characterized by a large hyperpolarizability.Kinnibrugh et al.have exploredthe influence of rotational and geometrical isomerism on the f i rst-order hyperpolarizability of FTC with density functional theory(DFT)[22].Their calculations indicates that the conformational energies of the manifold of rotamers are near degenerate and the rotational average should not be ignored.The effect of the conformational space on the ultraviolet-visible(UV-Vis)spectra has been taken into account by Andzelm et al.[7]. However,they calculated the absorption spectra only in gas phase and in cyclohexanone solution.Other polar solvents have not been considered.Furthermore,the effects of some important structural parameters such as the bond distance or the BLA have not been explored.

    In order to further study the influence of the solvent reaction f i eld on rotameric populations and on the OPA properties,in this work,we perform a systematic investigation of the geometries and electronic structures for FTC rotamers in vacuum and in solvents with increasing polarity:chloroform,cyclohexanone,methanol and water.The MB weights for these rotamers in vacuum and in solutions are obtained.The OPA spectra and oscillator strengths are calculated using time-dependent DFT(TD-DFT)approach in combination with the polarizable continuum model(PCM).Also,from the geometrical point of view,we put forward a possible explanation of the experimental observations.This work also specif i es how OPA properties are influenced by the rotamers in various solutions and explores the relationships of structure and optical properties.

    II.COMPUTATIONAL METHODS

    The transition probability of OPA is conventionally given by oscillator strength[26]:

    whereμis the electric dipole moment operator,ωfdenotes the excitation energy from the ground h0|to the excited|fi states,and the summation is performed over the molecular axes:α∈(x,y,z).

    According to Boltzmann distributions,the probability of each molecular conformation with energy Eαat temperature T can be described by the corresponding MB weight X which is expressed as

    where kBis the Boltzmann’s constant and the summation runs over all possible conformers.

    FIG.1 The chemical formula of FTC chromophore.

    All the calculations are implemented in Gaussian 03[27]program.The geometry optimizations in the gas phase and in solutions are carried out with the 6-31G(d,p)basis set at the Hartree-Fock(HF)and B3LYP levels of theory[7].The 6-31+G(d,p)basis set is used to obtain the single point energies on optimized geometries.To estimate the vertical excitation energies and the corresponding oscillator strengths,we have used the TD-DFT approach with B3LYP functional at 6-31G(d,p)basis set.The solvent effect is considered by means of the PCM[28].The use of larger basis sets could probably provide better numerical results,but we believe that the overall picture would not change.

    III.RESULTS AND DISCUSSION

    A.Rotational isomerism

    The chemical formula of FTC molecule is presented in Fig.1.FTC molecules has three signif i cant single bonds(labeled as c,g,and i here)along the conjugated backbone which can give rise to a manifold of rotamers [21,22].With different initial conformations,the most probable rotamers are fully optimized in vacuum and in different solvents at the B3LYP level.The calculations indicate that the geometries of each rotamer look almost the same in all the phases.Thus,as an example,the convergent geometries of rotamers in chloroform are exhibited in Fig.2.For each of the rotatable single bonds,two rotational states located near 0?and 180?are denoted by transoid(trans)and cisoid(cis),as these states bring the double bonds adjacent to the rotatable bond into trans and cis orientations relative to another [22].The names of other rotamers are all def i ned according to the following rules.For example,the f i rst letter“t”in the name of“ttc”means the double bonds of b and d are on the other side of the single bond c, the second letter“t”denotes the double bonds offand h are also on the other side of the single bond g,and the last one“c”refers to the double bonds h and j are on the same side of the bond i.It is noticed that these rotamers have different structural features.It is easy to see that conformers cct and ccc each have a nearly linear backbone,while the conformer ttt has a considerable angle between the branch with benzene and the one with furan ring.Such a different conjugation could lead to different absorption properties.It is also noticed that the rotation around bond i at the furan ring could bring about different strengths of acceptor groups.

    For conjugated molecules,one of the most important geometric parameters is the BLA which is def i ned as thedifference in length between the single and double bonds [12,29].In order to examine the geometrical changes of the rotamers in selected solutions,we calculated the BLA,and the values are collected in Table I.The BLA parameter for FTC molecule is determined by[30]:

    FIG.2 Optimized structures of the rotamers in chloroform.

