• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    2014-07-19 11:17:08CuiHuZhoyiZengChunyngKongYutingCuiLinZhngLingcngCi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Cui-e Hu,Zho-yi Zeng?,Chun-yng Kong,Yu-ting Cui,Lin Zhng,Ling-cng Ci

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    High Pressure Structural Instability and Thermal Properties of Rutile TiO2from First-principles

    Cui-e Hua,b,Zhao-yi Zenga,b?,Chun-yang Konga,Yu-ting Cuia,Lin Zhangb,Ling-cang Caib

    a.College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 400047, China

    b.National Key Laboratory for Shock Wave and Detonation Physics Research,Institute of Fluid Physics, Chinese Academy of Engineering Physics,Mianyang 621900,China

    We report a f i rst-principles calculation to investigate the structural instability of rutile TiO2. The high pressure structural parameters are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point,which indicates the structural instability.From the high pressure elastic constants,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state, thermal expansion coefficient,bulk modulus,and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pressure and temperature range.

    TiO2,Phonon dispersion,Thermodynamics,Density functional theory

    I.INTRODUCTION

    Titanium dioxide(TiO2)has been widely used due to its versatile physical and chemical properties,such as in photoactive devices and biomaterials,high efficiency solar cells,super-hard materials,pigment,catalyst support,and photocatalyst[1-4].TiO2crystallizes in several di ff erent forms:the rutile(space group P42/mn), anatase(I4/amd),brookite(Pbca),columbite(Pbcn), baddeleyite(P21/c),and cotunnite(Pnma)structures. The phase transitions of TiO2under pressure are of particular interest in Earth science,as these phases are an accessible analog of minerals in the Earth’s mantle. Its physical properties have been vigorously pursued [5-15].Montanari and Harrison[5]reported the infl uence of gradient corrections in density functional calculations,and they compared the local-density approximation(LDA)and two the generalized gradient approximation(GGA)results,including equilibrium structure, bulk modulus,and Γ-point phonons of bulk rutile TiO2. Recently,Mei et al.investigated the lattice dynamics and thermodynamics of six TiO2polymorphs[16]. Mikami et al.studied the atomic and electronic structures of anatase and rutile phases of TiO2[17].The pressure-induced phase transitions of TiO2were investigated by Wu et al.[7].The calculated electronic properties show that all fi ve polymorphs of TiO2they considered are semiconductors,and the lower conduction band is dominated by the 3d states of Ti that are sensitive to the coordination number of titanium.

    Rutile TiO2is the most common natural form of TiO2,and it is expected to undergo a sequence of phase transformations with increasing pressure.Rutile derives its name from the Latin rutilus,red,in reference to the deep red color observed in some specimens viewed by transmitted light.Rutile has the highest refractive indices of any known mineral and exhibits high dispersion.Its very high refractive index makes it an ideal white pigment and opacif i er.Furthermore,rutile is a strong absorber of ultraviolet(UV)light,and is therefore used in solar cell technology.The rutile TiO2has been extensively studied from different aspects[5, 17-19].

    The thermal equation of state(EOS)is a measurement of relationship between pressure,volume and temperature(P-V-T),which is a fundamental equation in many areas of basic and applied condensed-matter research.The pressure responses of the structural parameters and the phase transition induced by hydrostatic pressure in materials have been investigated extensively in the last decade[20],except the investigations on high pressure and high temperature.And we provide a systematic study of the thermal EOS of rutile TiO2.In this work,we focus on the structure instability and thermodynamics of rutile TiO2under high pressure and high temperature through plane-wave pseudopotential density functional theory(DFT)method.The high pressure structures,elastic constants,phonon dispersions and thermodynamics of TiO2are presented and analyzed.

    II.THEORETICAL METHOD

    The high pressure structures,elastic constants and lattice dynamics calculations are implemented through the Cambridge Serial Total Energy Package(CASTEP) scheme[21].The exchange and correlation potentials were treated within GGA of Perdew-Burke-Ernzerhof (PBE)[22].The calculations were conducted with 18×18×18 Γ-centered k meshs.The plane-wave energy cutof fwas 700 eV and the self-consistence convergence of the energy was set to 10-6eV/atom.For the elastic constants,they are calculated as the second derivatives of the internal energy with respect to the strain tensor. These elastic constants can be determined by computing the stress generated by applying a small strain to an optimized unit cell.In practice,the maximum strain amplitude is set from-0.003 to 0.003 and all forces on atoms are converged to less than 0.006 eV/?A.For the phonon dispersion calculations,the dynamical matrices are computed at 66 wave(q)vectors in the irreducible wedge of Brillouin zone.

