• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetic Implication from Temperature effect on Hydrogen Evolution Reaction at Ag Electrode

    2014-07-19 11:17:08JingKangChuhongLinYaoYaoYanxiaChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Jing Kang,Chu-hong Lin,Yao Yao,Yan-xia Chen

    Hefei National Laboratory for Physical Sciences at Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Kinetic Implication from Temperature effect on Hydrogen Evolution Reaction at Ag Electrode

    Jing Kang,Chu-hong Lin,Yao Yao,Yan-xia Chen?

    Hefei National Laboratory for Physical Sciences at Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Hydrogen evolution reaction(HER)at polycrystalline silver electrode in 0.1 mol/L HClO4solution is investigated by cyclic voltammetry in the temperature range of 278-333 K.We found that at electrode potential ?<PZC(potential of zero charge),the apparent activation energy Ea,appdecreases with ?,while pre-exponential factor A remains nearly unchanged, which conforms well the prediction from Butler-Volmer equation.In contrast,with ? negative shifts from the onset potential for HER to the potential of zero charge(PZC≈-0.4 V), both Ea,appand A for HER increase(e.g.,Ea,appincreases from 24 kJ/mol to 32 kJ/mol). The increase in Ea,appand A with negative shift in ? from-0.25 V to PZC is explained by the increases of both internal energy change and entropy change from reactants to the transition states,which is correlated with the change in the hydrogen bond network during HER.The positive entropy effects overcompensate the adverse effect from the increase in the activation energy,which leads to a net increase in HER current with the activation energy negative shift from the onset potential of HER to PZC.It is pointed out that entropy change may contribute greatly to the kinetics for electrode reaction which involves the transfer of electron and proton,such as HER.

    Hydrogen evolution reaction,Ag electrode,Temperature effect,Activation energy,Pre-exponential factor,Internal energy,Entropy change

    I.INTRODUCTION

    Hydrogen evolution reaction(HER)is a typical model reaction for understanding the principle of electrocatalysis due to the simplicity of its reaction mechanism[1]. The overall reaction for HER in acidic electrolyte is:

    where H+(aq)denotes the hydrated proton,which may be in the form such as H9O4+,H5O2+,or H3O+[2] Depending on the nature of the electrocatalysts,HER can follow two different paths,the Volmer-Tafel or the Volmer-Heyrovsky mechanisms[3],and in both pathways the f i rst step is believed to be the Volmer reaction, i.e.,the discharge of H+,

    It may be followed by Heyrovsky reaction,i.e.,an electrochemical desorption step,

    Or through the Tafel reaction,i.e.,the combination of two adsorbed H atoms and the subsequent desorption of H2,

    The effect of catalyst structure on the HER activity has been extensively studied in the past years,a volcano plot between the rate for HER and the M-H binding energy(EM-H)is well accepted[4,5].From systematic theoretical studies,Norskov et al.suggested that the volcano plot for HER may be better expressed as the rate for HER versus the Gibbs free energy for the H adsorption(GH)at different metal substrates[6], and the best catalysts for HER keep the Gibbs free energy change of all the elementary steps in HER close to zero.Calculations on the activation energy(?6=Gact) for the rate determining step(rds)for HER at various metal electrodes have also been carried out[7,13-15]. A surprising feature is that the calculated?6=Gactis remarkably higher than the experimentally measured activation energy,e.g.,from DFT calculation.Norskov et al.found that at Pt(111),?6=Gactfor HER was ca. 0.85 eV[8],which was much higher than the apparent activation energy(Ea,app)of ca.0.2 eV deduced from temperature-dependent exchange current density reported by Markovic et al.[9].Chen et al.found?6=Gactfor HER was ca.0.55 eV at Pt(111),whichwas in the middle of the value reported by Norskov and Markovic[10].Schmickler et al.reported that at Cu(111),Ag(111),and Au(111)electrodes,?6=Gactwas about 0.75 eV[11],while the experimentally measured Ea,appfor HER at Ag(111)from the same group was just in the range from 0.05 eV to 0.25 eV[12].From our recent measurement of temperature effect on HER at quasi-Au(111)electrode,the apparent activation energy is also estimated to be ca.0.2 eV[13].