    where the bonds represent bond length,indicated in Fig.1.The results show that for different conformers the BLA values have little difference in the same environment.The BLA is found to be about 0.04?A in vacuum for all the rotamers.However,with increasing solvent polarity,the BLA values are decreased obviously.For instance,in water,the BLA of rotamer ttc is 0.0178?A,which is much smaller than the corresponding value of 0.0420?A in vacuum.This indicates that the solvent effects on the molecular geometry are significant.Similar behavior has been seen in other push-pull molecules[12,31].As electronic structures are closely related to optical properties,the permanent dipole moments of the ground states for all the rotamers are also shown in Table I.In contrast to the case of BLA,in the same enviorment,the permanent dipole moments of the eight rotamers are noticeably different.In all the cases,the rotamer ctc has the largest dipole moment and the conformer ttt has the smallest one due to the lack of linear backbone.The differences between the maxima and the minima are computed to be 2.81 D in vacuum, 4.08 D in chloroform,4.37 D in cyclohexanone,4.64 D in methanol,and 4.5 D in water,respectively.An interesting observation is that the dipole moments of these isomeric species increase in a consistent manner with increasing polarity of the solvent.The reason is that a polar solvent polarizes a solute more signif i cantly than a nonpolar solvent and hence induces a larger charge separation which results in a higher dipole moment.

    TABLE II Energy differences?E(in kcal/mol)and MB weights X of the rotamers in vacuum and in solutions.

    TABLE III Calculated OPA wavelengths λmaxand corresponding oscillator strengths f of the rotamers in vacuum and in solutions.

    The single point energies on the optimized geometries in vacuum and in different solutions are calculated using bigger basis set 6-31+G(d,p)at the B3LYP level and the obtained energy differences with respect to the lowest energy,as well as the corresponding MB weights at room temperature are given in Table II.In vacuum, it is found that the ttc has the lowest energy among these rotamers and the energy differences between other structures and ttc are very small in general.For the ttt and ctc,the energy differences are only 0.34 and 0.88 kcal/mol,respectively.The MB weights X demonstrate that the conformers with small energy difference can be populated at certain percentages such as 28.27%for ttt and 11.17%for ctc.The lowest-energy conformer ttc only takes up to 50.76%.As expected,the presence of solvent makes an important change in the order of energy.In all the solutions,the lowest-energy conformer is replaced by the rotamer ttt.Moreover,the population of ttt is enhanced with increasing solvent polarity, while the component of ttc is found to be decreased.In water,the percentage of ttc is only 17.02%,even lower than that of the ctt(20.56%).This indicates that the orientation of furan ring in ttt is more advantageous to the molecular stability than that in ttc in more polar solvents.It is interesting to observe that the population of the ctt,similar to the ttt and ttc,is also changed signif i cantly from vacuum to water,which makes the ctt become an important component in water.In addition,it is noticed that the energy differences of these rotamers still remain small in all the solutions.

    The experimental linear absorption spectrum of FTC chromophore in cyclohexanone solvent is composed of two major bands centered at 650 and 400 nm[25]which correspond to the intramolecular charge transfer(CT) and the local excitation.The CT state produces the maximum absorption peak(λmax),while the local transition has a much lower oscillator strength.In Table III, we present the results of our TD-DFT calculations forthe CT states in vacuum and in various solutions.The geometries of the rotamers have been optimized in solvents by the PCM method and the B3LYP functional at the 6-31G(d,p)basis set was used in the calculations.First,it is found that the eight rotamers have different absorption properties both in vacuum and in solutions.The absorption maximum λmaxin vacuum is changed from 595 nm of ctc to 624 nm of tcc.The shift nearly comes to be 30 nm.In all the solutions, the λmaxpeak difference between ctc and tcc is still about 30 nm.Secondly,the statistical averages of the peaks are not exactly equal to the values of the lowestenergy conformer,but the deviation is less than 7 nm. In chloroform,the average λmaxis equal to 700 nm, blue-shifted by 7 nm with respect to the λmaxof ttt. This is because ttc,ctc and ctt have considerable populations in this case,as shown in Table II.With the increasing population of ttt,the average λmaxbecomes closer to the one of ttt.Although the populations of these rotamers changes a lot in various solutions,the averaged absorption peak positions are almost the same in different solvents.Thirdly,all the conformers exhibit large positive solvatochromism and the behavior of the absorption maximum as a function of dielectric constant of the solvent is non-monotonic.For example,λmaxof ttc shifts from 608 nm to 701 nm on going from the gas phase to chloroform and the maximum value of λmaxfor ttc occurs in cyclohexanone.It is also noticed that the oscillator strength is enhanced upon solvation.At last, the calculated absorption maximum with the B3LYP geometry is not in agreement with experimental results. The deviation comes to be 56 nm in cyclohexanone.

    TABLE IV Main bond distances a-i,BLA,dihedral angle θ,and permanent dipole momentsμof ttt rotamer optimized at the HF and the B3LYP levels in vacuum and in cyclohexanone.