    To obtain thermodynamic properties,we calculate the Helmholtz free energy F as follows

    where Estatic(V)is the energy of a static lattice at zero temperature T and volume V,Felec(V,T)is the thermal free energy arising from electronic excitations, and Fphon(V,T)is the phonon contribution.Both Estatic(V)and Felec(V,T)can be obtained from static fi rst-principles calculations directly.The phonon vibrational contribution Fphon(V,T)has been calculated in the quasi-harmonic approximation(QHA)

    where ?=(2π)3/V is the volume of the Brillouin zone, kBis the Boltzmann constant,~is the Plank constant divided by 2π,and ωqsis the phonon frequencies.

    III.RESULTS AND DISCUSSION

    A.Static structural properties

    For rutile TiO2,there are three independent structural parameters,i.e.the lattice paramerters a,c,and the cell-internal dimensionless parameter u,which denotes the position of the second atom along the c-axis. The calculated equilibrium lattice parameters are as follows:a=4.653?A,c=2.975?A,and u=0.305.Our results agree with the available experimental data[23,24]and other theoretical results[7,9,16,25,26].In comparison with the experimental data[23](a=4.587?A,c=2.954?A, and u=0.305),the present lattice parameters are overestimated slightly(about 1%).

    FIG.1 Static lattice parameters of TiO2under high pressure,together with the experimental data.

    The static equation of state of rutile TiO2are obtained by fitting the energy-volume(E-V)data to the fourth-order f i nite strain EOS[27].In Fig.1,we present the dependence of calculated normalized lattice parameters,including V/V0,a/a0,and c/c0(V0,a0,and c0are the zero pressure equilibrium lattice parameters)on pressure at zero temperature.It is seen that as pressure increases,the relative lattice parameters decrease linearly.Our results agree with the experimental data below 15 GPa[28-30].From Fig.1,we can also f i nd that the a-axis is much easier to compress than c-axis, which may be due to metal-metal repulsion parallel to c across the sharing doctahedral edge.As a consequence, the axial ratio c/a becomes larger under compression. For the internal parameter u,it shows a slight dependence on the pressure.By fitting the u-P data to a second-order polynomial,we have the following relations u=0.305-1.164×10-4P+1.867×10-6P2.As the pressure increases to 25 GPa,u only decreases 0.57%.

    We calculate the phonon dispersions of rutile TiO2at different pressures.As there are 6 atoms in a primitive cell,there should be 15 optical modes and 3 acoustic modes.Figure 2 shows the obtained high pressure phonon dispersion curves of rutile TiO2along several high symmetry directions in the Brillouin zone.From Fig.2,one can see that the phonon frequencies at zero pressure agree with the inelastic neutron scattering data [31].As pressure increases,most of the phonon frequencies increase,except the values around Γ point. As pressure increases,the softening of dispersions becomes more and more obvious.Under ultra compression(~20 GPa),the frequencies around Γ point soften to imaginary frequencies,indicating a structural instability.Actually,under this pressure,the rutile phase is mechanically instable.

    B.Elastic properties

    Elastic moduli are the material constants that connect stress with strain and are therefore crucial to engineer applications.They also determine the long wavelength vibrational modes,or sound waves,in a solid. We calculate the elastic constants of TiO2under highpressure(Table I).The theoretical polycrystalline elastic modulus can be determined from the independent elastic constants.

    FIG.2 The phonon dispersion curves of rutile TiO2under different pressure of 0,5,10,15,20,and 25 GPa,together with the experimental data at zero pressure(solid spheres)[31].

    TABLEI Calculated high pressure elastic constants Cij(in GPa).The CS=C11-C12-2P(in GPa)is the mechanical instability criterion.

    TABLE II Aggregate elastic moduli B,G,Y,the Poisson’s ratio σ,and sound velocities VP,VS,and VBof rutile TiO2.

    The average isotropic shear modulus G and bulk modulus B of polycrystalline(Table II)can be calculated according to Voigt-Reuss-Hill approximations [32].Then the isotropically averaged aggregate velocities can be obtained as follows

    where ρ is the density,VP,VS,and VBare the compressional,shear,and bulk sound velocities,respectively (Table II).The VPand VBincrease monotonously with the increasing pressure.But for the VS,the abnormal variation locates between 15 and 20 GPa,which results in the variation of shear modulus.

    The polycrystalline Young’s modulus Y and the Pois-son’s ratio σ are then calculated from B and Gas follows

    FIG.3 The normalized volume V/V0(V0is the volume at 300 K)versus temperature at 0 GPa,together with the previous theoretical results[20]and experimental data[35,36].

    From Tables I and II,we can f i nd all the elastic constants Cijand bulk modules B increase as pressure rises.But the shear modulus G and Young’s modulus Y decrease with the increasing pressure up to 15 GPa. When the pressure is larger than 20 GPa,the two moduli increase with the increasing pressure.The calculated σ is also shown in Table II.At zero pressure,σ is 3.36. As the pressure rise,σ increases to 0.41 at 15 GPa.The value at 20 GPa nearly equals to that at 15 GPa.But when the pressure increases to 25 GPa,σ is larger than the liquid value of 0.5,which is physically implausible since TiO2is a solid.

