• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and Theoretical Investigation on Excited State Intramolecular Proton Transfer Coupled Charge Transfer Reaction of Baicalein

    2014-07-19 11:17:12ShanshanHuKunLiuQianqianDingWeiPengMaoduChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Shan-shan Hu,Kun Liu,Qian-qian Ding,Wei Peng,Mao-du Chen

    School of Physics and Optoelectronic Technology,and College of Advanced Science and Technology, Dalian University of Technology,Dalian 116024,China

    Experimental and Theoretical Investigation on Excited State Intramolecular Proton Transfer Coupled Charge Transfer Reaction of Baicalein

    Shan-shan Hu,Kun Liu,Qian-qian Ding,Wei Peng?,Mao-du Chen?

    School of Physics and Optoelectronic Technology,and College of Advanced Science and Technology, Dalian University of Technology,Dalian 116024,China

    The excited state intramolecular proton transfer(ESIPT)coupled charge transfer of baicalein has been investigated using steady-state spectroscopic experiment and quantum chemistry calculations.The absence of the absorption peak from S1excited state both in the experimental and calculated absorption spectra indicates that S1is a dark state.The dark excited state S1results in the very weak fluorescence of solid baicalein in the experiment.The frontier molecular orbital and the charge difference densities of baicalein show clearly that the S1state is a charge-transfer state whereas the S2state is a locally excited state.The only one stationary point on the potential energy profile of excited state suggests that the ESIPT reaction of baicalein is a barrierless process.

    Excited state intramolecular proton transfer,Intramolecular charge transfer, Time-dependent density functional theory,Dark state,Baicalein

    I.INTRODUCTION

    Proton transfer is a process in which a proton transfers from one atom to another atom in the ground or the excited state.This process can be depicted as a structure transformation from A-H···B to A···H-B, which takes place via a hydrogen bond[1].The excited state intramolecular proton transfer(ESIPT)occurs in the electronic excited state of a molecule for which a heterocyclic ring is formed by the intramolecular hydrogen bond between a hydroxyl group and a neighboring proton acceptor[2].ESIPT has gained considerable attentions from both theoretical and experimental perspectives due to its extensive application in chemical and biochemical f i eld,ever since the 1950s when Albert Weller laid foundation for it[2-18].The molecule which undergoes the ESIPT process exhibits characteristic photophysical features such as ultrafast reaction time which are commonly attributed to a barrierless process,or at least one with a very low barrier,the 4-level reaction scheme,and large Stokes shift[2].Because of these features,it can be exploited in luminescent materials,proton transfer laser[3,4],molecular logic gate[5],UV stabilizers[6],and solar concentrators[7]among others.The extreme sensitivity makes it possible to be a promising application f i eld in fluorescence sensors and probes for macromolecular science and cellular biology[8-10].Moreover,it has also wide applications in lasing dyes[11],photostabilizers[12], Raman filters,and hard-scintillation counters[13],energy/date storage and optical switching[14,15],and triplet quenchers[16].With the deepening of the research,the charge transfer is often found in ESIPT and has been paid more concerns.

    The proton coupled charge transfer in the excited state plays a crucial role in a wide range of chemical and biological processes,so it has been widely studied by experiments and theoretical calculations[3,19-21]. Kiefer et al.have found that the intermolecular intrinsic barrier is largely determined by solvent reorganization because a charge redistribution is involved[19]. The coupling of proton motion with charge separation is crucial for most of the important processes in biological energy conversion,such as transmission of nervous impulses,respiration and photosynthesis[21].The application of the fast and efficient fluorescence probe, such as laurdan in the biomolecular fluorescence imaging,also utilizes intramolecular charge transfer(ICT) [22].In addition,Zhao and Han have explained the drastic fluorescence quenching behaviors of oxazine 750 (OX750)chromophore in protic alcoholic by a solutionsolvent intermolecular photoinduced electron transfer reaction[23].Recently,Chou and his colleagues made a detailed review of the ESPT coupled CT reaction, which could be modulated by molecular structure and media polarization[24].

    The ESIPT reaction has a wide range of applications,but the applications in medicine are rarely found, because of the tendency to focus on the medicines’medicinal properties while ignoring their photochemical reaction,despite their photochemical and photophysical properties contribution to the medicinal prop-erties.Baicalein is a typical fl avonoid compound from the root of Scutelluriu buicalensis,which is a kind of traditional Chinese herbal medicine.It is known to have anti-allergic,anti-carcinogenic,anti-HIV,antioxidative,anti-in fl ammatory,anti-viral properties,and can be used to treat hepatitis,bronchitis,nephritis, asthma,atopic dermatitis,cirrhosis,jaundice,hepatoma,leukemia,hyperlipemia,arteriosclerosis,and infl ammatory diseases[25-29].Consequently,its pharmacological e ff ects have been a topic of interest for years.However,its photophysical and photochemical properties have not been studied deeply so far.It is known that the intrinsically fl uorescent properties (such as doxorubicin)of drugs make them convenient for probing and visualization with various microscopic imaging technologies[30],which will greatly contribute to the drugs action mechanism and pharmacokinetics. Therefore,the current study of photophysical and photochemical properties of medicines will also provide a promising pathway to the development of new drugs based on traditional Chinese medicine monomers.