    B.Bond length alternation

    As well known,the accuracy of results depends strongly on the applied methods.Andzelm et al.have assessed the efficiency of several DFT functionals for reproducing the experimental absorption wavelength based on the B3LYP optimized structures[7],and concluded the hybrid functionals B3LYP and PBE0 as well as BNL with the attenuation parameter γ=0.1 and CAM-B3LYP with γ=0.05 would yield the λmaxtransition within the target accuracy of 30 nm.From a different point of view,the optical properties also highly depend on the used geometries.Even the most accurate electronic structure method will fail if the molecular geometry is inaccurate.It has been known that the electron density described by B3LYP is more localized, resulting in a larger charge separation in the chargetransfer molecule[32].Early studies on the similar systems have also shown that the HF method is superior to the B3LYP approach in correct predicting the BLA parameter[33].Therefore,we have optimized the geometry of ttt,as an example,both at the B3LYP and the HF levels with the 6-31G(d,p)basis set in vacuum and in cyclohexanone.

    The main structural parameters of ttt,along with the permanent dipole moment of the ground state are presented in Table IV.The dihedral angle θ is def i ned by the four C atoms which are labeled with numbers in Fig.1.It should be mentioned that the thiophene and furan ring are nearly coplanar in two methods and so the dihedral angle between them is not discussed here. From Table IV,one can see that the B3LYP geometry tends to give a longer conjugation length,a shorter BLA value,a better planarity,and a larger dipole moment with respect to the HF geometry.The BLA values of the HF geometries are 0.0988?A in vacuum and 0.0947?A in cyclohexanone,which are much larger than those of the corresponding B3LYP geometries.The HF geometry has a nonplanar structure in vacuum with θ=12.97?and θ is decreased to 5.85?on going from the gas phase to cyclohexanone solution.

    In order to investigate the OPA dependence on the dihedral angle,we have carried out a set of constrained geometry optimizations in the gas phase for different dihedral angles at the HF level.For each of constrained geometries,the excitation energies have been obtained at the B3LYP level in combination with the PCM.The conformation energy difference and the OPA wavelength shift with respect to the relaxed geometry as functions of dihedral angle are illustrated in Fig.3. It is noted that a signif i cant deviation(90?)from the equilibrium geometry only requires 2.18 kcal/mol.This demonstrates that the change of dihedral angle is possible from the thermodynamic point of view.The OPA wavelength is blue-shifted with the increase of θ and the maximum shift is 23 nm.Such results suggest thatthe torsion of the backbone does not play an important role in the OPA peak position.To further conf i rm this f i nding,we also performed similar constrained optimizations by manual rotating the bond c,g,and i, respectively.The changes of the OPA wavelength are still within 30 nm in all the cases.

    FIG.3(a)Conformation energy difference?E and(b)OPA wavelength shift?λ as functions of dihedral angle θ.

    Finally,all the rotamers are optimized without constraints at the HF level and the corresponding excitation energies and the oscillator strengths are calculated at the B3LYP level in cyclohexanone solution.The results are displayed in Table V.In comparison with the B3LYP geometries,the order of energy is unchanged. The λmaxhas a 27 nm shift between tcc and ctt.The most important observation is that the λmaxpeaks of these rotamers are located in the vicinity of 650 nm and then the averaged λmaxis consistent with experimental value very well.Since the change of torsional angle can not bring about a large wavelength shift,as analyzed above,it is reasonable to speculate that the improvement of calculated maximum absorption position mainly results from the bond distances or the BLA parameter which are obtained by HF method.

    IV.CONCLUSION

    The absorption spectra of FTC rotamers in several solvents have been investigated employing the TD-DFT in combination with the PCM method.The effects of rotational isomerism on structures and absorption properties are discussed in detail.It is found that the absorption properties of the rotamers are different both in vacuum and in solutions.The maximum absorption peak position has a nearly 30 nm shift among these rotamers in all cases.It is also shown that the presence ofsolvent changes the order of energy and the corresponding populations of the rotamers.From the geometrical point of view,we have optimized the geometries of rotamers using HF method and the averaged maximum absorption wavelength is in a good agreement with the experimental value.Our calculations indicate that the BLA parameter can give rise to an important effect on the OPA property of FTC chromophore.

    TABLE V Energy differences?E,MB weights X,and the calculated OPA wavelengths λmaxand the oscillator strengths f of the rotamers optimized at the HF level in cyclohexanone.

    V.ACKNOWLEDGMENTS

    This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).

    [1]M.Albota,D.Beljonne,J.L.Br′edas,J.E.Ehrlich,J. Y.Fu,A.A.Heikal,S.E.Hess,T.Kogej,M.D.Levin, S.R.Marder,D.McCord-Maughon,J.W.Perry,H. R¨ockel,M.Rumi,G.Subramaniam,W.W.Webb,X. L.Wu,and C.Xu,Science 281,1653(1998).

    [2]G.S.He,L.S.Tan,Q.Zheng,and P.N.Prasad,Chem. Rev.108,1245(2008).