    Under isotropic pressure,the mechanical stability is judged by the following condition[33]

    Though these criterions are suited for rutile TiO2in the whole applied pressure range,the CS(C11-C12-2P), can be divided into two opposite variations with the pressure rising.At the pressure range from 0 GPa to 15 GPa,the CSdecreases monotonously with the increasing pressure.If we extrapolate the CSto high pressure,when P=17.7 GPa,CS=0,indicating that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.From the high pressure elastic constants,we can judge that the phase transition of TiO2from rutile structure to the other structure should occur around 17.7 GPa.Actually,at room temperature, according to the X-ray experiments,rutile is stable up to 12 GPa,where a direct transition to baddeleyite-type phase takes place[34].

    FIG.4 The normalized volume V/V0versus pressure at different temperatures,together with the experimental data [28-30].

    C.Thermodynamics

    Then we focus on the thermodynamic properties of rutile TiO2under high pressure and temperature. The accurate thermodynamic properties as functions of pressure and temperature can directly provide the valuable information for understanding the phase diagram and dynamical response of materials under extreme conditions.The inclusion of temperature makes P-V-T EOS more important than P-V EOS.The normalized volume V/V0(V0is the volume at 300 K)at zero pressure is shown in Fig.3.The volume increases with the increasing temperature.Considering the temperature contribution to the free energy at 300 K,it increases the equilibrium volume by 0.27%with respect to the static value.When the temperature reaches up to 2000 K(near the melting point),the volume expands 6%compared with the static value.The present results agree well with the previous theoretical results[20]and experimental data[35,36](see Fig.3).The volumes of rutile TiO2under high pressure and high temperature are shown in Fig.4.One notes the 300 K isotherm is almost the same as the one at 0 K(shown in Fig.1)and this is due to the small free energy contribution from the lattice vibrations at 300 K.Our isotherms agree well with the experimental data[28-30]with increasing pressure.When the temperature goes from 300 K to 1800 K,the contribution of vibrational free energy becomes larger and larger.

    The volume thermal expansion coefficient is determined from the equilibrium volume variation with respect to the temperature at each pressure.

    FIG.5 Thermal expansion coefficient αVversus temperature at 0 GPa,together with the previous theoretical results [20],and experimental data[35,36].

    FIG.6 Thermal expansion coefficient αVversus pressure at different temperatures.

    FIG.7 Entropy S versus temperature at 0 GPa,together with the theoretical results[16]and experimental data[37].

    FIG.8 Entropy S versus pressure at different temperatures.

    In Fig.5,we plot the thermal expansion coefficient as a function of temperature at 0 GPa.At zero pressure, the predicted temperature dependence of the thermal expansion coefficient appears to be signif i cantly based on the QHA.Our results agree with the previous theoretical results[20]and experimental data[35,36].At 300 K,the calculated αVis 1.88×10-5K-1.At high temperature(above 1400 K),our results seem much better than that from Francisco et al.[20].The thermal expansion coefficients as functions of pressure at different temperatures are shown in Fig.6.As pressure rises, the thermal expansion is suppressed quickly.That is to say the pressure can suppress part of anharmonicity by strengthening the bondings among atoms and lowering the vibration of atoms.Thus under pressure,the validity of quasi-harmonic approximation can be extended to much higher temperature.

    The investigation on the entropy S of crystals is an old topic of condensed matter physics,which can provide essential insight into the vibrational properties.As shown in Fig.7,the calculated S of rutile TiO2are in general agreement with the theoretical results[16]and the experimental data[37].The entropies are somewhat underestimated.However,the largest difference between our results and the experimental data is less than 7%.Figure 8 shows the predicted entropy S under pressure.The entropies decrease slightly with the increasing pressure.

    IV.CONCLUSION

    In summary,we employe f i rst-principles calculations to investigate the structural instability and thermodynamics of rutile TiO2.The high pressure structural parameters of TiO2are well reproduced.The calculated phonon dispersion curves agree with experiments at zero pressure.Under compression,we capture a large softening around Γ point.When the pressure is raised to 20 GPa,the frequencies around Γ point in transverse acoustical branches become imaginary,indicating the structural instability.From the high pressure elastic constants obtained,we f i nd that the rutile TiO2is unstable when the applied pressure is larger than 17.7 GPa.Within the quasi-harmonic approximation,the thermal equation of state,thermal expansion coefficient,bulk modulus and entropy are well reproduced.The thermal properties conf i rm the available experimental data and are extended to a wider pres-sure and temperature range.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.11247316, No.11247317,and No.11304408),the Science and Technology Research Project of Chongqing Education Committee(No.KJ120613 and No.KJ130607),and the Natural Science Foundation of Chongqing City (No.cstc2012jjA50019 and No.cstc2013jcyjA0733).