    FIG.1 The geometric structures of baicalein in the ground state(S0normal form)and excited state(S1tautomer form),1, 2,and 3 stand for the f i rst,second and third benzene ring respectively.

    In this work,we mainly investigate the excited state intramolecular proton transfer coupled charge transfer of baicalein using the DFT/TDDFT and experiment methods.The bond lengths and bond angles of baicalein in both the ground and excited states are analyzed and their potential energy pro fi les are discussed. The calculated and experimental absorption and fl uorescence spectra are displayed and discussed.The charge transfer of baicalein is demonstrated by analyzing the frontier molecular orbits and the charge di ff erence densities(CDDs).The elaborated study of spectra and photoinduced proton and charge transfer process gives insight into the photophysical and photochemical properties of traditional Chinese herbal medicine.

    II.EXPERIMENTAL AND COMPUTATIONAL DETAILS

    For the experiment,the absorption spectrum of baicalein in ethanol solution(10μmol/L)is measured by the MAYA2000PRO Spectrometers.The fluorescence spectrum of solid baicalein is obtained using the RF5301PC Spectrometers(SHIMADZU Corp.)at excitation wavelength of 325 nm.It is worth noting that all the experiments are performed at room temperature.

    The geometric structure and properties of baicalein in the ground state are recorded using the DFT method. The geometric structure and properties of excited state are calculated by means of the TDDFT method.The TDDFT method has been conf i rmed as an useful tool to investigate the properties of the excited state by many theoretical investigations[17,18,31-35].The Becke’s three-parameter hybrid exchange function with Lee-Yang-Parr gradient-corrected correlation functional (B3LYP)[36]and the triple-ζ valence quality with one set of polarization functions(TZVP)[37]are chosen as functional and basis sets throughout calculations. Fine quadrature grids 4[38]are also employed.The default self-consistent f i eld(SCF)convergency threshold of the energy(10-6)is used for the optimization of the ground and excited states geometries.All electronic structure calculations of baicalein are completed without constraints for symmetry.In addition,it is confi rmed that all of the local minima are in the absence of an imaginary mode through the calculation of vibrational frequency.In order to reproduce the experimental results,the solvent e ff ect in ethanol solution is employed in the absorption spectrum calculation by using the conductor-like screening model(COSMO)method. The calculation of fl uorescence spectrum of baicalein is conducted under the condition of vacuum environment. All the calculations in this work are preformed with the TURBOMOLE program suite[36-38].The transition densities(TDs)and the charge di ff erence densities (CDDs)methods are used to describe the characteristics of transition dipole moments and charge transfer [39-41].

    III.RESULTS AND DISCUSSION

    The geometric structures of baicalein in the ground and excited states are optimized to depict the in-tramolecular proton transfer reaction of baicalein,and the results are shown in Fig.1.It is revealed that the proton transfers from O-H to C=O upon the excitation of the ground state to its excited state.That is, in the ground state,the enol isomer of baicalein(normal form)is more stable than the keto isomer(tautomer form),while the relative stability is reversed in the excited state.This demonstrates that the baicalein undergoes an ultrafast ESIPT process through the sixmembered ring which consists of the intramolecular hydrogen bond O-H···O=C once being excited.It is worthwhile to mention that the stable geometric structure of the ground state is non-planar and the dihedral angle of DO11C12C20C15is-18.05?,but it becomes planar structure with a very small dihedral angle of 0.05?after being excited.This suggests that upon the excitation of the normal form to its f i rst-excited singlet state,the enhanced acidity of the hydroxyl group causes an ultrafast ESIPT from this group to the neighboring carbon-based,affording the planar tautomer.

    TABLEI The bond lengths L,bond angles A,and dipole moments of baicalein in the ground state and excited state.

    FIG.2(a)The experimental absorption spectrum in ethanol solution and the calculated absorption spectrum with the consideration of the COSMO solvation model.(b) The experimental fluorescence spectrum of solid baicalein and the calculated fluorescence spectrum in the vacuum environment.

    To further depict the ESIPT reaction of baicalein, we list the changes of the bond lengths and bond angles of baicalein in the ground and excited states in Table I.From the ground state to the excited state,the bond length LO8-H9increases from 1.0?A to 1.83?A and LH9-O14decreases from 1.7?A to 0.98?A. The bond angle AO8H9O14decreases from 147.79?to 146.73?.The changes of bond lengths and bond angle manifest that the intramolecular hydrogen bond O8-H9···O14 breaks,from the ground state to the excited state,accompanying with the formation of an intramolecular hydrogen bond O8···H9-O14.The bond lengths LC5-O8,LC10-O14,LC4-C5,LC10-C4as well as the bond angles AH9O8C5and AH9O14C10also change because of the influence of the intramolecular proton transfer.The intramolecular hydrogen bond O8-H9···O14 in the ground state is 1.70?A,but in the excited state the intramolecular hydrogen bond O8···H9-O14 increases to 1.83?A.The increase of the length of intramolecular hydrogen bond reveals that the intramolecular hydrogen bond in the excited state is weaker than that in the ground state,because O8 is affected by H29 when H9 transfers to O14 in the excited state.The bond length LO8-H29,LO26-H29,and bond angle AC8H29O26are also listed in Table I.From the ground state to the excited state,the LO26-H29increases by 0.01?A,but the LO8-H29decreases by 0.15?A.At the same time,the AC8H29O26decreases by 2.26?.These changes show that the O8 moves to H29 upon the excitation of baicalein to its excited state.Thus,it makes the intramolecular hydrogen bond O8···H9-O14 longer in the excited state.In addition, the data of the dipole moment in the ground and excited states are summarized in Table I.In the excited state,it is 2.71 Debye which is smaller than that in the ground state.This demonstrates that the variation of electron density on the ground state is more obvious than that in the excited state.

