• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropy of Thermal-expansion for β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine:Quantum Chemistry Calculation and Molecular Dynamics Simulation

    2014-07-19 11:17:08WenQianChaoyangZhangYuanjieShuYingXiongHehouZongWeibinZhang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Wen Qian,Chao-yang Zhang,Yuan-jie Shu,Ying Xiong,He-hou Zong,Wei-bin Zhang

    Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang 621900,China

    Anisotropy of Thermal-expansion for β-Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine:Quantum Chemistry Calculation and Molecular Dynamics Simulation

    Wen Qian,Chao-yang Zhang,Yuan-jie Shu?,Ying Xiong,He-hou Zong,Wei-bin Zhang

    Institute of Chemical Materials,China Academy of Engineering Physics,Mianyang 621900,China

    Molecular dynamics simulations on octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX) at 303-383 K and atmospheric pressure are carried out under NPT ensemble and COMPASS force f i eld,the equilibrium structures at elevated temperatures were obtained and showed that the stacking style of molecules don’t change.The coefficient of thermal expansion (CTE)values were calculated by linear fitting method.The results show that the CTE values are close to the experimental results and show anisotropy.The total energies of HMX cells with separately increasing expansion rates(100%-105%)along each crystallographic axis was calculated by periodic density functional theory method,the results of the energy change rates are anisotropic,and the correlation equations of energy change-CTE values are established.Thus the hypostasis of the anisotropy of HMX crystal’s thermal expansion,the determinate molecular packing style,is elucidated.

    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine,Molecular dynamics simulation,Thermal expansion,Anisotropy,Density functional theory

    I.INTRODUCTION

    Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, commonly known as HMX or octogen,is a kind of powerful and relatively insensitive nitroamine explosive [1].HMX has high density,high energy,as well as good thermal stability,so that it’s widely applied in ammunitions or warheads.HMX crystal is polymorphous but only β-HMX is stable at room temperature and is actually used[2,3].HMX is hard to be independently molded,thus HMX crystals are often mixed with additives such as binders,plasticizers,and solidif i ed agents to form HMX-based PBX(polymer bonded explosive)[1].For weapon utility,HMX-based PBX needs to be resistant to thermal impact;however,the anisotropic thermal expansion of explosive crystals will bring notable internal stress,and micro cracks will appear inside the explosive part when the effect of internal stress is bigger than that of cohesive energy[4], and these internal micro voids could induce hot spot and increase the sensitivity of the energetic materials [5];moreover,the anisotropic thermal expansion of the crystals will induce thermal deformation of PBX,make dimension or density of the explosive part irreversibly change,thus influence the measurement precision[6]. On all accounts,a deep research on the anisotropy of thermal expansion of HMX is of great importance.

    The properties of crystalline HMX has been studied experimentally in many ways.The molecular structures of α,β and γ-HMX were gotten from IR spectrum, while the crystal densities and dielectric constants were obtained by other measurements[7].CTE values of the β and δ-HMX were measured by thermo-mechanical analysis(TMA),and the phase transition kinetics was measured by differential scanning calorimetry(DSC) [10].The phase transition and thermal expansion of HMX crystal were studied by X-ray diffraction(XRD) technique[8,9],then more precise CTE values were obtained by ref i nements of the cell parameters data from XRD[11,12,13].Phase transition process of HMX crystal was also observed by high-temperature atomic force microscope(AFM)[14].In spite of this,in order to investigate the hypostasis of HMX crystal properties, the experimental measurements are not enough and further theoretical studies are needed.

    With the progress of physics,chemistry,and information technology,more and more researchers used molecular simulation and computational methods to theoretically study the properties of HMX crystal.Isothermalisobaric molecular dynamics simulations(NPT-MD)of α,β,and γ-HMX were performed under a modif i ed RDX intermolecular potential,and the space group symmetries and structural parameters for the three phases were predicted[15].Thermal expansion and sublimation enthalpies for all three pure polymorphs of HMX have been investigated and compared to experimental results by molecular dynamics(MD)sim-ulation using a fl exible molecule force field[16].Condensed phase density functional theory(DFT)was used to study various uniaxial compressions of β-HMX and extract energy versus extension information[17].NPTMD have been applied to study the structural,vibrational and thermodynamic properties of β-HMX, the initial decomposition and pressure-induced phase transition were discussed[18].First-principle planewave method with an ultrasoft pseudo potential and generalized gradient approximation was used to calculate the lattice parameters,thermodynamics and electronic properties of β-HMX[19].Self-consistent charge density-functional tight-binding method(DFTB)and MD simulation were used to study the initial chemical processes of condensed-phase HMX under shock wave loading[20].ab initio MD simulations combined with multi-scale shock technique have been performed to investigate the initial chemical processes of HMX under shock wave loading,a new mechanism for initiation decomposition was suggested[21].Compressive shear reactive dyanmics(CS-RD)model with ReaxFF-lg force field has been used to predict the anisotropy of shock sensitivity and chemical process initiation in β-HMX [22].MD simulations of nanoparticles of HMX crystal polymorphs were used to study the interaction potential energy and heat of sublimation[23].