    [1]V.Swamy,B.C.Muddle,and Q.Dai,Appl.Phys.Lett. 89,163118(2006).

    [2]R.Asahi,T.Morikawa,T.Ohwaki,K.Aoki,and Y. Taga,Science 293,269(2001).

    [3]Y.Gai,J.Li,S.S.Li,J.B.Xia,and S.H.Wei,Phys. Rev.Lett.102,036402(2009).

    [4]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [5]B.Montanari and N.M.Harrison,Chem.Phys.Lett. 364,528(2002).

    [6]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [7]X.Wu,E.Holbig,and G.Steinle-Neumann,J.Phys.: Condens.Matter 22,295501(2010).

    [8]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [9]B.Montanari and N.M.Harrison,J.Phys.:Condens. Matter 16,273(2004).

    [10]M.Giarola,A.Sanson,F.Monti,and G.Mariotto, Phys.Rev.B 81,174305(2010).

    [11]E.Shojaee,M.Abbasnejad,M.Saeedian,and M.R. Mohammadizadeh,Phys.Rev.B 83,174302(2011).

    [12]M.Mattesini,J.S.D.Almeida,L.Dubrovinsky,N. Dubrovinskaia,B.Johansson,and R.Ahuja,Phys.Rev. B 70,115101(2004).

    [13]H.Sato,S.Endo,M.Sugiyama,T.Kikegawa,and O. Shimomura,Science 251,786(1991).

    [14]T.Mashimo,K.Nagayama,and A.Sawaoka,J.Appl. Phys.54,5043(1983).

    [15]R.Miloua,Z.Kebbab,N.Benramdane,M.Khadraoui, and F.Chiker,Comp.Mater.Sci.50,2142(2011).

    [16]Z.G.Mei,Y.Wang,S.L.Shang,and Z.K.Liu,Inorg. Chem.50,6996(2011).

    [17]M.Mikami,S.Nakamura,O.Kitao,H.Arakawa,and X.Gonze,Jpn.J.Appl.Phys.39,L847(2000).

    [18]R.Sikora,J.Phys.Chem.Solids 66,1069(2005).

    [19]P.D.Mitev,K.Hermansson,B.Montanari,and K. Refson,Phys.Rev.B 81,134303(2010).

    [20]E.Francisco,M.Bermejo,V.G.Baonza,L.Gerward, and J.M.Recio,Phys.Rev.B 67,064110(2003).

    [21]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J. Pickard,P.J.Hasnip,S.J.Clark,and M.C.Payne,J. Phys.:Condens.Matter 14,2717(2002).

    [22]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [23]J.K.Burdett,T.Hughbanks,G.J.Miller,J.W. Richardson,and J.V.Smith,J.Am.Chem.Soc.109, 3639(1987).

    [24]Y.Kudoh and H.Takeda,Physica B+C 139,333 (1986).

    [25]J.X.Yu,M.Fu,G.F.Ji,and X.R.Chen,Chin.Phys. B 18,0269(2009).

    [26]R.Shirley,M.Kraft,and O.R.Inderwildi,Phys.Rev. B 81,075111(2010).

    [27]F.Birch,J.Geophys.Res.91,4949(1986).

    [28]Y.Al-Khatatbeh,K.K.M.Lee,and B.Kiefer,Phys. Rev.B 79,134114(2009).

    [29]L.Gerward and J.S.Olsen,J.Appl.Crystallogr.30, 259(1997).

    [30]L.Ming,and M.H.Manghnani,J.Geophys.Res.84, 4777(1979).

    [31]J.G.Traylor,H.G.Smith,R.M.Nicklow,and M.K. Wilkinson,Phys.Rev.B 3,3457(1971).

    [32]R.Hill,Proc.Phys.Soc.London 65,350(1952).

    [33]G.V.Si′nko and N.A.Smirnov,J.Phys.:Condens. Matter 14,6989(2002).

    [34]J.S.Olsen,L.Gerward,and J.Z.Jiang,J.Phys.Chem. Solids 60,229(1999).

    [35]S.K.Saxena,N.Chatterjee,Y.Fei,and G.Shen,Thermodynamic Data on Oxides and Silicates:An Assessed Data Set Based on Thermochemistry and High-Pressure Phase Equilibrium,Berlin:Springer-Verlag,(1993).

    [36]Y.S.Touloukian,R.K.Kirby,R.E.Taylor,and T. Y.R.Lee,Thermophysical Properties of Matter,New York:IFI/Plenum,13,(1977).