    Figure 2 displays the experimental and calculated ab-sorption and fluorescence spectra of baicalein.It is worth noting that the experimental absorption spectrum is measured in the ethanol solution and the calculated absorption spectrum is recorded with considering the solvent effects in ethanol.From Fig.2(a)we can see that the calculated absorption peaks are located at about 323 and 276 nm,which agree well with the experiment values 325 and 275 nm,respectively.It can also be seen that the absorption peak of 325 nm in the experiment corresponds to the calculated result 323 nm, which comes from the S2state according to our calculation.At the same time,we also f i nd that the calculated S1state has a small oscillator strength 0.029, which makes it clear that S1is a dark state.As a result,the absorption peak of the S1state is not observed experimentally.Thus,it can be introduced that when the baicalein is excited,the electrons in the ground state will have a transition to the S2state,and then go through the internal conversion process to reach the S1state,but at last revert back to the S0state mainly through some nonradiative transition process which will result in the weak fluorescence of baicalein.For comparison,we also measure the fluorescence of baicalein in ethanol solution,but it is absent.Figure 2(b)is the experimental fluorescence spectrum of solid baicalein and the calculated fluorescence spectrum in the vacuum environment.It clearly shows that the fluorescence peak of solid baicalein is very weak.This is coincident with the above discussion.Therefore,both the experiment and theoretical calculation indicate that S1state is a dark state.It can be also found that the calculated fl uorescence peak of 446 nm is in accordance with the experimental value of 468 nm.

    It is known to all that the frontier molecular orbitals analysis can provide insight into the nature of excited state[18,42-44].According to our calculation,it is known that the S1state is mainly the transition from HOMO to LUMO and the S2state is mainly the transition from HOMO-1 to LUMO.Thus,only the HOMO-1, HOMO,and LUMO orbitals of baicalein in the ground state(normal form)and the excited state(tautomer form)are displayed in Fig.3.We can fi nd that the electron density of HOMO is mainly localized on the fi rst benzene ring either in the ground or in the excited state of baicalein,but the electron densities of both the HOMO-1 and LUMO spread all over the molecule.So, it is con fi rmed that S1state is of ICT character.The charge can be transferred from the fi rst benzene ring to the second and third benzene ring.However,S2state is a locally excited state because the electron densities of both the HOMO-1 and LUMO spread across the molecule.From Fig.3,it is evident that the S1and S2states are both of ππ?character.In addition, from the frontier molecular orbitals of normal form, when we only focus on the electron density of hydroxide group and O14,it can be found that the electron density of HOMO mainly locates on the hydroxide group while HOMO-1 has an uniform distribution on hydroxide group and O14.For LUMO,it mainly locates on the O14.Therefore,upon the excitation of the normal form to its excited state,the ESIPT occurs more easily in the S1state.

    FIG.3 The frontier molecular orbitals of baicalein in the ground state(normal form)and excited state(tautomer form).

    FIG.4 TDs and CDDs of baicalein in the S1and S2states. The green and red colors stand for the hole and the electron, respectively,and the isovalue is 1×10-4a.u.

    FIG.5 The potential-energy profiles of baicalein along the bond O8-H9 in the ground state S0and excited state S1.

    Figure 4 is the TDs and CDDs of baicalein in the S1and S2states.From the TDs of the S1state,we can clearly see that the distribution of electrons and holes are disorganized and then transition dipole moments of each unit cancel each other,which results in a small transition dipole moment of the S1state.This is the reason that the absorption peak of the S1state can’t be observed in both the experiment and calculation.For the S2state,the holes mainly distribute in the six-membered ring which consists of the intramolecular hydrogen bond O-H···O=C,but the electrons mainly distribute in the f i rst benzene ring.The well-organized distribution of electrons and holes illustrates that the transition of the S2state is strong,so the absorption peak of the S2state can be observed.The analysis of the TDs of the S1and S2states also indicates that S1is a dark state.In order to clarify the distribution of the holes and the electrons in the S1and S2states, the CDDs of them are also given.The CDDs of the S1state show that the holes mainly distribute in the fi rst benzene ring,but the electrons are mainly in the second and third benzene ring.It means that the electrons will transfer from the fi rst benzene ring to the second and third benzene rings when the baicalein is excited to its S1state.This also demonstrates that the dark state of the S1is a charge-transfer state.Likewise, it is known that S2is a locally excited state because the CDDs of the S2state show that both the electrons and holes distribute in every benzene ring.The above calculations indicate that the reaction of baicalein in the excited state is a process of proton transfer coupled charge transfer.