    In this work,MD simulations combined with fi rstprinciple calculations are used to study the anisotropy of HMX crystal’s thermal expansion,the methods and results are helpful in elucidating the anisotropic thermal expansion of HMX crystal at atmospheric pressure.

    II.SIMULATION AND CALCULATION METHOD

    A.Structure modeling

    Modeling process was carried out in Materials Studio software package[24].The molecular structure is shown in Fig.1(a),it can be seen that HMX has a simple molecular structure that consists of an eight-membered ring formed by alternating carbon and nitrogen atoms,with a nitro group attached to each nitrogen atom which brings in high energy.

    HMX crystal structure in Fig.1(b)is based on the neutron diffraction data of β-HMX crystal[25], β-HMX crystal belongs to monoclinic system and P21/c space group,with the cell parameters as:a=6.540?A, b=11.050?A,c=8.700?A,β=124.3?,and α=γ=90?.

    To approach reality and obtain more precise results,a super cell based on the HMX primitive cell needs to be constructed as initial configuration of MD simulation. In this work,a 4×2×3 super cell containing 1344 atoms is constructed as shown in Fig.1(c).

    B.MD simulation

    FIG.1 Structures of HMX.(a)Molecular structure,(b) crystal structure,(c)super cell through a-axis,and(d)super cell through c-axis.

    Proper selection of the force f i eld is the key to precise MD simulation results.PCFF(polymer consistent force field)[26-28]is one of the most appropriate force fields for MM(molecular mechanics)and MD simulations.COMPASS(condensed-phase optimized molecular potentials for atomistic simulation studies)[29]is an ab initio force field especially applicable to condensedphase compound.HMX is a kind of nitro-amino compound.PCFF and COMPASS are both thought to be applicable to HMX molecular crystal.

    Primitively the comparison of these two force fields is done by comparison of the simulation results for cell parameters at certain condition.The simulation details are as follows:MD simulations for HMX crystal are carried out under NPT(with constant particle number, pressure and temperature)ensemble;and velocity verlet arithmetic[30]is used;the initial velocity is sampled by Maxwell distribution;van der Waals force is calculated by atom-based method and coulomb interaction is calculated by Ewald method[31,32];the target temperature and pressure are set to 303 K and 0.1 MPa, the temperature is controlled by Anderson method[33] and the pressure is controlled by Parrinello method[34]; the MD simulation lasts 200 ps in total,a time step 1 fs is used;and equilibrium of the system is determined both by energy and temperature.The equilibrium trajectory documents are selected and the cell parameter values are gained from them.The simulation results of cell parameters for HMX crystal using di ff erent systems and force fields are shown in Table I.

    Firstly,in the MD simulation on primitive cell,the system is not so easy to equilibrate,and the result of cell parameters is not so precise.On the other hand,the MD simulation on HMX super cell can be well equili-brated and the result is much closer to the experimental value[12].Hence 4×2×3 super cell is used in the coming MD simulations.

    TABLEI Simulation values of cell parameters for HMX crystal at 303 K,the relative deviation is in parentheses.

    Secondly,for HMX super cell,compared with experimental values,relative deviations of cell parameters are much larger when choosing PCFF,while relative deviations of the unit cell edge lengths are less than or equal to 5%and that of inter-axial angles are less than 0.5% when choosing COMPASS,which proves that COMPASS force f i eld is of better applicability.

    For the force f i eld validation,it is also standard to use an energetic component,so that calculation of sublimation energy is carried out to verify the system as well as the force f i eld,and the simplif i ed equations are as follows

    where Ecrystaland Emoleculeis the total energy of the crystal and that of a molecule respectively.The number of molecules contained in each cell n is 2 for β-HMX crystal.

    The result from the simulation using COMPASS force f i eld shows that Elattice=-193.794 kJ/mol and?H=188.839 kJ/mol.Because the experimental value of the sublimation energy is 184.766 kJ/mol[35],so that the sublimation energy calculated from the simulation result matches with the experimental value (?<10 kJ/mol).Hence the COMPASS force f i eld is most fit for the MD simulation.

    MD simulations are carried out on 4×2×3 super cell for HMX crystal under NPT ensemble using COMPASS force f i eld,periodic boundary condition is used in all simulations.To simulate thermal expansion process under atmospheric condition,the target pressure is set to 0.1 MPa and the temperatures are elevated from 303 K to 378 K by 20 K each step;Anderson method is used to control the temperature and Parrinello method is used to control the pressure.Initial velocity is sampled by Maxwell distribution,and the time step is 1 fs in each case;each MD simulation lasts 100 ps to ensure the system properly equilibrated both in energy and temperature,another 100 ps time of simulation is followed to get abundant data for subsequent statistical analysis.The equilibrium trajectory documents are selected to do analysis about the thermal expansion properties.