    [37]M.W.Chase,NIST-JANAF Thermochemical Tables, Washington,DC:American Institute of Physics,2 (1998).

    ceived on August 15,2013;Accepted on November 11,2013)

    ?Author to whom correspondence should be addressed.E-mail:zhaoyizeng@126.com

    国产高潮美女av| 青春草视频在线免费观看| 久热久热在线精品观看| 91精品国产国语对白视频| 亚洲婷婷狠狠爱综合网| 欧美日韩国产mv在线观看视频 | 丰满少妇做爰视频| 我要看黄色一级片免费的| 免费观看的影片在线观看| 欧美日韩视频高清一区二区三区二| 日韩制服骚丝袜av| 免费av不卡在线播放| 久久毛片免费看一区二区三区| 亚洲欧美中文字幕日韩二区| 啦啦啦视频在线资源免费观看| av免费在线看不卡| 边亲边吃奶的免费视频| 亚洲色图av天堂| 麻豆成人av视频| 欧美丝袜亚洲另类| 国产高清国产精品国产三级 | 天天躁日日操中文字幕| 久久久久久久久大av| 中文字幕av成人在线电影| 赤兔流量卡办理| 涩涩av久久男人的天堂| 免费黄色在线免费观看| 久久青草综合色| 久久国产乱子免费精品| 久久国产精品大桥未久av | 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品一区三区| 日韩中字成人| 亚洲成人av在线免费| 国产欧美日韩精品一区二区| 国产乱来视频区| 有码 亚洲区| 日本午夜av视频| 99精国产麻豆久久婷婷| 男人添女人高潮全过程视频| 嘟嘟电影网在线观看| 国语对白做爰xxxⅹ性视频网站| 十分钟在线观看高清视频www | 99热这里只有是精品在线观看| 天天躁日日操中文字幕| 亚洲国产欧美人成| 最近最新中文字幕免费大全7| 久久精品久久久久久噜噜老黄| 黑丝袜美女国产一区| 亚洲av中文字字幕乱码综合| 人妻系列 视频| 久久国内精品自在自线图片| 大片免费播放器 马上看| 夫妻午夜视频| 日韩中文字幕视频在线看片 | 日韩欧美精品免费久久| 国产亚洲欧美精品永久| 街头女战士在线观看网站| 色综合色国产| 久久久精品免费免费高清| 性色av一级| 亚洲精品国产av成人精品| 午夜免费鲁丝| 亚洲av福利一区| 久久久久久久久大av| 国产爱豆传媒在线观看| 亚洲av二区三区四区| 国产在线男女| 插逼视频在线观看| 欧美一级a爱片免费观看看| 成人漫画全彩无遮挡| 国内少妇人妻偷人精品xxx网站| 国产一区有黄有色的免费视频| 最近2019中文字幕mv第一页| 免费观看的影片在线观看| 在线观看免费高清a一片| 18禁在线播放成人免费| 大码成人一级视频| 久久久成人免费电影| 哪个播放器可以免费观看大片| 99精国产麻豆久久婷婷| 蜜桃在线观看..| 97在线人人人人妻| 国产v大片淫在线免费观看| 国产人妻一区二区三区在| 一级毛片我不卡| a级毛片免费高清观看在线播放| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久亚洲| 插逼视频在线观看| 岛国毛片在线播放| 看免费成人av毛片| 国产精品国产av在线观看| 另类亚洲欧美激情| 欧美+日韩+精品| 不卡视频在线观看欧美| 欧美人与善性xxx| 国产白丝娇喘喷水9色精品| 久久国产精品大桥未久av | 久久久久久久大尺度免费视频| 国产v大片淫在线免费观看| 熟妇人妻不卡中文字幕| 特大巨黑吊av在线直播| 18禁动态无遮挡网站| 天堂俺去俺来也www色官网| 少妇人妻精品综合一区二区| 最近的中文字幕免费完整| 狂野欧美激情性bbbbbb| 91精品国产九色| 亚洲av不卡在线观看| 久久99热6这里只有精品| 亚洲欧美中文字幕日韩二区| 久久精品久久久久久久性| 欧美精品亚洲一区二区| 国产精品国产三级国产专区5o| 国产精品国产三级国产专区5o| 老司机影院成人| 国产av国产精品国产| 在线观看国产h片| 午夜激情久久久久久久| 亚洲精品乱久久久久久| 国产精品一及| 亚洲欧美成人综合另类久久久| 黄片wwwwww| 午夜日本视频在线| 亚洲av国产av综合av卡| 国产午夜精品久久久久久一区二区三区| 色网站视频免费| 欧美人与善性xxx| 欧美老熟妇乱子伦牲交| 国产成人一区二区在线| 女性生殖器流出的白浆| 最近中文字幕2019免费版| 国产探花极品一区二区| 99视频精品全部免费 在线| 男女无遮挡免费网站观看| 少妇精品久久久久久久| 黄色欧美视频在线观看| 高清在线视频一区二区三区| 精品人妻一区二区三区麻豆| 国产 一区 欧美 日韩| 新久久久久国产一级毛片| 极品少妇高潮喷水抽搐| 精品亚洲乱码少妇综合久久| 国产深夜福利视频在线观看| 