    [3]M.Pawlicki,H.A.Collins,R.G.Denning,and H.L. Anderson,Angew.Chem.Int.Ed.48,3244(2009).

    [4]C.K.Wang,P.Macak,Y.Luo,and H.?Agren,J.Chem. Phys.114,9813(2001).

    [5]D.Beljonne,W.Wenseleers,E.Zojer,Z.Shuai,H.Vogel,S.J.K.Pond,J.W.Perry,S.R.Marder,and J.L. Br′edas,Adv.Funct.Mater.12,631(2002).

    [6]M.J.G.Peach,P.Benf i eld,T.Helgaker,and D.J. Tozer,J.Chem.Phys.128,044118(2008).

    [7]J.Andzelm,B.C.Rinderspacher,A.Rawlett,J. Dougherty,R.Baer,and N.Govind,J.Chem.Theory Comput.5,2835(2009).

    [8]K.A.Nguyen,P.N.Day,and R.Pachter,J.Chem. Phys.126,094303(2007).

    [9]F.Terenziani,O.V.Przhonska,S.Webster,L.A. Padilha,Y.L.Slominsky,I.G.Davydenko,A.O.Gerasov,Y.P.Kovtun,M.P.Shandura,A.D. Kachkovski,D.J.Hagan,E.W.V.Stryland,and A. Painelli,J.Phys.Chem.Lett.1,1800(2010).

    [10]C.Reichardt,Chem.Rev.94,2319(1994).

    [11]F.Terenziani,A.Painelli,C.Katan,M.Charlot,and M.Blanchard-Desce,J.Am.Chem.Soc.128,15742 (2006).

    [12]Y.Luo,P.Norman,P.Macak,and H.?Agren,J.Phys. Chem.A 104,4718(2000).

    [13]K.Zhao,L.Ferrighi,L.Frediani,C.K.Wang,and Y. Luo,J.Chem.Phys.126,204509(2007).

    [14]D.L.Silva,N.A.Murugan,J.Kongsted,Z.Rinkevicius,S.Canuto,and H.?Agren,J.Phys.Chem.B 116, 8169(2012).

    [15]K.Zhao,P.W.Liu,C.K.Wang,and Y.Luo,J.Phys. Chem.B 114,10814(2010).

    [16]F.Todescato,I.Fortunati,S.Carlotto,C.Ferrante,L. Grisanti,C.Sissa,A.Painelli,A.Colombo,C.Dragonetti,and D.Roberto,Phys.Chem.Chem.Phys.13, 11099(2011).

    [17]C.K.Wang,K.Zhao,Y.Su,Y.Ren,X.Zhao,and Y. Luo,J.Chem.Phys.119,1208(2003).

    [18]J.Arnbjerg,A.Jim′enez-Banzo,M.J.Paterson,S. Nonell,J.I.Borrell,O.Christiansen,and P.R.Ogilby, J.Am.Chem.Soc.129,5188(2007).

    [19]K.Zhao and Y.Luo,J.Phys.Chem.B 114,13167 (2010).

    [20]P.W.Liu,K.Zhao,and G.C.Han,Chem.Phys.Lett. 514,226(2011).

    [21]G.C.Han,K.Zhao,P.W.Liu,and L.L.Zhang,Chin. Phys.B 21,118201(2012).

    [22]T.Kinnibrugh,S.Bhattacharjee,P.Sullivan,C.Isborn, B.H.Robinson,and B.E.Eichinger,J.Phys.Chem.B 110,13512(2006).

    [23]M.Guillaume,K.Ruud,A.Rizzo,S.Monti,Z.Lin, and X.Xu,J.Phys.Chem.B 114,6500(2010).

    [24]K.A.Nguyen,P.N.Day,and R.Pachter,J.Phys. Chem.A 113,13943(2009).

    [25]B.H.Robinson,L.R.Dalton,A.W.Harper,A.Ren, F.Wang,C.Zhang,G.Todorova,M.Lee,R.Aniszfeld, S.Garner,A.Chen,W.H.Steier,S.Houbrecht,A. Persoons,I.Ledoux,J.Zyss,and A.K.Y.Jen,Chem. Phys.245,35(1999).

    [26]R.W.Boyd,Nonlinear Optics,2nd Edn.,San Diego: Academic Press,158(2003).

    [27]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Rob,J.R.Cheeseman,J.A.Jr.Montgomery, T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam, S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M. Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J. Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao, H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian, J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03 Revision D.02,Wallingford,CT: Gaussian Inc.,(2004).

    [28]J.Tomasi and M.Persico,Chem.Rev.94,2027(1994).

    [29]G.Bourhill,J.L.Br′edas,L.T.Cheng,S.R.Marder, F.Meyers,J.W.Perry,and B.G.Tiemann,J.Am. Chem.Soc.116,2619(1994).