    C.DFT calculation

    As a kind of molecular crystal,the stronger the interactions inside HMX crystal are,the larger the binding forces will be,and the CTE values are thought to be smaller,so that it’s efficient to elucidate the anisotropy of HMX crystal’s thermal expansion by energy calculations.The classic calculation methods are hard to describe all kinds of complex interactions inside the crystal,and quantum chemistry is introduced to solve the problem.Binding energy is the difference between total energies of the crystal and that of the free particles,thus calculation of the total energy of the crystal is the key to examine the energy change.In this work,periodic DFT calculations on HMX crystal are carried out to get the energy change along each crystallographic axis,the details are as follows.

    The primitive cell for HMX crystal is used as input structure.CASTEP[36]program,based on the DFT method using plane-wave basis set and ultra-soft pseudo-potentials(USP)[37],is used to do energy calculations on the crystal structures.The local density approximation function(LDA),which was f i rst established by Ceperley and Alder[38]and later parameterized by Perdew and Zunder[39](CA-PZ),is used to describe the exchange correlation terms.Geometry optimizations using LDA/CA-PZ are carried out on HMX cells with three unit cell edge length expanding from 100%to 105%respectively,and the total energy for each cell is calculated one by one.Then the correlation between total energy of crystal cell and the axial length can be revealed.

    III.RESULTS AND DISCUSSION

    A.Equilibrium structure after MD simulation

    FIG.2 Equilibrium structure of HMX super cell after MD simulation at 303 K through(a)a-axis and(b)c-axis.

    From the equilibrium structure graphs(Fig.2)of HMX super cell after MD simulation at 303 K along three different directions we can see that both the tropism of the molecules and the way how molecules stack in the crystal stay the same,which also prove the validity of COMPASS and the MD simulation method.

    B.Results of the MD simulations

    The equilibrium trajectory documents from MD simulations on HMX super cell at elevated temperature from 303 K to 383 K are analyzed,and the cell parameters obtained are listed in Fig.3 and Table II.

    It can be seen that the inter-axial angles(α,β,γ) don’t change much and the relative deviations are all below 0.5%,which prove the validity of the simulation results.The unit cell edge lengths(a,b,c)are linearly related to temperature(T)as shown in Fig.3, the linear CTE values are calculated to characterize the anisotropic thermal expansion,and the equation for linear CTE is as follows,

    the results of simulated linear CTE values and the comparison between our results and experimental values from Ref.[11-13]are shown in Table III.

    It can be seen that HMX crystal expands along three axial directions as the temperature increases,and the CTE values are notably different along each crystallographic axial direction(δb>δa>δc),showing the anisotropy of the thermal expansion.

    Due to the differences between the referenced CTE results from different measurement techniques,we think that the calculation results can act as a criterion of the diverse results,so that we mainly discuss about the similarities.Compared with experimental values using TMA technique[10](about 3.7×10-5K-1near room temperature and 8×10-5-10×10-5K-1at higher temperature),values from single-crystal XRD experiment are more precise and can show anisotropic CTEs in different directions which are more meaningful in comparison with our simulation results.As shown in Table IV, all the results show obvious anisotropy in the thermal expansion process,and for most of them,δb>δa>δc, which is the same as that in our results,while the CTE values have slight difference.The linear CTE values for b-axis is very close to Saw’s experimental value(LLNL) [11],which was obtained by ref i nements of the cell parameters from XRD data at elevated temperature(heating from 203 K to 323 K),but for a-axis and c-axis,our results seem a little larger than Xue’s[12],which were also gained through XRD experimentally.Besides,for the latest experimental values from Deschamps(Naval Research Laboratory)[13],δcis closer to our result.

    FIG.3 The linear relationship between the unit cell edge length and temperature for HMX crystal.

    TABLE II Relative deviation of simulation results of interaxial angles for HMX crystal.

    TABLE III Comparison between simulation CTE results and experimental values.

    FIG.4 Linear relationship between the total energy and the axial length of HMX crystal.

    C.Results of the energy calculations

    Calculations of the total energies of the cells with axial length respectively expanding from 100%to 105%are done using LDA/CA-PZ method,thus the anisotropy of thermal expansion of HMX crystal can be investigated in the point view of energy,and the results are shown in Fig.4.It can be seen that the total energy increase with the expansion of each crystallographic axial length,and the energy is found to be linearly related to the axial length.Because of the approximation algorithm used in the energy calculation,the absolute values of the total energy make no sense,while the difference between the initial energy and the energy after expansion(shown in Table IV)is more physically meaningful.

    TheenergychangeratesalongeachaxialdirectionofHMXcrystalaredEa/dLa=674.3890, dEb/dLb=595.9972,dEc/dLc=733.4319,respectively. When each crystallographic axis use the same expansion rate,the energy changes are different;the energy change rate during expansion is anisotropic (dEb/dLb<dEa/dLa<dEc/dLc),which is related to the anisotropy of CTE(δb>δa>δc).As a matter of fact, the bigger energy change rate during expansion is,the smaller the CTE value will be.