    To further investigate the properties in the excited state of baicalein,the potential energy pro fi les of baicalein in both the ground and excited states along with the bond O8-H9 are studied,which are shown in Fig.5.It shows that there is only one stationary point either in the ground state or the excited state and we can fi nd that the most stable geometrics in the gr?oundstate and excited state are at about 0.99 and 1.82A,respectively.Therefore,it can be concluded that only the enol isomer exhibits the stable geometric structure in the ground state but in the excited state only the keto isomer is stable.By observing the excited state potential energy pro fi les of baicalein along with the bond O8-H9,it can be concluded that its excited state has no energy barriers.Therefore,the process of ESIPT reaction is barrierless.

    IV.CONCLUSION

    In this work,the DFT/TDDFT methods combined with the experiment method are used to investigate the ESIPT coupled charge transfer reaction of baicalein. The optimized geometric structures of baicalein suggest that it undergoes an ESIPT process through the six-membered ring which consists of the intramolecular hydrogen bond O-H···O=C upon the excitation of the ground state to its excited state.The analysis of bond lengths and bond angles of baicalein demonstrates that the intramolecular hydrogen bond in the excited state is weakened.The calculated absorption spectrum indicates that S1is a dark state and is absent in the experiment.Experimental observation of absorption peak 325 nm is the S2state,and the TDs conf i rm that it is a local excited state.Furthermore,TDs and CDDs also declare that the S1is a dark state with ICT character.The fluorescence of solid baicalein is very weak because of the dark S1state.The potential energy profiles of baicalein illustrate that the ESIPT is a barrierless process and only keto form is stable in the excited state.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.61137005 and No.10974023),the Program for Liaoning Excellent Talents in University(No.LJQ2012002),and the Program for New Century Excellent Talents in University (No.NCET-12-0077).

    [1]K.Das,N.Sarkar,A.K.Ghosh,D.Majumdar,D.N. Nath,and K.Bhattacharyya,J.Phys.Chem.98,9126 (1994).

    [2]C.H.Kim,J.Park,J.Seo,S.Y.Park,and T.Joo,J. Phys.Chem.A 114,5618(2010).

    [3]C.C.Hsieh,C.M.Jiang,and P.T.Chou,Acc.Chem. Res.43,1364(2010).

    [4]J.E.Kwon and S.Y.Park,Adv.Mater.23,3615 (2011).

    [5]V.Luxami and S.Kumar,New J.Chem.32,2074 (2008).

    [6]J.Keck,H.E.A.Kramer,H.Port,T.Hirsch,P.Fischer,and G.Rytz,J.Phys.Chem.100,14468(1996).

    [7]D.Y.Chen,C.L.Chen,Y.M.Cheng,C.H.Lai,J.Y. Yu,B.S.Chen,C.C.Hsieh,H.C.Chen,L.Y.Chen,C. Y.Wei,C.C.Wu,and P.T.Chou,ACS Appl.Mater. Interfaces 2,1621(2010).

    [8]S.Y.Park,H.Jeong,H.Yu,S.Y.Park,and D.J.Jang, Photochem.Photobiol.86,1197(2010).

    [9]K.Y.Chen,Y.M.Cheng,C.H.Lai,C.C.Hsu,M. L.Ho,G.H.Lee,and P.T.Chou,J.Am.Chem.Soc. 129,4534(2007).

    [10]A.S.Klymchenko and A.P.Demchenko,J.Am.Chem. Soc.124,12372(2002).

    [11]P.T.Chou,M.L.Martinez,and J.H.Clements,J. Phys.Chem.97,2618(1993).

    [12]D.B.O’Connor,G.W.Scott,D.R.Coulter,and A. Yavrouian,J.Phys.Chem.95,10252(1991).

    [13]M.L.Martinez,W.C.Cooper,and P.T.Chou,Chem. Phys.Lett.193,151(1992).

    [14]K.Kuldov′a,A.Corval,H.P.Trommsdorf f,and J.M. Lehn,J.Phys.Chem.A 101,6850(1997).

    [15]P.T.Chou,D.McMorrow,T.J.Aartsma,and M. Kasha,J.Phys.Chem.88,4596(1984).

    [16]R.M.Tarkka,X.Zhang,and S.A.Jenekhe,J.Am. Chem.Soc.118,9438(1996).

    [17]X.H.Zhao and M.D.Chen,Chem.Phys.Lett.512, 35(2011).

    [18]X.H.Zhao,Y.F.Liu,L.F.Zhou,Y.Z.Li,and M.D. Chen,J.Lumin.130,1431(2010).

    [19]P.M.Kiefer and J.T.Hynes,J.Phys.Chem.A 106, 1850(2002).

    [20]X.H.Zhao and M.D.Chen,J.Phys.Chem.A 114, 7786(2010).

    [21]S.R′?os Vzquez,M.C.R′?os Rodr′?guez,M.Mosquera, and F.Rodr′?guez-Prieto,J.Phys.Chem.A 111,1814 (2007).

    [22]T.Parasassi,E.Krasnowska,L.Bagatolli,and E.Gratton,J.Fluoresc.8,365(1998).