    [30]I.Baraldi,E.Benassi,S.Ciorba,M.?Sindler-Kulyk,I. ?Skoric,and A.Spalletti,Chem.Phys.353,163(2008).

    [31]N.A.Murugan,J.Kongsted,Z.Rinkevicius,K.Aidas, K.V.Mikkelsen,and H.?Agren,Phys.Chem.Chem. Phys.13,12506(2011).

    [32]`O.Rubio-Pons and Y.Luo,J.Chem.Phys.121,157 (2004).

    [33]A.Masunov,S.Tretiak,J.W.Hong,B.Liu,and G.C. Bazan,J.Chem.Phys.122,224505(2005).

    ceived on June 26,2013;Accepted on August 7,2013)

    ?Author to whom correspondence should be addressed.E-mail:zhaoke@sdnu.edu.cn,Tel.:+86-531-86182521

    成年av动漫网址| 看免费成人av毛片| 日韩中字成人| 国产片内射在线| 欧美 亚洲 国产 日韩一| 久久久久久久大尺度免费视频| 赤兔流量卡办理| 插逼视频在线观看| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 三上悠亚av全集在线观看| 欧美激情 高清一区二区三区| 午夜福利网站1000一区二区三区| 视频区图区小说| 一级毛片电影观看| 在线 av 中文字幕| 午夜免费观看性视频| 夜夜看夜夜爽夜夜摸| 亚洲色图 男人天堂 中文字幕 | 精品国产乱码久久久久久小说| 国产精品三级大全| 啦啦啦视频在线资源免费观看| 久久鲁丝午夜福利片| 日本91视频免费播放| 久久国产精品男人的天堂亚洲 | 丝袜美足系列| av国产久精品久网站免费入址| 日本av手机在线免费观看| 观看美女的网站| 美女xxoo啪啪120秒动态图| 桃花免费在线播放| 国产精品国产三级国产av玫瑰| av免费在线看不卡| 亚洲精品乱久久久久久| 亚洲精品乱久久久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲av成人精品一二三区| 国产国拍精品亚洲av在线观看| 亚洲欧美清纯卡通| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 久久午夜综合久久蜜桃| 亚洲成人一二三区av| 亚洲无线观看免费| 精品国产乱码久久久久久小说| 啦啦啦中文免费视频观看日本| 999精品在线视频| 亚洲国产精品999| 纵有疾风起免费观看全集完整版| 日本av免费视频播放| 国产精品久久久久成人av| 中文乱码字字幕精品一区二区三区| 欧美精品亚洲一区二区| 天堂俺去俺来也www色官网| 亚洲欧美日韩另类电影网站| 简卡轻食公司| 久久精品夜色国产| 国产精品一二三区在线看| 丰满饥渴人妻一区二区三| 秋霞在线观看毛片| 欧美日韩亚洲高清精品| 热re99久久精品国产66热6| 韩国高清视频一区二区三区| 啦啦啦啦在线视频资源| 亚洲国产毛片av蜜桃av| 国产亚洲精品第一综合不卡 | 99国产综合亚洲精品| 国产一区二区在线观看av| videossex国产| 国产乱人偷精品视频| 黄色配什么色好看| 成人国语在线视频| 国产成人aa在线观看| 国产av一区二区精品久久| 男女啪啪激烈高潮av片| 人人妻人人添人人爽欧美一区卜| 亚洲不卡免费看| 免费av不卡在线播放| 少妇人妻 视频| 卡戴珊不雅视频在线播放| 精品99又大又爽又粗少妇毛片| 成人免费观看视频高清| 色吧在线观看| 亚洲国产精品成人久久小说| a级片在线免费高清观看视频| av在线观看视频网站免费| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 亚洲国产日韩一区二区| 日本wwww免费看| 人妻人人澡人人爽人人| 精品人妻在线不人妻| 天天躁夜夜躁狠狠久久av| 91久久精品国产一区二区三区| 国产精品国产三级国产专区5o| 国产精品不卡视频一区二区| 欧美bdsm另类| 成人无遮挡网站| 国产亚洲av片在线观看秒播厂| 18禁在线无遮挡免费观看视频| 狠狠精品人妻久久久久久综合| 成年人免费黄色播放视频| 精品国产乱码久久久久久小说| 99久久综合免费| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 黑人欧美特级aaaaaa片| 飞空精品影院首页| 老司机影院毛片| 日韩大片免费观看网站| 少妇 在线观看| 熟女av电影| 国产一区二区三区av在线| 一区二区三区四区激情视频| 91成人精品电影| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 国产欧美日韩综合在线一区二区| 搡老乐熟女国产| 国产片特级美女逼逼视频| 国产日韩欧美亚洲二区| 欧美一级a爱片免费观看看| 女人久久www免费人成看片| 国产黄频视频在线观看| 又粗又硬又长又爽又黄的视频| 色视频在线一区二区三区| 