    D.Discussions about energy change and anisotropic thermal-expansion

    It can be concluded that in HMX crystal’s thermal expansion process,the energy change is linearly related to the expanding axial length(E∝L),and the length change is linearly related to the temperature(L∝T),accordingly it can be inferred that energy change along each crystallographic axis is linearly related to the temperature(E∝T).

    TABLE IV Total energies changes with increasing expansion rates.

    The linear relationship between total energy of HMX crystal and axial length(in Fig.4)and that between axial length and temperature(in Fig.3)can be summed together as follows:

    and the linear relationship between total energy and temperature can be easily extrapolated as

    It can be seen that the energy change rates along each axial direction of HMX crystal during heating process are dEa/dT=0.0300,dEb/dT=0.0948,and dEc/dT=0.0246,respectively.Obviously the energies increase with temperature slightly,which can explain the slight decrease of CTE values at increasing temperature;what’s more important,it can be validated that the anisotropy of thermal expansion is related to the difference of energy change needed along each axis during heating(dEb/dT>dEa/dT>dEc/dT).

    And the correlation of energy change and CTE can be obtained by substituting the temperature and energy value back to Eqs.(4)-(6),for example the equations at 303 K are

    As a matter of fact,energy calculation is the tool to characterize intermolecular interactions in the crystal.HMX molecules stack in a determinate way in HMX molecular crystal,causing different situations of intermolecular interactions along different axial directions; as a result,the energy change needed in thermal expansion is also different along different axial directions.

    IV.CONCLUSION

    MD simulations on HMX super cell under NPT ensemble using COMPASS force f i eld with periodic boundary condition are successfully carried out to get the CTE values of HMX crystal at 303-383 K and atmospheric pressure,and DFT calculations on HMX crystal are done to gain the energy changes during expansion of each crystallographic axial length from 100%to 105%respectively.The simulation and calculation results show that:(i)The thermal expansion is anisotropic(δb>δa>δc)and CTE values are close to the experimental results in literature.(ii)HMX molecules stack in a determinate way in the crystal,both the tropism of the molecules and the way how molecules stack in the crystal don’t change during thermal expansion process.(iii)When each axis use the same expansion rate,the energy change rate along each axial direction is anisotropic(dEb/dLb<dEa/dLa<dEc/dLc). (iv)Accordingly it can be concluded that the energy change along each crystallographic axis is linearly related to the temperature,and the anisotropy of thermal expansion of HMX crystal is related to the difference of energy change needed in thermal expansion along each axis(dEb/dT>dEa/dT>dEc/dT).(v)Thus the hypostasis of the anisotropy of HMX crystal’s thermal expansion can be elucidated as:because of the determinate stack style of molecules in HMX molecular crystal,the intermolecular interactions are anisotropic along three axial directions,inducing energy change needed in thermal expansion to be anisotropic.

    V.ACKNOWLEDGMENTS

    This work was supported by the Director’s Foundation from Institute of Chemical Materials,China Academy of Engineering Physics(No.626010948).

    [1]J.Akhavan,The Chemistry of Explosives,Cambridge: The Royal Society of Chemistry(2004).

    [2]W.C.McCrone,Anal.Chem.22,1225(1950).

    [3]H.H.Cady,A.C.Larson,and D.T.Cromer,Acta Crystallogr.16,617(1963).

    [4]C.H.Hsueh and P.F.Becher,J.Mater.Sci.Lett.19, 1165(1991).

    [5]S.D.McGrane,A.Grieco,K.J.Ramos,D.E.Hooks, and D.S.Moore,J.Appl.Phys.105,7(2009).

    [6]W.Boas and R.W.K.Honeycombe,Proc.R.Soc.London,Ser.A 188,427(1947).

    [7]M.Bederd,H.Huber,J.L.Myers,and G.Wright,Can. J.Chem.40,2278(1962).

    [8]M.Hermann,W.Engel,and N.Eisenreich,Propellants. Explos.Pyrotech.17,190(1992).

    [9]M.Hermann,W.Engel,and N.Eisenreich,Zeitschrifffur Kristallographie 204,121(1993).

    [10]R.K.Weese and A.K.Burnham,Propellants.Explos. Pyrotech.30,344(2005).

    [11]C.K.Saw,Kinetics of HMX and Phase Transitions: effects of Grain Size at Elevated Temperature,UCRLJC-145228,Lawrence Livermore National Laboratory (LLNL),June 13(2002).

    [12]C.Xue,J.Sun,B.Kang,Y.Liu,X.F.Liu,G.B.Song, and Q.B.Xue,Propellants.Explos.Pyrotech.35,333 (2010).

    [13]J.Deschamps,M.Frish,and D.Parrish,J.Chem.Crystallogr.41,966(2011).

    [14]B.L.Weeks,C.M.Ruddle,J.M.Zaug,and D.J.Cook, Ultramicroscopy 93,19(2002).