国产色婷婷99| 精品人妻一区二区三区麻豆| 免费看日本二区| 亚洲欧美日韩另类电影网站 | 日韩成人伦理影院| 亚洲va在线va天堂va国产| 欧美日韩在线观看h| 一级毛片aaaaaa免费看小| 亚洲,一卡二卡三卡| 2022亚洲国产成人精品| 亚洲人成网站高清观看| 久久精品久久精品一区二区三区| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 人人妻人人添人人爽欧美一区卜 | 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 亚洲怡红院男人天堂| 黄片wwwwww| 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 日韩不卡一区二区三区视频在线| 成人国产麻豆网| 日韩精品有码人妻一区| 在线观看一区二区三区| 草草在线视频免费看| 亚洲欧洲国产日韩| 日日撸夜夜添| 国产成人91sexporn| 97在线视频观看| 色哟哟·www| 免费久久久久久久精品成人欧美视频 | 看非洲黑人一级黄片| 99热国产这里只有精品6| 亚洲成人中文字幕在线播放| av国产免费在线观看| 3wmmmm亚洲av在线观看| 久久久成人免费电影| 亚洲精品乱久久久久久| 18禁在线播放成人免费| a 毛片基地| 国产一区有黄有色的免费视频| 女人久久www免费人成看片| 日韩,欧美,国产一区二区三区| 人妻一区二区av| 人人妻人人爽人人添夜夜欢视频 | 欧美少妇被猛烈插入视频| 国产男人的电影天堂91| 久久久久视频综合| 午夜激情久久久久久久| 国产精品爽爽va在线观看网站| 91久久精品国产一区二区三区| 免费大片18禁| 日日摸夜夜添夜夜爱| 最近手机中文字幕大全| 少妇人妻精品综合一区二区| 国产中年淑女户外野战色| 香蕉精品网在线| 老师上课跳d突然被开到最大视频| 18+在线观看网站| 伊人久久精品亚洲午夜| 不卡视频在线观看欧美| 国产毛片在线视频| 国产有黄有色有爽视频| 国内揄拍国产精品人妻在线| 丰满乱子伦码专区| 亚洲精品久久午夜乱码| 婷婷色综合www| 熟女人妻精品中文字幕| 青春草国产在线视频| 丝瓜视频免费看黄片| 老女人水多毛片| a级一级毛片免费在线观看| 99国产精品免费福利视频| 亚洲第一区二区三区不卡| 亚洲精品自拍成人| 亚洲精品,欧美精品| 国内揄拍国产精品人妻在线| 爱豆传媒免费全集在线观看| 成人漫画全彩无遮挡| 亚洲欧美日韩卡通动漫| 午夜福利影视在线免费观看| 国产老妇伦熟女老妇高清| 99热全是精品| 亚洲精品456在线播放app| 久久精品国产亚洲av天美| 久久久久久久亚洲中文字幕| 国产欧美日韩精品一区二区| 亚洲欧美成人精品一区二区| 日韩国内少妇激情av| 99精国产麻豆久久婷婷| 久久精品人妻少妇| 日本色播在线视频| 日日撸夜夜添| 91久久精品国产一区二区三区| av国产精品久久久久影院| 精品久久久精品久久久| 下体分泌物呈黄色| 国产无遮挡羞羞视频在线观看| 亚洲图色成人| 久久婷婷青草| 日韩,欧美,国产一区二区三区| 国产有黄有色有爽视频| 国产精品国产三级专区第一集| 日本色播在线视频| 97超视频在线观看视频| 97在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 日韩亚洲欧美综合| 三级国产精品片| 精品亚洲成a人片在线观看 | 直男gayav资源| 在线观看一区二区三区激情| 欧美日本视频| 九九在线视频观看精品| 91午夜精品亚洲一区二区三区| 婷婷色综合大香蕉| av又黄又爽大尺度在线免费看| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 少妇 在线观看| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看 | av在线老鸭窝| 人人妻人人爽人人添夜夜欢视频 | 久久精品夜色国产| 亚洲不卡免费看| 人妻 亚洲 视频| 女性生殖器流出的白浆| av网站免费在线观看视频| 国产精品福利在线免费观看| 亚洲自偷自拍三级| 天美传媒精品一区二区| 在现免费观看毛片| 老师上课跳d突然被开到最大视频| 色综合色国产| 男女边摸边吃奶| 午夜激情久久久久久久| 国产精品久久久久久av不卡| 在线免费观看不下载黄p国产| 一级爰片在线观看| 免费大片黄手机在线观看| 国产探花极品一区二区| 在线播放无遮挡| 赤兔流量卡办理| 男女无遮挡免费网站观看| 99热这里只有是精品50| 久久婷婷青草| av在线老鸭窝| 99热这里只有精品一区| 干丝袜人妻中文字幕| 国产中年淑女户外野战色| 亚洲av免费高清在线观看| 亚洲欧美清纯卡通| 亚洲欧美清纯卡通| 国内精品宾馆在线| 毛片女人毛片| 水蜜桃什么品种好| 天堂俺去俺来也www色官网| 久久人人爽人人片av| 