亚洲欧美一区二区三区国产| 亚洲图色成人| 国产精品人妻久久久久久| 国产熟女欧美一区二区| 日韩精品有码人妻一区| 国精品久久久久久国模美| 国产精品国产三级国产专区5o| 久久久a久久爽久久v久久| 看十八女毛片水多多多| 亚洲av中文av极速乱| 日韩制服骚丝袜av| 97在线视频观看| 亚洲,一卡二卡三卡| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 夜夜看夜夜爽夜夜摸| 五月伊人婷婷丁香| 午夜久久久在线观看| 国产成人a∨麻豆精品| 老司机亚洲免费影院| 99久久人妻综合| 最近中文字幕2019免费版| 日韩av免费高清视频| 国产乱来视频区| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 人妻人人澡人人爽人人| 亚洲性久久影院| 草草在线视频免费看| 国内精品宾馆在线| 国产在线视频一区二区| 国产成人精品婷婷| 啦啦啦啦在线视频资源| 国产成人精品无人区| 国产片内射在线| 18禁动态无遮挡网站| 精品国产露脸久久av麻豆| 亚洲内射少妇av| 亚洲成人一二三区av| 欧美日韩综合久久久久久| 啦啦啦在线观看免费高清www| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 久久人人爽人人爽人人片va| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 日韩强制内射视频| 蜜桃久久精品国产亚洲av| 永久网站在线| 久久影院123| 久久精品国产亚洲av天美| 国产成人精品无人区| 欧美日韩视频高清一区二区三区二| 蜜桃久久精品国产亚洲av| 成人毛片60女人毛片免费| 青春草亚洲视频在线观看| 精品99又大又爽又粗少妇毛片| 久久99一区二区三区| 国产日韩一区二区三区精品不卡 | av网站免费在线观看视频| 色视频在线一区二区三区| 日本91视频免费播放| 18在线观看网站| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 午夜福利视频精品| 精品人妻在线不人妻| 最新中文字幕久久久久| 一本一本综合久久| 日韩精品免费视频一区二区三区 | 久久99蜜桃精品久久| 免费高清在线观看视频在线观看| 少妇的逼好多水| 久久久久国产精品人妻一区二区| 赤兔流量卡办理| 三级国产精品欧美在线观看| 欧美日韩在线观看h| 亚洲精品色激情综合| 国产亚洲精品久久久com| 国产亚洲av片在线观看秒播厂| 在线天堂最新版资源| 最近最新中文字幕免费大全7| 日韩欧美精品免费久久| 国产一级毛片在线| 18禁动态无遮挡网站| 免费高清在线观看日韩| 一区二区av电影网| 校园人妻丝袜中文字幕| 久久久精品区二区三区| 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到 | 国产熟女午夜一区二区三区 | 成年av动漫网址| 国产在线视频一区二区| 亚洲精品,欧美精品| 国产精品三级大全| 中文字幕亚洲精品专区| 久久精品国产亚洲av涩爱| 国产欧美日韩综合在线一区二区| 岛国毛片在线播放| 久久久亚洲精品成人影院| 亚洲av福利一区| 国产老妇伦熟女老妇高清| 秋霞伦理黄片| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 午夜激情福利司机影院| 国产日韩欧美在线精品| 制服丝袜香蕉在线| 国产男女内射视频| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 亚洲av中文av极速乱| 久久久久人妻精品一区果冻| 久久久精品区二区三区| 精品人妻熟女毛片av久久网站| 2022亚洲国产成人精品| 国产成人av激情在线播放 | 免费人成在线观看视频色| 国产精品国产三级专区第一集| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 久久女婷五月综合色啪小说| 人人妻人人澡人人看| 国产高清有码在线观看视频| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 草草在线视频免费看| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 十八禁网站网址无遮挡| 精品久久久久久久久亚洲| 久久99热这里只频精品6学生| 精品人妻熟女av久视频| 99久久精品一区二区三区| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久 | 欧美精品国产亚洲| av不卡在线播放| 中国美白少妇内射xxxbb| 国产精品偷伦视频观看了| 久久影院123| 久久99热6这里只有精品| 日韩成人伦理影院| 亚洲色图 男人天堂 中文字幕 | 超色免费av| 9色porny在线观看| 人妻系列 视频| 亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 久久 成人 亚洲| 国产无遮挡羞羞视频在线观看| 麻豆成人av视频| 欧美xxⅹ黑人| av国产精品久久久久影院| 亚洲经典国产精华液单| 国国产精品蜜臀av免费| 