    [23]G.J.Zhao,J.Y.Liu,L.C.Zhou,and K.L.Han,J. Phys.Chem.B 111,8940(2007).

    [24]A.P.Demchenko,K.C.Tang,and P.T.Chou,Chem. Soc.Rev.42,1379(2013).

    [25]M.Zhu,S.Rajamani,J.Kaylor,S.Han,F.Zhou,and A.L.Fink,J.Biol.Chem.279,26846(2004).

    [26]M.Y.Lai,S.L.Hsiu,S.Y.Tsai,Y.C.Hou,and P.D. L.Chao,J.Pharm.Pharmacol.55,205(2003).

    [27]B.Q.Li,T.Fu,W.H.Gong,N.Dunlop,H.F.Kung,Y. Yan,J.Kang,and J.M.Wang,Immunopharmacology 49,295(2000).

    [28]M.L.Weber,Cancer Treat.Rev.35,57(2009).

    [29]Y.C.Chen,S.C.Shen,L.G.Chen,T.J.Lee,and L. L.Yang,Biochem.Pharmacol.61,1417(2001).

    [30]D.K.Rana,S.Dhar,A.Sarkar,and S.C.Bhattacharya,J.Phys.Chem.A 115,9169(2011).

    [31]G.J.Zhao and K.L.Han,J.Phys.Chem.A 113,4788 (2009).

    [32]M.T.Sun,J.Chem.Phys.124,054903(2006).

    [33]G.J.Zhao and K.L.Han,J.Phys.Chem.A 111,2469 (2007).

    [34]G.J.Zhao and K.L.Han,J.Phys.Chem.A 113,14329 (2009).

    [35]G.J.Zhao and K.L.Han,J.Comput.Chem.29,2010 (2008).

    [36]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [37]A.Schafer,C.Huber,and R.Ahlrichs,J.Chem.Phys. 100,5829(1994).

    [38]O.Treutler and R.Ahlrichs,J.Chem.Phys.102,346 (1995).

    [39]M.T.Sun,L.W.Liu,Y.Ding,and H.X.Xu,J.Chem. Phys.127,084706(2007).

    [40]M.T.Sun,P.Kjellberg,W.J.D.Beenken,and T. Pullerits,Chem.Phys.327,474(2006).

    [41]Y.Z.Li,H.X.Li,X.M.Zhao,and M.D.Chen,J. Phys.Chem.A 114,6972(2010).

    [42]G.J.Zhao and K.L.Han,Biophys.J.94,38(2008).

    [43]G.J.Zhao,B.H.Northrop,K.L.Han,and P.J.Stang, J.Phys.Chem.A 114,9007(2010).

    [44]G.J.Zhao and K.L.Han,Acc.Chem.Res.45,404 (2012).

    ceived on July 1,2013;Accepted on September 16,2013)

    ?Authors to whom correspondence should be addressed.E-mail:wpeng@dlut.edu.cn,mdchen@dlut.edu.cn

    亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 精品人妻熟女毛片av久久网站| 香蕉丝袜av| 青草久久国产| 色精品久久人妻99蜜桃| 久久精品国产亚洲av香蕉五月 | 欧美精品亚洲一区二区| 一级毛片女人18水好多| 成人影院久久| 国产99久久九九免费精品| 高潮久久久久久久久久久不卡| 国产精品久久电影中文字幕 | 中文字幕精品免费在线观看视频| 色老头精品视频在线观看| 欧美精品亚洲一区二区| 亚洲精品国产区一区二| 国产又色又爽无遮挡免费看| 亚洲精品国产精品久久久不卡| 亚洲av电影在线进入| 亚洲五月天丁香| 欧美成狂野欧美在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 首页视频小说图片口味搜索| 国产精品亚洲av一区麻豆| 女人精品久久久久毛片| 高清在线国产一区| 午夜91福利影院| 91在线观看av| a级毛片黄视频| 人人妻人人添人人爽欧美一区卜| 欧美一级毛片孕妇| 国产aⅴ精品一区二区三区波| 一级毛片高清免费大全| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看的高清视频| 最新在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三区在线| 日韩熟女老妇一区二区性免费视频| 免费观看a级毛片全部| 中文字幕最新亚洲高清| 国产亚洲一区二区精品| 99re6热这里在线精品视频| 亚洲人成电影观看| 精品久久久久久久久久免费视频 | 手机成人av网站| 日韩成人在线观看一区二区三区| 亚洲一码二码三码区别大吗| 成人三级做爰电影| 精品福利观看| 在线永久观看黄色视频| 久久午夜亚洲精品久久| 日日爽夜夜爽网站| 国产深夜福利视频在线观看| 叶爱在线成人免费视频播放| 18禁裸乳无遮挡动漫免费视频| 亚洲av片天天在线观看| 午夜影院日韩av| 午夜福利在线免费观看网站| 亚洲人成伊人成综合网2020| 咕卡用的链子| 国产淫语在线视频| 中国美女看黄片| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 人妻一区二区av| 99riav亚洲国产免费| 黑人猛操日本美女一级片| 国产乱人伦免费视频| 日韩 欧美 亚洲 中文字幕| 51午夜福利影视在线观看| 国产成人欧美在线观看 | 十八禁人妻一区二区| 久久久久精品国产欧美久久久| 午夜激情av网站| avwww免费| 大型av网站在线播放| 大码成人一级视频| 日本黄色视频三级网站网址 | 男男h啪啪无遮挡| 天天躁夜夜躁狠狠躁躁| 国产有黄有色有爽视频| 欧美一级毛片孕妇| 午夜两性在线视频| 日本黄色日本黄色录像| 亚洲欧美激情综合另类| 亚洲午夜精品一区,二区,三区| 精品视频人人做人人爽| 欧美成狂野欧美在线观看| 国产激情欧美一区二区| 亚洲av成人不卡在线观看播放网| 51午夜福利影视在线观看| 亚洲精品乱久久久久久| 亚洲五月色婷婷综合| 国产精品国产av在线观看| 最近最新免费中文字幕在线| 精品一区二区三区av网在线观看| 乱人伦中国视频| 91成年电影在线观看| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲| av欧美777| 一级片免费观看大全| 午夜成年电影在线免费观看| 精品一区二区三区视频在线观看免费 | 亚洲一区中文字幕在线| 国产主播在线观看一区二区| 十八禁人妻一区二区| 久久人人爽av亚洲精品天堂| 亚洲av成人不卡在线观看播放网| 亚洲一码二码三码区别大吗| 黑人猛操日本美女一级片| 亚洲熟女毛片儿| 一二三四社区在线视频社区8| 男人操女人黄网站| 免费在线观看日本一区| 精品亚洲成a人片在线观看| 少妇裸体淫交视频免费看高清 | 久久午夜综合久久蜜桃| 日韩免费av在线播放| 日韩熟女老妇一区二区性免费视频| 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 国产一卡二卡三卡精品| 国产精品秋霞免费鲁丝片| 亚洲av片天天在线观看| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 一本大道久久a久久精品| 久久香蕉激情| 黄色毛片三级朝国网站| 极品少妇高潮喷水抽搐| 一夜夜www| av网站在线播放免费| 少妇 在线观看| 免费在线观看完整版高清| 后天国语完整版免费观看| 国精品久久久久久国模美| 99久久人妻综合| 18禁美女被吸乳视频| 校园春色视频在线观看| 999精品在线视频| 女人久久www免费人成看片| 亚洲人成伊人成综合网2020| 亚洲专区国产一区二区| 久久久国产精品麻豆| 亚洲精品乱久久久久久| 热re99久久精品国产66热6| 99在线人妻在线中文字幕 | 国产欧美日韩一区二区三| 久久性视频一级片| 亚洲欧美一区二区三区久久| 精品人妻在线不人妻| 男人的好看免费观看在线视频 | 日韩免费av在线播放| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 97人妻天天添夜夜摸| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 一边摸一边抽搐一进一出视频| 欧美老熟妇乱子伦牲交| 性少妇av在线| 女同久久另类99精品国产91| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 999精品在线视频| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区| 久久久久久免费高清国产稀缺| 亚洲精品国产精品久久久不卡| 成年女人毛片免费观看观看9 | 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 免费看a级黄色片| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| av天堂在线播放| 久久亚洲真实| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 少妇猛男粗大的猛烈进出视频| 色在线成人网| 午夜精品在线福利| 欧美性长视频在线观看| 捣出白浆h1v1| 国产精品 欧美亚洲| 国产高清视频在线播放一区| 交换朋友夫妻互换小说| 欧美乱码精品一区二区三区| 国产精品免费一区二区三区在线 | 国产亚洲av高清不卡| 精品人妻熟女毛片av久久网站| e午夜精品久久久久久久| 9热在线视频观看99| 亚洲av美国av| 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| 亚洲人成77777在线视频| 人妻久久中文字幕网| 激情视频va一区二区三区| 久久国产精品大桥未久av| www.