    In theoretical studies,the pre-expoential factor A is very difficult to be calculated,so usually only the activation barrier is used to discuss the activity toward HER [2,11,14-16].Considering the fact that the reactants such as proton and water are located in the hydrogenbonded network,whose structure and configuration are under dynamic changes during HER[17-19],we expect that the entropy change(pre-exponential factor in the Arrhenius equation)may also play a very important role in HER rate.In order to figure out whether such effects are important for HER or not,we have carried out systematic studies of the temperature effect on HER at Pt(111)[20],Ag,Cd,and GC electrodes[21],the parameters,such as apparent activation energy Ea,appand A as well as their potential dependence have been derived.In this work,we report the related data for HER at Ag electrode.

    II.EXPERIMENTS

    A polycrystalline Ag wire(99.99%,diameter:1 mm, denoted as pc-Ag here after)embedded in a glass holder is used as working electrode(WE).It is polished using Al2O3powder with size of 3,1,and 0.05μm,successively,and before switching to the polishing powder with lower diameter,it is flushed carefully with tape water.After that,it is dipped into 0.1 mol/L HNO3for ca. 10 s,and flushed carefully with Milli-Q water(18.2 M?, Milli-Q pure water system).Then,the electrode surface is covered by a water droplet and transferred to the electrochemical cell immediately.A conventional two compartment,three electrodes cell is used in the present study,which is similar to the conventional cell used for RDE system[22],except for an additional glass jacket that allows water circulating around the cell for controlling the cell temperature.An Ag|AgCl(with saturated KCl solution)electrode and an Ag wire are used as reference(RE)and counter electrode(CE),respectively. The potential of the Ag|AgCl(with saturated KCl solution)is-0.256 V vs.reversible hydrogen electrode (RHE)at 298 K.The RE is placed in the second compartment to avoid the contamination of the solution by the leakage of Cl-ions or by traces of dissolved Ag+and it is kept at room temperature(298 K).All potentials in the work are quoted against RHE at 298 K.

    FIG.1 Cyclic voltammogram of Ag electrode in N2saturated 0.1 mol/L HClO4,potential scan rate of 50 mV/s.

    The electrolyte solution is 0.1 mol/L HClO4,which is prepared using perchloric acid(70%,Sigma-Aldrich) and ultra-pure water.Before studying the temperature effect,electrode potential is cycled continuously in the potential region from-0.7 V to 0.9 V at a scan rate of 50 mV/s until clean and reproducible cyclic voltammograms(CVs)are obtained.Then,the electrode is washed carefully by ultra-pure water and immediately inserted into the cell filled with newly prepared solutions for HER measurements.When recording the i-E curves for HER,the electrode is rotated at a speed of 500 r/min in order to avoid the interference of H2bubbles on HER kinetics.The rotation of electrode is controlled by a modulated rotator(Hokuto Denko Ltd.). IR compensation has been carried out automatically by the CHI instrument based on positive feed-back principle.The uncompensated Ohmic resistance is measured by AC impedance.During all the measurements,the cell and the atmosphere above the cell are continuously purged with N2(99.999%,Nanjing Special gas,Corp.).

    III.RESULTS AND DISCUSSION

    A.Cyclic voltammetric characterization of Ag electrode and HER kinetics

    Figure 1 displays the cyclic voltammorgams(CV)of Ag electrode in 0.1 mol/L HClO4recorded at room temperature,the pair of redox peaks at ca.0.7 V is due to Ag++e?Ag,and the potential region from-0.1 V to 0.4 V is double layer charging potential regime.At potential negative of-0.15 V,HER occurs,its current density increases monotonically with negative shift in electrode potential.Such features of the CV are quite similar to that reported for Ag/acidic electrolyte system in Ref.[12].The electrochemical active surface area of Ag electrode is estimated to be ca.0.015 cm2(with a roughness factor of ca.2)from the ratio of its double layer capacitance to that of Ag(111),the latter is 40μF/cm2according to Ref.[23].In order to avoid the change of surface roughness of Ag electrode by cycling to higher potentials especially at elevated temperatures, we have only recorded CV up to 0.9 V at room temperature before the measurements for the i-E curves forHER at other temperatures.For the subsequent HER measurements by cyclic voltammetry,the upper potential limit is kept at 0.05 V.

    FIG.2 Polarization curves for HER at Ag electrode in N2saturated 0.1 mol/L HClO4at various constant temperatures,potential scan rate of 50 mV/s.