最近的中文字幕免费完整| 久久久久精品性色| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡免费网站照片| 欧美3d第一页| 国产又色又爽无遮挡免| 身体一侧抽搐| 亚洲一级一片aⅴ在线观看| 久久青草综合色| 狂野欧美激情性bbbbbb| 亚洲三级黄色毛片| 你懂的网址亚洲精品在线观看| 日本色播在线视频| 人人妻人人添人人爽欧美一区卜 | 亚洲av不卡在线观看| 日韩电影二区| 大陆偷拍与自拍| 成人黄色视频免费在线看| 美女xxoo啪啪120秒动态图| 国产美女午夜福利| 乱码一卡2卡4卡精品| 亚洲成色77777| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 少妇的逼水好多| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 内地一区二区视频在线| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 校园人妻丝袜中文字幕| 国产69精品久久久久777片| 久久久精品免费免费高清| 日韩欧美 国产精品| 日本猛色少妇xxxxx猛交久久| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 亚洲电影在线观看av| 日日撸夜夜添| 久久午夜福利片| 亚洲图色成人| av天堂中文字幕网| 菩萨蛮人人尽说江南好唐韦庄| 卡戴珊不雅视频在线播放| 亚洲国产毛片av蜜桃av| 欧美区成人在线视频| 久久久成人免费电影| 亚洲综合精品二区| 另类亚洲欧美激情| 汤姆久久久久久久影院中文字幕| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品专区欧美| 成人漫画全彩无遮挡| 国产69精品久久久久777片| 国产毛片在线视频| 国产精品不卡视频一区二区| 大陆偷拍与自拍| 这个男人来自地球电影免费观看 | 欧美成人a在线观看| 精品99又大又爽又粗少妇毛片| 蜜桃在线观看..| 亚洲精品乱码久久久久久按摩| 在线观看三级黄色| 久久国内精品自在自线图片| 免费黄频网站在线观看国产| 国产精品久久久久久久电影| 一级片'在线观看视频| 熟女人妻精品中文字幕| 国产又色又爽无遮挡免| 男女边摸边吃奶| 亚洲国产精品一区三区| 欧美丝袜亚洲另类| 精品少妇黑人巨大在线播放| 日韩伦理黄色片| 国精品久久久久久国模美| 成年av动漫网址| 久久国产精品大桥未久av | 国产真实伦视频高清在线观看| 免费观看无遮挡的男女| 亚洲国产毛片av蜜桃av| 国产黄色免费在线视频| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 22中文网久久字幕| 嫩草影院新地址| 老师上课跳d突然被开到最大视频| 欧美精品人与动牲交sv欧美| 欧美一区二区亚洲| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 尾随美女入室| 亚洲自偷自拍三级| 老熟女久久久| 亚洲精品乱码久久久久久按摩| 国产高清有码在线观看视频| 狠狠精品人妻久久久久久综合| 国产av精品麻豆| a级毛片免费高清观看在线播放| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 国产综合精华液| 高清毛片免费看| 成人毛片60女人毛片免费| 国产成人免费无遮挡视频| 中文字幕久久专区| 国内揄拍国产精品人妻在线| 男人爽女人下面视频在线观看| 99国产精品免费福利视频| 国产精品三级大全| 国内精品宾馆在线| 成人免费观看视频高清| 亚洲欧洲日产国产| 欧美高清性xxxxhd video| 亚洲精品日韩在线中文字幕| 18禁在线无遮挡免费观看视频| 日韩视频在线欧美| 草草在线视频免费看| 丝袜脚勾引网站| 蜜桃在线观看..| 日本黄色日本黄色录像| 大码成人一级视频| 国产久久久一区二区三区| 久久99精品国语久久久| 99九九线精品视频在线观看视频| 97热精品久久久久久| 亚洲欧美日韩东京热| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 一区在线观看完整版| 国产精品99久久99久久久不卡 | 日本与韩国留学比较| 午夜激情福利司机影院| 欧美精品人与动牲交sv欧美| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 啦啦啦在线观看免费高清www| 欧美极品一区二区三区四区| 2022亚洲国产成人精品| 精品一区二区三区视频在线| 老司机影院毛片| 综合色丁香网| 秋霞伦理黄片| 亚洲精品色激情综合| 伊人久久国产一区二区| 日本午夜av视频| 超碰97精品在线观看| 亚洲av国产av综合av卡| 黄色视频在线播放观看不卡| 制服丝袜香蕉在线| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 中国国产av一级| av专区在线播放| 一级片'在线观看视频| www.