    [15]D.C.Sorescu,B.M.Rice,and D.L.Thompson,J. Phys.Chem.B 102,6692(1998).

    [16]D.Bedrov,C.Ayyagari,G.D.Smith,and T.D.Sewell, J.Comput.Aided Mater.Des.8,77(2001).

    [17]M.W.Conroy,I.I.Oleynik,S.V.Zybin,and C.T. White,J.Appl.Phys.104,053506(2008).

    [18]L.Y.Lu,D.Q.Wei,X.R.Chen,G.F.Ji,X.J.Wang, J.Chang,Q.M.Zhang,and Z.Z.Gong,Mol.Phys. 107,2373(2009).

    [19]H.L.Cui,G.F.Ji,X.R.Chen,W.H.Zhu,F.Zhao, Y.Wen,and D.Q.Wei,J.Phys.Chem.A 114,1082 (2010).

    [20]N.N.Ge,Y.K.Wei,G.F.Ji,X.R.Chen,F.Zhao, and D.Q.Wei,J.Phys.Chem.B 116,13696(2012).

    [21]W.H.Zhu,H.Huang,H.J.Huang,and H.M.Xiao,J. Chem.Phys.136,044516(2012).

    [22]T.T.Zhou,S.V.Zybin,Y.Liu,F.L.Huang,and W. A.Goddard,J.Appl.Phys.111,124904(2012).

    [23]H.Akkbarzade,G.A.Parsafar,and Y.Bayat,Appl. Surf.Sci.258,2226(2012).

    [24]Materials Studio 5.0,,San Diego:Accelys Inc.,CA (2009).

    [25]C.S.Choi and H.P.Boutin,Acta Crystallogr.,Sect.B 26,1235(1970).

    [26]H.Sun,S.J.Mumby,J.R.Maple,and A.T.Hagler, J.Am.Chem.Soc.116,2978(1994).

    [27]H.Sun,Macromolecules 28,701(1995).

    [28]H.Sun and D.Rigby,Spectrochim.Acta Part A 53, 1301(1997).

    [29]H.Sun,J.Phys.Chem.B 102,7338(1998).

    [30]L.Verlet,Phys.Rev.159,98(1967).

    [31]P.P.Ewald,Ann.Phys.Leipzig 64,253(1921).

    [32]N.Karasawa and W.A.Goddard,J.Phys.Chem.93, 7320(1989).

    [33]H.C.Andersen,J.Phys.Chem.72,2384(1980).

    [34]M.Parrinello and A.Rahman,J.Appl.Phys.52,7182 (1981).

    [35]J.M.Rosen and C.Dickinson,J.Chem.Eng.Data 14, 120(1969).

    [36]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [37]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [38]D.M.Ceperley and B.J.Alder,Phys.Rev.Lett.45: 566(1980).

    [39]J.P.Perdew and A.Zunger,Phys.Rev.B 23,5048 (1981).

    ceived on July 9,2013;Accepted on September 18,2013)