    FIG.3 Arrhenius plots for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4at various constant potentials,raw data from Fig.2.

    Figure 2 displays the polarization curves for HER in 0.1 mol/L HClO4at various temperatures from 278 K to 323 K.From Fig.2 it is seen that at the same temperature,the HER current increases exponentially toward negative potentials.At f i xed potential the currents display an obvious increase with temperature(the onset potential for HER also increases slightly e.g.,it shifts from-0.2 V at 278 K to ca.-0.15 V at 323 K).All these facts conf i rm that HER at Ag electrode is a fast process.Qualitatively,the temperature and potential dependent HER behavior at Ag electrode is very similar to our previous results on HER at Au electrode [13],except that the onset potential for HER at Ag is ca.0.1 V more negative than that at Au electrode in otherwise identical conditions.

    FIG.4 The plots of(a)apparent activation energies(Ea,app) and(b)lnA(pre-expotential factor)for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4as a function of reaction potential,data derived from curves given in Fig.2.

    FIG.5 Tafel plots for hydrogen evolution reactions at Ag electrode in N2saturated 0.1 mol/L HClO4at various constant temperatures,data derived from curves given in Fig.2.

    The Arrhenius plots for hydrogen evolution reactions at Ag electrode in 0.1 mol/L HClO4at various constant potentials are given in Fig.3,which displays roughly linear behavior and the lines upshift toward more negative potentials.Ea,appand A for HER on pc-Ag at different constant potentials are derived from the slope and the intercept at Y axis of the lines,which are plotted as a function of electrode potential in Fig.4.From Fig.4 it is seen that Ea,appincreases from 24 kJ/mol to 31.5 kJ/mol with electrode potential negative scan from-0.25 V to-0.4 V.And with further negative shift in electrode potential from-0.4 V to-0.55 V, Ea,appdecreases gradually to 28 kJ/mol.On the other hand,with negative potential shift from-0.25 V to -0.40 V,A also displays a monotonically increase,and it remains nearly unchanged at potentials from-0.4 V to-0.55 V.

    The Tafel plots for HER at Ag electrode in 0.1 mol/L HClO4at constant temperatures are displayed in Fig.5, from which the Tafel slopes b are found to be ca.180-200 mV/dec in the potential region from-0.2 V to -0.55 V.From the Tafel slope,the transfer coefficient β is found to be ca.0.3 according to Butler-Volmer equation β=RT/bF.Such numbers are very close to those found at Ag(111)[12],which is ca.0.34 to 0.4.It is found that the potential,where the maximum activation energy appears,is just close to the potential of zero charge(PZC)for pc-Ag[23].And the maximum Ea,appfor HER at Ag(111)and Ag(110)in 0.5 mol/L H2SO4also appears at Ea,appclose to the PZC’s of Ag(111)and Ag(110)[12,23,24].The similar potential-dependent behavior of Ea,appand A for HER found at pc-Ag and pc-Ag(111)in different labs as well as its well correlation with the PZCs indicate that such phenomenon should be a well reproducible behavior for such system.

    B.Kinetic implications from the temperature effects on HER

    The widely accepted mechanism for HER at Ag electrode in acidic electrolyte is that HER goes through Volmer-Heyrovsky pathway with adsorbed Hadatom as reaction intermediate,and the f i rst charge transfer step (Eq.(2))is the rate determining step(rds),which is f i rst order with respect to H+.The total current density for HER can be written as:

    where 2 is the number of electrons transferred for formation of one H2molecule,F is the Faraday constant,is the concentration of H+near the electrode surface. krds(E)is the rate constant for the Volmer reaction, which can be expressed as:

    where A(η)and Ea(η)are the pre-exponential factor and the activation energy for the Volmer reaction at overpotential η for HER.According to the transition state theory(TST),for elementary electrochemical reaction,the activation energy is just the Gibbs free energy change(denoted as?6=Gact)from reactants to the transition state at reaction potential of E.It can be expressed as

    For Volmer reaction,GRandare the Gibbs free energy of the hydrated proton in the reactant and transition state,the term βFη represents the contribution from potential induced change in the free energy of the electron.For HER at constant temperature and pressure,is the sum of the change in internal energy from reactants to the transition states?,the related pressure volume change Pand temperature-entropy change T?6=Sactterms,which can be expressed as:

    Since the reaction occurs at the electrode/electrolyte interface,the contribution of P?6=Vactmay be neglected, there is

    Obviously,both?6=U and?6=S are potential dependent.Substituting Eq.(9)into Eq.(6),and by proper rearrangement,we have

    where A0represents the part of pre-exponential factor which is potential independent.Since the Volmer reaction is the rds for HER at Ag electrode and it is the fi rst step during the sequence for HER,and assuming that all reaction sites are uniform,+βFη for Volmer reaction should be proportional to the Ea,appfor HER derived from the experiments.In analog,for the Volmer reaction should be proportional to the experimentally determined A for HER,which ref l ects the effects of solvent dynamics[25]. For the Volmer reaction,it is expected that the reactants,i.e.,proton-containing complex(may be H9O4+or H5O2+or H3O+)to be discharged are mainly located in the outer Helmholtz layer[14],while the transition state may be in a region somewhat closer to the electrode surface.During the discharge process,the hydrated proton has to move close to the electrode surface, gets discharged somewhere near the electrode surface, replaces the water molecules adsorbed at the surface and f i nally forms adsorbed Had.

    Since η is negative for HER,hence negative shift in electrode potential should lead to a decrease in the activation energy,i.e.,U6=-UR+βFη,this is opposite to what is observed for HER at Ag in the low overpotential region(e.g.,from-0.25 V to-0.4 V,Fig.4).Hence there must be an increase of the term of-URin this potential region,which overcompensates the decrease in activation energy induced by the increase in the potential energy of the electron.Since the binding energy for Ag-Hadis smaller than that for Ag-OH2[6,26],it is expected that a signif i cant part of activation energy has to be paid to get adsorbed water molecule detached from Ag surface,i.e.,to overcome the electrostatic interaction between water and the electrode surface as well as to break the hydrogen bond(HBs)of the adsorbed water molecule from its HBs network.

    Since-0.4 V is just the PZC of pc-Ag in such system [23],in the potential region from-0.25 V to-0.4 V,the electrode surface has been positively charged,and the water molecules at the surface orient with their O atoms pointing toward electrode surface,where the HBs are partly broken.On the other hand,at PZC the water molecules form ice-like structure with well organized HB network.When decreasing from-0.25 V to-0.4 V, the positive electric field across the interface gradually decreases,HBs between the water molecules within the fi rst layer close to the electrode surface become stronger. And since the electric field is not so strong,in order to replace the water molecule from the surface the energy paid to break the HBs is higher than that for overcoming the electrostatic interaction.As a result,-URincreases from-0.25 V to-0.4 V.Alternatively,this may also be understood that from-0.25 V to-0.4 V during the Volmer reaction the entropy change for HB network environment increases.

    On the other hand,compared to the reactant,the transition state is closer to the electrode surface and becomes restricted,the degree of freedom for the transition state is smaller than that for the reactants,hence-SRis negative.The increase of the preexponential factor for HER with negative shift of potential from-0.25 V to-0.4 V may be due to thatS| decreases in this low overpotential regime.With potential negative shift from-0.25 V to-0.4 V,the electric field across the interface decreases,hence the di ff erence between the structure of the transition state and that of the reactant becomes smaller.The decrease in|?6=S| leads to a signif i cant increase in A0.At molecular level,the increase of A with potential from -0.25 V to-0.4 V may be envisaged by the increase in the transformation dynamics from the reactants’confi guration to the transition state with decrease in the positive electric field across the interface.This e ff ect prevails the adverse e ff ect from potential induced increase in activation energy and leads to a net increase in HER current at Ag from-0.25 V to 0.4 V.