熟女人妻精品国产| 午夜精品国产一区二区电影| 最近最新免费中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人av| 欧美中文综合在线视频| 飞空精品影院首页| 久久天躁狠狠躁夜夜2o2o| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区| 亚洲第一青青草原| 中出人妻视频一区二区| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女 | 水蜜桃什么品种好| 午夜福利在线免费观看网站| 亚洲在线自拍视频| av中文乱码字幕在线| 国产黄色免费在线视频| 国产亚洲精品一区二区www | 日日摸夜夜添夜夜添小说| 国产精品久久久av美女十八| 日韩有码中文字幕| 在线观看免费高清a一片| 亚洲av成人一区二区三| 两性夫妻黄色片| av网站在线播放免费| 中文字幕高清在线视频| 纯流量卡能插随身wifi吗| 国产午夜精品久久久久久| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 精品久久久久久,| av网站免费在线观看视频| 最新美女视频免费是黄的| 成人av一区二区三区在线看| videosex国产| 99久久综合精品五月天人人| 黄色成人免费大全| 美女高潮喷水抽搐中文字幕| 成人黄色视频免费在线看| 日日夜夜操网爽| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清 | 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说 | 亚洲精品在线观看二区| 99国产精品免费福利视频| aaaaa片日本免费| 黑人巨大精品欧美一区二区mp4| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 日韩欧美一区视频在线观看| 亚洲成a人片在线一区二区| 亚洲熟女毛片儿| 一夜夜www| 丁香六月欧美| 天堂动漫精品| 国产精品永久免费网站| 欧美av亚洲av综合av国产av| 精品无人区乱码1区二区| 国产精品99久久99久久久不卡| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 一级毛片精品| 少妇被粗大的猛进出69影院| 可以免费在线观看a视频的电影网站| 老汉色∧v一级毛片| 在线看a的网站| 久久 成人 亚洲| 精品国产美女av久久久久小说| 操美女的视频在线观看| ponron亚洲| 一边摸一边抽搐一进一小说 | av网站免费在线观看视频| 色综合婷婷激情| 欧美在线黄色| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 久久精品熟女亚洲av麻豆精品| 国产精品自产拍在线观看55亚洲 | 国产精品一区二区精品视频观看| 午夜亚洲福利在线播放| 看黄色毛片网站| 宅男免费午夜| 高清av免费在线| 麻豆乱淫一区二区| 亚洲精华国产精华精| 91在线观看av| 国产成人精品在线电影| 日日摸夜夜添夜夜添小说| 久热这里只有精品99| 老司机午夜十八禁免费视频| 国产精品影院久久| 黄色片一级片一级黄色片| 一级黄色大片毛片| 夜夜爽天天搞| 欧美国产精品va在线观看不卡| 国产精品九九99| 国产精品一区二区在线不卡| 一区福利在线观看| 久久精品国产99精品国产亚洲性色 | 午夜精品久久久久久毛片777| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 国产激情欧美一区二区| 91精品三级在线观看| 日韩欧美在线二视频 | 伦理电影免费视频| 两个人免费观看高清视频| 久久久国产成人精品二区 | 日韩熟女老妇一区二区性免费视频| 最近最新中文字幕大全电影3 | 99久久精品国产亚洲精品| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| bbb黄色大片| 国产99白浆流出| 视频在线观看一区二区三区| 在线观看66精品国产| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 欧美精品av麻豆av| 午夜福利一区二区在线看| 最新在线观看一区二区三区| videos熟女内射| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 高清毛片免费观看视频网站 | 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 女性被躁到高潮视频| 国产一区二区三区综合在线观看| 国产片内射在线| 国产一区在线观看成人免费| 国产激情久久老熟女| 精品人妻1区二区| 中文字幕人妻熟女乱码| 999精品在线视频| 亚洲中文av在线| 久久国产精品人妻蜜桃| 国产不卡av网站在线观看| 熟女少妇亚洲综合色aaa.| 亚洲成人免费av在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁夜夜躁狠狠躁躁| 国产国语露脸激情在线看| 悠悠久久av| 午夜精品在线福利| 悠悠久久av| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 久久午夜亚洲精品久久| 黄色 视频免费看| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 久久精品成人免费网站| 久久国产精品影院| 亚洲精品自拍成人| 九色亚洲精品在线播放| 亚洲五月天丁香| 精品福利观看| 啦啦啦视频在线资源免费观看| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 最新在线观看一区二区三区| 亚洲三区欧美一区| 99精国产麻豆久久婷婷| www.