日韩视频在线欧美| 少妇人妻久久综合中文| 老熟女久久久| 亚洲av成人精品一二三区| 国产伦理片在线播放av一区| 亚洲内射少妇av| 亚洲精品一区蜜桃| 欧美bdsm另类| 欧美日韩亚洲高清精品| 日本色播在线视频| 99热6这里只有精品| 国产成人精品无人区| 能在线免费看毛片的网站| 九草在线视频观看| 亚洲,一卡二卡三卡| 日韩成人伦理影院| 成人漫画全彩无遮挡| 精品人妻在线不人妻| 亚洲精品色激情综合| 久久久久久久久久久丰满| 如日韩欧美国产精品一区二区三区 | 最近的中文字幕免费完整| 中文字幕人妻丝袜制服| 插阴视频在线观看视频| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 91精品三级在线观看| 国产高清国产精品国产三级| 涩涩av久久男人的天堂| 草草在线视频免费看| 亚洲av不卡在线观看| 成人手机av| 99热全是精品| 国产极品天堂在线| 亚洲欧美一区二区三区国产| 男女边摸边吃奶| av不卡在线播放| 熟女电影av网| 人妻人人澡人人爽人人| 全区人妻精品视频| 中文字幕精品免费在线观看视频 | 精品一区二区免费观看| 伊人久久国产一区二区| 国产成人免费观看mmmm| 亚洲少妇的诱惑av| 中国三级夫妇交换| 日本91视频免费播放| 国产一区二区在线观看av| 纯流量卡能插随身wifi吗| 国产午夜精品久久久久久一区二区三区| 亚洲五月色婷婷综合| 午夜福利网站1000一区二区三区| 亚洲四区av| 九九在线视频观看精品| 高清欧美精品videossex| 国产av精品麻豆| 国产成人a∨麻豆精品| 免费大片黄手机在线观看| 观看美女的网站| 色5月婷婷丁香| 亚洲精品国产色婷婷电影| 一区二区日韩欧美中文字幕 | 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 久久人人爽av亚洲精品天堂| 久久久久久久久久成人| 在线观看美女被高潮喷水网站| 国产伦理片在线播放av一区| 午夜免费鲁丝| 国产成人精品福利久久| 久久国产亚洲av麻豆专区| 久久久久国产网址| av卡一久久| 国产在线免费精品| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| 美女福利国产在线| 久久国产精品大桥未久av| 久久午夜福利片| 日韩熟女老妇一区二区性免费视频| 久久精品久久精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 免费观看无遮挡的男女| 黑丝袜美女国产一区| 最后的刺客免费高清国语| 九九在线视频观看精品| 免费日韩欧美在线观看| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| a级毛片在线看网站| 亚洲人与动物交配视频| 18在线观看网站| 久久精品国产亚洲网站| 亚洲精品日韩av片在线观看| 精品99又大又爽又粗少妇毛片| 国产欧美日韩综合在线一区二区| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 丝瓜视频免费看黄片| 精品国产一区二区久久| 国产色爽女视频免费观看| 日韩中文字幕视频在线看片| 秋霞伦理黄片| 欧美性感艳星| 黄色配什么色好看| 能在线免费看毛片的网站| 全区人妻精品视频| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 国产成人aa在线观看| freevideosex欧美| 一边摸一边做爽爽视频免费| 哪个播放器可以免费观看大片| 欧美亚洲日本最大视频资源| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 在线观看三级黄色| 久久久欧美国产精品| 成人18禁高潮啪啪吃奶动态图 | 国产精品三级大全| 亚洲无线观看免费| 卡戴珊不雅视频在线播放| 夫妻性生交免费视频一级片| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 嘟嘟电影网在线观看| 日韩中字成人| 丁香六月天网| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 最新的欧美精品一区二区| 日本黄色片子视频| 一区二区av电影网| 欧美一级a爱片免费观看看| 多毛熟女@视频| 亚洲欧美成人精品一区二区| 亚洲精品av麻豆狂野| videosex国产| 2021少妇久久久久久久久久久| 久久99一区二区三区| 免费黄色在线免费观看| 3wmmmm亚洲av在线观看| 十八禁高潮呻吟视频| xxx大片免费视频| 在线观看免费视频网站a站| 久久午夜综合久久蜜桃| 五月开心婷婷网| 午夜91福利影院| 制服丝袜香蕉在线| 人妻系列 视频| 日韩中字成人| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 国产成人精品福利久久| 欧美 亚洲 国产 日韩一| 伊人亚洲综合成人网| 丰满饥渴人妻一区二区三| 观看av在线不卡| 久久精品国产鲁丝片午夜精品| 国产视频内射| 精品久久久久久久久亚洲| 中文字幕制服av| 国产 一区精品| 精品国产国语对白av| 黄片播放在线免费| 