色视频.com| 一区二区三区免费毛片| 国产成人精品福利久久| 天美传媒精品一区二区| 尾随美女入室| 狂野欧美激情性xxxx在线观看| 秋霞伦理黄片| 国产男女内射视频| 老女人水多毛片| 最新中文字幕久久久久| 欧美 日韩 精品 国产| 日本av免费视频播放| 97精品久久久久久久久久精品| 成人毛片60女人毛片免费| 欧美日韩国产mv在线观看视频 | 欧美zozozo另类| 国产欧美亚洲国产| 国产精品精品国产色婷婷| 欧美高清成人免费视频www| 国产男女内射视频| 成人一区二区视频在线观看| 免费久久久久久久精品成人欧美视频 | 免费久久久久久久精品成人欧美视频 | 18禁裸乳无遮挡免费网站照片| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 亚洲自偷自拍三级| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 嘟嘟电影网在线观看| 在线观看免费日韩欧美大片 | 五月伊人婷婷丁香| 超碰97精品在线观看| 日本与韩国留学比较| 成年免费大片在线观看| 国产高清有码在线观看视频| 丝袜喷水一区| av国产免费在线观看| 青春草国产在线视频| av.在线天堂| av国产免费在线观看| av免费在线看不卡| 日韩一区二区三区影片| 22中文网久久字幕| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 成人黄色视频免费在线看| 99久久精品国产国产毛片| 女人久久www免费人成看片| 日韩强制内射视频| 在线观看一区二区三区激情| 中文欧美无线码| 美女福利国产在线 | 亚洲美女搞黄在线观看| 国产精品久久久久久久电影| 少妇裸体淫交视频免费看高清| 久久久a久久爽久久v久久| 少妇被粗大猛烈的视频| 国产美女午夜福利| 亚洲成人av在线免费| 偷拍熟女少妇极品色| 国产成人a区在线观看| av国产免费在线观看| 麻豆乱淫一区二区| 成年美女黄网站色视频大全免费 | 久久国产精品男人的天堂亚洲 | 91久久精品电影网| 亚洲色图综合在线观看| 精品亚洲成国产av| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 国产黄片美女视频| 成人漫画全彩无遮挡| 日韩视频在线欧美| 国产伦精品一区二区三区视频9| 日韩一区二区三区影片| 亚洲av日韩在线播放| 六月丁香七月| 99re6热这里在线精品视频| 一边亲一边摸免费视频| 尤物成人国产欧美一区二区三区| 日本av免费视频播放| 欧美精品亚洲一区二区| 国产av精品麻豆| 女人十人毛片免费观看3o分钟| 中文资源天堂在线| 18禁裸乳无遮挡动漫免费视频| 午夜精品国产一区二区电影| 亚洲av欧美aⅴ国产| 免费观看性生交大片5| 国产乱人偷精品视频| freevideosex欧美| 国产黄色视频一区二区在线观看| 肉色欧美久久久久久久蜜桃| 性色avwww在线观看| 亚洲av二区三区四区| 国产av国产精品国产| 人人妻人人看人人澡| 精品久久久久久久久av| 国产成人a区在线观看| 国产精品一及| 国产在线一区二区三区精| 婷婷色综合大香蕉| 国产精品伦人一区二区| 欧美亚洲 丝袜 人妻 在线| 国产 精品1| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| av福利片在线观看| 六月丁香七月| 亚洲av二区三区四区| 国产精品久久久久久av不卡| 少妇高潮的动态图| 国产高清有码在线观看视频| 久久精品国产亚洲av涩爱| 免费大片18禁| 人妻一区二区av| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 一级毛片久久久久久久久女| 欧美人与善性xxx| av在线播放精品| 色综合色国产| 国产成人免费无遮挡视频| 九草在线视频观看| 91精品伊人久久大香线蕉| 一个人看的www免费观看视频| 嫩草影院入口| 99精国产麻豆久久婷婷| 亚洲成人手机| 亚洲成人av在线免费| 最近手机中文字幕大全| 制服丝袜香蕉在线| 亚洲欧美中文字幕日韩二区| 国产精品国产三级专区第一集| 乱系列少妇在线播放| 边亲边吃奶的免费视频| av国产久精品久网站免费入址| 十八禁网站网址无遮挡 | 成人影院久久| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 成人二区视频| 高清午夜精品一区二区三区| 青春草亚洲视频在线观看| 国产av一区二区精品久久 | 午夜福利在线观看免费完整高清在| 中国国产av一级| 丝袜喷水一区|