熟女人妻精品国产| 纯流量卡能插随身wifi吗| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 国产精品久久久av美女十八| 久久精品91无色码中文字幕| 美女福利国产在线| 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 9热在线视频观看99| 午夜亚洲福利在线播放| av天堂久久9| 老汉色∧v一级毛片| 18在线观看网站| 黑人欧美特级aaaaaa片| 91成人精品电影| 亚洲一码二码三码区别大吗| 中文字幕av电影在线播放| 美女午夜性视频免费| 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 人人妻,人人澡人人爽秒播| av有码第一页| 国产成人精品无人区| 国产人伦9x9x在线观看| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产 | 18禁黄网站禁片午夜丰满| 一二三四在线观看免费中文在| 深夜精品福利| 大片电影免费在线观看免费| 99久久人妻综合| 十八禁人妻一区二区| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| x7x7x7水蜜桃| 麻豆乱淫一区二区| 亚洲一码二码三码区别大吗| 久久人人爽av亚洲精品天堂| 女人高潮潮喷娇喘18禁视频| 一边摸一边抽搐一进一小说 | 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 两个人看的免费小视频| 亚洲伊人色综图| 又大又爽又粗| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜躁狠狠躁天天躁| 日本欧美视频一区| 欧美日韩福利视频一区二区| 婷婷成人精品国产| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 久久香蕉激情| 亚洲少妇的诱惑av| 久久精品国产99精品国产亚洲性色 | 精品第一国产精品| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 电影成人av| 久久香蕉精品热| 嫁个100分男人电影在线观看| 国产一区二区三区视频了| 三级毛片av免费| 涩涩av久久男人的天堂| a在线观看视频网站| 久久香蕉精品热| 国产av又大| 999久久久国产精品视频| 极品人妻少妇av视频| 欧美精品高潮呻吟av久久| 成人三级做爰电影| 人妻一区二区av| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 91国产中文字幕| 国产精品综合久久久久久久免费 | 男女免费视频国产| 精品少妇一区二区三区视频日本电影| 中文字幕人妻熟女乱码| 国产亚洲精品第一综合不卡| 欧美中文综合在线视频| 国产精品二区激情视频| 少妇猛男粗大的猛烈进出视频| 狠狠婷婷综合久久久久久88av| 手机成人av网站| 国产精品成人在线| 亚洲av成人不卡在线观看播放网| 欧美另类亚洲清纯唯美| 午夜福利,免费看| 国产1区2区3区精品| 久久中文字幕人妻熟女| 99国产精品一区二区三区| 亚洲国产欧美一区二区综合| 少妇粗大呻吟视频| 亚洲欧美激情综合另类| 在线观看免费视频网站a站| 精品欧美一区二区三区在线| 亚洲精品一二三| 午夜免费鲁丝| 久久中文字幕一级| 超碰成人久久| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 成年女人毛片免费观看观看9 | 91麻豆av在线| 日韩欧美三级三区| 亚洲av片天天在线观看| 亚洲av熟女| 欧美激情久久久久久爽电影 | 午夜福利,免费看| 黄色毛片三级朝国网站| 亚洲七黄色美女视频| 在线观看免费视频日本深夜| 中文字幕人妻熟女乱码| 久久国产精品男人的天堂亚洲| 亚洲精品国产色婷婷电影| 十八禁网站免费在线| 国产在视频线精品| 国产成人精品在线电影| 亚洲av成人一区二区三| 中国美女看黄片| 老熟妇仑乱视频hdxx| 一级作爱视频免费观看| 极品少妇高潮喷水抽搐| 国产精品久久电影中文字幕 | 最新美女视频免费是黄的| 国产精品九九99| 成年人午夜在线观看视频| 久久中文字幕一级| 少妇 在线观看| 国产成人av教育| 国产又色又爽无遮挡免费看| av国产精品久久久久影院| 国内毛片毛片毛片毛片毛片| 制服人妻中文乱码| 人人妻人人澡人人爽人人夜夜| 757午夜福利合集在线观看| 国产精华一区二区三区| 久久久国产欧美日韩av| 国产aⅴ精品一区二区三区波| 亚洲人成77777在线视频| 亚洲色图av天堂| 久9热在线精品视频| 十八禁高潮呻吟视频| 国产亚洲欧美98| 亚洲第一青青草原| 看片在线看免费视频| 91av网站免费观看| 日韩中文字幕欧美一区二区| 无人区码免费观看不卡| 欧美黑人精品巨大| 免费在线观看日本一区| 亚洲aⅴ乱码一区二区在线播放 | 岛国毛片在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜老司机福利片| 一区二区日韩欧美中文字幕| 热re99久久国产66热| 久久久久久久久久久久大奶| 日韩制服丝袜自拍偷拍| 国产精品免费大片| 欧美日本中文国产一区发布| 成年版毛片免费区| 久久香蕉激情| av在线播放免费不卡| 国产1区2区3区精品| 交换朋友夫妻互换小说| 成人国产一区最新在线观看| 国产精品欧美亚洲77777| 国产欧美日韩精品亚洲av| 岛国在线观看网站| 中文字幕人妻熟女乱码| 精品人妻在线不人妻| 一级毛片高清免费大全| 一级片免费观看大全| 韩国精品一区二区三区| 国产激情久久老熟女| 色94色欧美一区二区| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 国产不卡av网站在线观看| 午夜91福利影院| 久久精品亚洲av国产电影网| 日韩成人在线观看一区二区三区| 国产成人av激情在线播放| 亚洲国产精品一区二区三区在线| 激情视频va一区二区三区| 精品久久蜜臀av无| 丰满的人妻完整版| 女人爽到高潮嗷嗷叫在线视频| 两性夫妻黄色片| 搡老岳熟女国产| 中文字幕av电影在线播放| 亚洲av欧美aⅴ国产| 亚洲伊人色综图| 国产aⅴ精品一区二区三区波| 国产有黄有色有爽视频| 免费在线观看影片大全网站| 亚洲avbb在线观看| 亚洲av日韩精品久久久久久密| 手机成人av网站| 无人区码免费观看不卡| 一区二区日韩欧美中文字幕| 丝袜美足系列| 一边摸一边抽搐一进一小说 | 成人影院久久| 成在线人永久免费视频| 久久国产精品影院| 国产成人免费观看mmmm| 高清视频免费观看一区二区| 热99国产精品久久久久久7| 别揉我奶头~嗯~啊~动态视频| 国产av一区二区精品久久| 久久精品国产综合久久久| 久久午夜亚洲精品久久| 国产真人三级小视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产成人精品久久二区二区91| 免费在线观看影片大全网站| 成人18禁在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美日韩在线播放| 日韩欧美在线二视频 | 国产亚洲精品久久久久久毛片 | 一本一本久久a久久精品综合妖精| 欧美性长视频在线观看| 人人妻人人澡人人看| 午夜免费观看网址| 欧美日韩瑟瑟在线播放| 欧美日韩视频精品一区| 精品一品国产午夜福利视频| 好看av亚洲va欧美ⅴa在| 久久精品亚洲av国产电影网| 亚洲片人在线观看| 性少妇av在线|