    ?Author to whom correspondence should be addressed.E-mail:syjfree@sina.com

    村上凉子中文字幕在线| 免费无遮挡裸体视频| 亚洲国产欧美网| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久av网站| 男女视频在线观看网站免费 | 女同久久另类99精品国产91| 久久精品aⅴ一区二区三区四区| 九九热线精品视视频播放| 欧美成狂野欧美在线观看| 国产精品 欧美亚洲| 一本大道久久a久久精品| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 最新在线观看一区二区三区| 9191精品国产免费久久| 日本五十路高清| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| 夜夜夜夜夜久久久久| 窝窝影院91人妻| 日本成人三级电影网站| 亚洲美女视频黄频| 国模一区二区三区四区视频 | 无限看片的www在线观看| 日韩精品青青久久久久久| 天堂√8在线中文| 禁无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 成年版毛片免费区| 国产欧美日韩一区二区三| 亚洲av熟女| 狂野欧美激情性xxxx| 9191精品国产免费久久| 18禁黄网站禁片免费观看直播| 最近视频中文字幕2019在线8| 成人av在线播放网站| 两个人看的免费小视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品美女久久av网站| 中文字幕av在线有码专区| 美女 人体艺术 gogo| 午夜精品久久久久久毛片777| 亚洲人与动物交配视频| 国产v大片淫在线免费观看| 级片在线观看| 中文字幕av在线有码专区| 在线观看日韩欧美| 亚洲欧美激情综合另类| 亚洲国产精品久久男人天堂| 亚洲 欧美一区二区三区| 亚洲国产欧美一区二区综合| 啦啦啦免费观看视频1| 我的老师免费观看完整版| 国产真实乱freesex| 免费观看人在逋| 午夜影院日韩av| 啪啪无遮挡十八禁网站| 99精品欧美一区二区三区四区| www.999成人在线观看| 国产亚洲欧美在线一区二区| 亚洲熟妇中文字幕五十中出| 色综合站精品国产| 免费人成视频x8x8入口观看| 青草久久国产| 99久久综合精品五月天人人| 国产高清videossex| 国产午夜精品论理片| 亚洲成人免费电影在线观看| 亚洲美女黄片视频| 国产欧美日韩一区二区三| 91成年电影在线观看| 中亚洲国语对白在线视频| 国产成人aa在线观看| 国产成人欧美在线观看| 精品久久久久久久久久免费视频| 韩国av一区二区三区四区| 日本黄色视频三级网站网址| 国产不卡一卡二| 露出奶头的视频| 最近在线观看免费完整版| 狂野欧美激情性xxxx| 午夜福利视频1000在线观看| 成人欧美大片| 亚洲真实伦在线观看| 久久中文字幕一级| 国产片内射在线| 小说图片视频综合网站| 国产精品av视频在线免费观看| 欧美成人一区二区免费高清观看 | 国产探花在线观看一区二区| 久久久久亚洲av毛片大全| or卡值多少钱| 亚洲免费av在线视频| 一本大道久久a久久精品| 97人妻精品一区二区三区麻豆| 日本a在线网址| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 1024香蕉在线观看| 国产成人aa在线观看| 欧美日本视频| 少妇被粗大的猛进出69影院| 18禁黄网站禁片午夜丰满| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| cao死你这个sao货| 久久人妻av系列| 我的老师免费观看完整版| av有码第一页| 亚洲av电影不卡..在线观看| 色哟哟哟哟哟哟| 女生性感内裤真人,穿戴方法视频| 狂野欧美白嫩少妇大欣赏| 韩国av一区二区三区四区| 97人妻精品一区二区三区麻豆| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 午夜两性在线视频| 国产精品九九99| 久久久久性生活片| 国产精品1区2区在线观看.| 日韩欧美三级三区| 麻豆国产av国片精品| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| www.www免费av| 人妻丰满熟妇av一区二区三区| 久久精品人妻少妇| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 国产野战对白在线观看| 色播亚洲综合网| 日韩欧美国产在线观看| av天堂在线播放| 亚洲av第一区精品v没综合| 国产精品久久视频播放| 久久午夜综合久久蜜桃| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 国产成人av激情在线播放| 国产爱豆传媒在线观看 | 国产精品免费视频内射| 99在线人妻在线中文字幕| 很黄的视频免费| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 亚洲五月婷婷丁香| 特级一级黄色大片| 国产av一区二区精品久久| 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 精品欧美国产一区二区三| 久久久久久久久中文| 国产真人三级小视频在线观看| 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 国产一区二区在线观看日韩 | 亚洲成人国产一区在线观看| av片东京热男人的天堂| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 全区人妻精品视频| 日本免费a在线| 国产精品永久免费网站| 伊人久久大香线蕉亚洲五| 性色av乱码一区二区三区2| 99在线视频只有这里精品首页| 免费看日本二区| 成人av在线播放网站| 欧美成人免费av一区二区三区| 亚洲欧美日韩高清在线视频| 国产精品免费视频内射| 久久精品夜夜夜夜夜久久蜜豆 | 91麻豆av在线| 亚洲国产日韩欧美精品在线观看 | 久久久久精品国产欧美久久久| 99国产精品一区二区三区| 村上凉子中文字幕在线| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 一区二区三区国产精品乱码| 精品电影一区二区在线| 久久精品综合一区二区三区| 久久香蕉激情| 欧美中文日本在线观看视频| videosex国产| 欧美日韩中文字幕国产精品一区二区三区| 