午夜影院在线不卡| 色吧在线观看| 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 下体分泌物呈黄色| 制服丝袜香蕉在线| 91久久精品国产一区二区成人| 国产精品人妻久久久久久| 亚洲内射少妇av| 国产av一区二区精品久久| 国国产精品蜜臀av免费| 免费看不卡的av| 亚洲国产精品一区三区| 99国产精品免费福利视频| 日韩成人av中文字幕在线观看| 亚洲国产日韩一区二区| 美女福利国产在线| 精品国产一区二区三区久久久樱花| 一区二区三区免费毛片| 看免费成人av毛片| 美女xxoo啪啪120秒动态图| 久久精品熟女亚洲av麻豆精品| 最近2019中文字幕mv第一页| av在线观看视频网站免费| 成年av动漫网址| 亚洲av福利一区| 日日摸夜夜添夜夜添av毛片| 精品卡一卡二卡四卡免费| 两个人的视频大全免费| 嘟嘟电影网在线观看| 色吧在线观看| 亚洲精品一二三| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区黑人 | 久久综合国产亚洲精品| 精品国产一区二区三区久久久樱花| a 毛片基地| 亚洲美女黄色视频免费看| 久久精品国产a三级三级三级| 日韩av免费高清视频| 99re6热这里在线精品视频| 午夜老司机福利剧场| 亚洲精品乱码久久久久久按摩| 女的被弄到高潮叫床怎么办| 亚洲av福利一区| 欧美人与善性xxx| 好男人视频免费观看在线| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 少妇的逼好多水| 国产在线视频一区二区| 免费日韩欧美在线观看| 亚洲色图 男人天堂 中文字幕 | 国产不卡av网站在线观看| 久久韩国三级中文字幕| 男的添女的下面高潮视频| 国产精品蜜桃在线观看| 亚洲综合色网址| 人妻一区二区av| 一级毛片我不卡| 最新的欧美精品一区二区| 国产深夜福利视频在线观看| √禁漫天堂资源中文www| 国产成人精品福利久久| 欧美日韩av久久| 欧美bdsm另类| 秋霞伦理黄片| 热re99久久国产66热| 精品人妻偷拍中文字幕| 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 老司机影院毛片| 亚洲精品第二区| 九九久久精品国产亚洲av麻豆| 国产av一区二区精品久久| 美女福利国产在线| 亚洲激情五月婷婷啪啪| 伊人久久国产一区二区| 亚洲av电影在线观看一区二区三区| 黑丝袜美女国产一区| 一边摸一边做爽爽视频免费| av免费在线看不卡| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久成人av| 国产精品无大码| 国产精品麻豆人妻色哟哟久久| 久久影院123| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 欧美激情 高清一区二区三区| 一本久久精品| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 啦啦啦中文免费视频观看日本| 国产免费一级a男人的天堂| 亚洲国产成人一精品久久久| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 欧美xxxx性猛交bbbb| 搡女人真爽免费视频火全软件| 国产精品国产av在线观看| 嫩草影院入口| 久久99精品国语久久久| 老女人水多毛片| 黄片播放在线免费| 亚洲av日韩在线播放| 飞空精品影院首页| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 久久久久视频综合| 亚洲国产日韩一区二区| 国产成人aa在线观看| 日本vs欧美在线观看视频| 亚洲无线观看免费| 色婷婷久久久亚洲欧美| 久久久久精品久久久久真实原创| 国产又色又爽无遮挡免| 日韩免费高清中文字幕av| 亚洲色图 男人天堂 中文字幕 | 国产成人freesex在线| 久久久久精品性色| 国产一区二区在线观看av| 亚洲国产精品999| 色婷婷久久久亚洲欧美| 日韩不卡一区二区三区视频在线| 97超碰精品成人国产| 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 在线观看免费视频网站a站| 一区二区三区免费毛片| 日本av免费视频播放| 日韩精品免费视频一区二区三区 | 国产精品99久久99久久久不卡 | 国产又色又爽无遮挡免| 高清欧美精品videossex| av福利片在线| 久热这里只有精品99| 一区二区三区乱码不卡18| 日本av免费视频播放| h视频一区二区三区| 一级毛片我不卡| 国产熟女午夜一区二区三区 | 91精品国产国语对白视频| 日产精品乱码卡一卡2卡三| 久久国产精品男人的天堂亚洲 | 精品人妻一区二区三区麻豆| 人人妻人人添人人爽欧美一区卜| av网站免费在线观看视频| videos熟女内射| 一区二区三区四区激情视频| 亚洲精品视频女| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 日产精品乱码卡一卡2卡三| 国产免费又黄又爽又色| 亚洲婷婷狠狠爱综合网| 黄片无遮挡物在线观看| 99久久精品一区二区三区|