男插女下体视频免费在线播放| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩精品网址| 国产高清视频在线观看网站| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 午夜亚洲福利在线播放| 免费观看精品视频网站| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区| 制服人妻中文乱码| 亚洲精品在线观看二区| 久久久久国内视频| 天天一区二区日本电影三级| 久久久国产精品麻豆| 99热这里只有精品一区 | av福利片在线观看| 变态另类丝袜制服| 午夜成年电影在线免费观看| 人人妻人人澡欧美一区二区| 欧美日韩一级在线毛片| 亚洲中文字幕日韩| 国产成人精品久久二区二区91| 淫妇啪啪啪对白视频| 亚洲美女黄片视频| 日本一区二区免费在线视频| 午夜两性在线视频| 人成视频在线观看免费观看| 亚洲成av人片在线播放无| 国产免费av片在线观看野外av| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 国产精品久久久人人做人人爽| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 露出奶头的视频| 制服人妻中文乱码| 亚洲成人精品中文字幕电影| 国产成人av教育| 亚洲专区国产一区二区| 亚洲七黄色美女视频| 久久久久久久久免费视频了| 久久亚洲精品不卡| 免费看日本二区| 一区二区三区高清视频在线| 一边摸一边抽搐一进一小说| 手机成人av网站| 90打野战视频偷拍视频| 国产又黄又爽又无遮挡在线| 美女午夜性视频免费| 久久香蕉激情| 亚洲熟女毛片儿| 一夜夜www| 可以在线观看毛片的网站| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 中亚洲国语对白在线视频| 中文资源天堂在线| 国产三级黄色录像| 50天的宝宝边吃奶边哭怎么回事| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 不卡一级毛片| 69av精品久久久久久| 波多野结衣巨乳人妻| 欧美午夜高清在线| 免费看日本二区| 欧美一区二区精品小视频在线| 亚洲国产欧美一区二区综合| 婷婷亚洲欧美| av视频在线观看入口| 麻豆一二三区av精品| 久久中文看片网| 国产v大片淫在线免费观看| 日韩免费av在线播放| 久久久久九九精品影院| 国产精品免费视频内射| 国产高清有码在线观看视频 | 深夜精品福利| 久久久久精品国产欧美久久久| 亚洲欧美日韩无卡精品| 97超级碰碰碰精品色视频在线观看| 日本黄大片高清| 欧美在线一区亚洲| 亚洲欧美日韩东京热| a级毛片a级免费在线| 亚洲在线自拍视频| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 亚洲自拍偷在线| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片| av视频在线观看入口| 91在线观看av| 九色成人免费人妻av| 成人18禁在线播放| 亚洲片人在线观看| 国产激情久久老熟女| 亚洲真实伦在线观看| 最近在线观看免费完整版| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 日韩精品中文字幕看吧| 中文字幕熟女人妻在线| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 精品久久久久久,| 国产麻豆成人av免费视频| 不卡一级毛片| 精品欧美国产一区二区三| 日本成人三级电影网站| 欧美zozozo另类| 又黄又粗又硬又大视频| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 欧美另类亚洲清纯唯美| 五月伊人婷婷丁香| 99久久综合精品五月天人人| 午夜影院日韩av| 非洲黑人性xxxx精品又粗又长| 国产一级毛片七仙女欲春2| 欧美黑人巨大hd| 欧美绝顶高潮抽搐喷水| 少妇裸体淫交视频免费看高清 | 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 丰满人妻一区二区三区视频av | 黄色视频不卡| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 麻豆久久精品国产亚洲av| 久久精品91无色码中文字幕| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 亚洲国产日韩欧美精品在线观看 | 久久99热这里只有精品18| 色av中文字幕| 日本 av在线| 成熟少妇高潮喷水视频| 在线视频色国产色| 欧美丝袜亚洲另类 | 久久精品影院6| 两个人看的免费小视频| 天堂动漫精品| 欧美一级a爱片免费观看看 | 亚洲自偷自拍图片 自拍| 嫩草影院精品99| 成人精品一区二区免费| 久久久国产精品麻豆| 国产精品野战在线观看| 亚洲无线在线观看| 亚洲在线自拍视频| 变态另类丝袜制服| 一区二区三区国产精品乱码| 久久久精品欧美日韩精品| 天堂av国产一区二区熟女人妻 | 国产精品永久免费网站| 久久精品aⅴ一区二区三区四区| 色av中文字幕| 久久精品国产亚洲av香蕉五月| 免费在线观看成人毛片| 久久人人精品亚洲av| 中文字幕精品亚洲无线码一区| 午夜视频精品福利| tocl精华| 悠悠久久av| 别揉我奶头~嗯~啊~动态视频| 国产一级毛片七仙女欲春2| 给我免费播放毛片高清在线观看| 国产一级毛片七仙女欲春2| 成年人黄色毛片网站| 久久精品91蜜桃| 久久九九热精品免费| 全区人妻精品视频| 好男人在线观看高清免费视频| 久久精品91蜜桃| 毛片女人毛片| 国产爱豆传媒在线观看 | 亚洲国产看品久久| 色尼玛亚洲综合影院| 两个人免费观看高清视频| 成人18禁在线播放| 久久久久久久久久黄片| 最近最新中文字幕大全电影3| 丰满的人妻完整版| 亚洲在线自拍视频| av有码第一页| 香蕉久久夜色| cao死你这个sao货| 欧美成人午夜精品| 久久九九热精品免费| 色哟哟哟哟哟哟| 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 美女扒开内裤让男人捅视频| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 波多野结衣高清作品| 免费观看精品视频网站| or卡值多少钱| 757午夜福利合集在线观看| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 这个男人来自地球电影免费观看| 日本黄大片高清| 欧美日韩一级在线毛片| 最好的美女福利视频网| 亚洲av电影不卡..在线观看| 91麻豆精品激情在线观看国产| 亚洲av成人精品一区久久| 久久久水蜜桃国产精品网| 精品久久久久久久人妻蜜臀av| 亚洲狠狠婷婷综合久久图片| 日韩国内少妇激情av| 欧美成人性av电影在线观看| 国产亚洲av高清不卡| 欧美乱妇无乱码| 日韩欧美 国产精品| 午夜激情福利司机影院| 久久久国产欧美日韩av| 校园春色视频在线观看| 免费在线观看完整版高清| 免费观看精品视频网站| 听说在线观看完整版免费高清| 欧美性长视频在线观看| 日韩高清综合在线| 老司机靠b影院| bbb黄色大片| 国产男靠女视频免费网站| 久久久国产成人精品二区| 巨乳人妻的诱惑在线观看| 亚洲国产精品久久男人天堂| 欧美黑人欧美精品刺激| 精品高清国产在线一区| 两个人视频免费观看高清| 久久国产精品影院| 在线观看日韩欧美| 精品久久久久久,| 国产精品久久电影中文字幕| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| videosex国产| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 国产精品野战在线观看| 男女之事视频高清在线观看| 久热爱精品视频在线9| 后天国语完整版免费观看| 亚洲av成人不卡在线观看播放网| www国产在线视频色| 亚洲美女视频黄频| 免费在线观看日本一区| 国产精品自产拍在线观看55亚洲| 婷婷亚洲欧美| tocl精华| 色在线成人网| 日韩欧美国产在线观看| 国产高清激情床上av| 日本一本二区三区精品| 久久久精品欧美日韩精品| 岛国在线观看网站| 久久久久九九精品影院| 波多野结衣高清无吗| 亚洲第一欧美日韩一区二区三区| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| 久久人妻福利社区极品人妻图片| 黄色成人免费大全| 久99久视频精品免费| 在线视频色国产色| 成人18禁高潮啪啪吃奶动态图| av有码第一页| 色老头精品视频在线观看| www.www免费av| 日韩免费av在线播放| 可以免费在线观看a视频的电影网站| 国产蜜桃级精品一区二区三区| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 一二三四在线观看免费中文在| 久久香蕉激情| 五月伊人婷婷丁香| 淫妇啪啪啪对白视频| 舔av片在线| 国产黄片美女视频| 好男人在线观看高清免费视频| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 19禁男女啪啪无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 丰满人妻熟妇乱又伦精品不卡| 哪里可以看免费的av片| 国产午夜精品论理片| 久久精品成人免费网站| 欧美+亚洲+日韩+国产| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站 | 欧美激情久久久久久爽电影| 国产精华一区二区三区| 最好的美女福利视频网| 午夜久久久久精精品| 欧美性猛交黑人性爽| 亚洲最大成人中文| 精品欧美国产一区二区三| 久久久国产欧美日韩av| 九色国产91popny在线| a级毛片a级免费在线| 99国产精品一区二区三区| 久久精品国产亚洲av高清一级| 欧美精品啪啪一区二区三区| cao死你这个sao货| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 久久伊人香网站| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 欧美黑人精品巨大| 久久伊人香网站| 国产私拍福利视频在线观看| 欧美大码av| 亚洲,欧美精品.| 亚洲av成人精品一区久久| 国产高清视频在线观看网站| 淫妇啪啪啪对白视频| 草草在线视频免费看| 国产av不卡久久| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| 亚洲国产精品久久男人天堂| 久久精品aⅴ一区二区三区四区| 国产精品久久电影中文字幕| 神马国产精品三级电影在线观看 | 免费无遮挡裸体视频| 亚洲成av人片免费观看| 亚洲成人久久性| 无人区码免费观看不卡| 欧美日本亚洲视频在线播放| 夜夜夜夜夜久久久久| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 国产免费av片在线观看野外av| 欧美一级a爱片免费观看看 | 9191精品国产免费久久| 日韩欧美国产一区二区入口| 日本成人三级电影网站| 欧美黑人巨大hd| 一区二区三区激情视频| 在线观看日韩欧美| 亚洲精品一区av在线观看| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三| 国产成人啪精品午夜网站| 国产不卡一卡二| 亚洲第一电影网av| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品美女久久av网站| 亚洲av中文字字幕乱码综合| 国产精品av久久久久免费| 757午夜福利合集在线观看| 1024视频免费在线观看| 亚洲熟女毛片儿| 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 亚洲,欧美精品.| 亚洲午夜理论影院| 51午夜福利影视在线观看| 国产精品国产高清国产av| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 久9热在线精品视频| av天堂在线播放| 特大巨黑吊av在线直播| 国产精品,欧美在线| 亚洲av成人一区二区三| 在线观看美女被高潮喷水网站 | 99热这里只有是精品50| 天堂√8在线中文| 在线观看舔阴道视频| cao死你这个sao货| 亚洲电影在线观看av| 免费在线观看黄色视频的| 人人妻,人人澡人人爽秒播| 少妇的丰满在线观看| 久久这里只有精品中国| 成人18禁高潮啪啪吃奶动态图| 久久香蕉国产精品| 韩国av一区二区三区四区| 日韩av在线大香蕉| 妹子高潮喷水视频| 很黄的视频免费| 男女下面进入的视频免费午夜| 两个人看的免费小视频| 久久久久久大精品| 免费在线观看视频国产中文字幕亚洲| 亚洲精华国产精华精| 人妻夜夜爽99麻豆av| 国产区一区二久久| 国产高清激情床上av| 午夜精品一区二区三区免费看| 最近视频中文字幕2019在线8| 欧美不卡视频在线免费观看 | 精品国产亚洲在线| 国产69精品久久久久777片 |