    At potentials more negative than the PZC of Ag,it is seen from Fig.4 that when the potential is negatively shifted from-0.4 V to-0.55 V,the Ea,appdecreases by ca.4 kJ/mol,from the Tafel plots given in Fig.5, it is found that the symmetric factor for the Volmer reaction is ca.0.3.Hence,the decrease in activation energy with electrode potential can be solely attributed to the term of βFη,while the contribution of the potential dependent change for the term U6=-URto the activation energy is negligible.Furthermore, we found that at E<PZC,the pre-exponential factor does not change with potential at all,this suggests that the term?6=S=S6=-SRdoes not change with potential much.Both the lacking of the change of?6=U and?6=S can be easily explained by the fact that at E<PZC, proton-containing complex(may be H9O4+or H5O2+or H3O+)[2]to be discharged orient with H end toward the electrode surface,the structure of the transition state is quite similar to that for the reactant.As similar to the outer-sphere electrode reaction,the term of potential induced change of electron energy of βFη is the key factor which controls potential-dependent change of HER kinetics in this potential region,because with the increase in the negative electric f i eld across the interface toward more negative potentials,the electrons can tunnel into the solution further away from the surface, in the solution side more reactants further away from electrode surface may take part in the reaction[27].It should be mentioned that compared to that for HER at Au or Cd electrode in acidic electrolyte,the Ea,appfor HER just displays a monotonically decrease toward negative potentials,due to that the potential for HER is always negative of PZC of Au(ca.0.35 V)[28]and Cd electrodes.This is in good agreement with previous observation that at metals with low catalytic activity for HER,usually metals with more positive PZC display higher HER activity than those with lower PZCs [29].

    It should be mentioned that Ea,appwe derived from this study as well as those obtained by Schmickler et al. at Ag(111)from temperature dependent activity measurements[12]are in the range of 20-30 kJ/mol,by taking the transfer coefficient of 0.5,the Ea,appat the equilibrium potential will be below 40 kJ/mol,which is smaller than?6=G deduced from the recent theoretical calculation[13].For example,Schmickler et al.reported that at single crystalline Ag electrode,?6=G is about 0.75 eV[11].On the other hand,from DFT calculation Norskov et al.have also found that at Pt(111),?6=G for HER is ca.0.85 eV[30],which is much higher than the experimentally observed value of ca.0.2 eV by Markovic et al.[9].Such discrepancies indicate that either the models or the method used for theoretical calculation may not be appropriate.We hope such comparison may help theoreticians to construct more reliable model and develop more appropriate method in order to understand the essence for reactions such as electrochemical HER microscopically.

    IV.CONCLUSION

    Hydrogen evolution reaction at polycrystalline silver electrode in 0.1 mol/L HClO4solution is investigated by cyclic voltammetry in the temperature range of 278-333 K.A clear increase in HER current with reaction overpotential and temperature is observed. The apparent activation energy Ea,appincreases from 24 kJ/mol to 32 kJ/mol with electrode potential negative scan from-0.25 V to-0.4 V.And with further negative shift in electrode potential from-0.4 V to-0.55 V,Ea,appdecreases gradually to 28 kJ/mol. On the other hand,with negative potential shift from -0.25 V to-0.40 V the pre-exponential factor A also displays a monotonically increase,and it remains nearly unchanged at potentials from-0.4 V to-0.55 V.And -0.4 V is just near the PZC for pc-Ag.

    The monotonical decrease in Ea,appwith electrode potential and the potential-independence of A at E<PZC agree well with the prediction from the Butler-Volmer’s law,suggesting that under such conditions, the reaction is similar to outer-shpere reactions.The increases in Ea,appand A with negative shift in electrode potential from the onset potential for HER to PZC is just opposite to what is predicted by Butler-Volmer equation.During the Volmer reaction,the displacement of adsorbed water leads to an increase in the change of both the internal energy and the entropy from reactants to the transition states.Present results reveal that the solvent dynamics and the related entropy term (pre-exponential factor)may contribute greatly to the kinetics for electrode reaction.

    V.ACKNOWLEDGMENTS

    This work was supported by the One Hundred Talents Program of the Chinese Academy of Science,the National Natural Science Foundation of China(No.21073176),and the National Basic Research Program of China National Science and Technology (No.2010CB923302).

    [1]A.R.Despic,Comprehensive Treatise of Electrochemistry,New York and London:Plenum,(1983).

    [2]F.Wilhelm,W.Schmickler,R.Nazmutdinov,and E. Spohr,Electrochim.Acta 56,10632(2011).

    [3]B.E.Conway,Sci.Pro.71,479(1987).

    [4]R.Parson,Catalysis in Electrochemistry:From Fundamentals to strategies for Fuel Cell,John Wiley&Son: Development,1(2011).

    [5]S.Trasatti,J.Electroanal.Chem.39,163(1972).

    [6]J.K.Norskov,T.Bligaard,A.Logadottir,J.R. Kitchin,J.G.Chen,and S.Pandelov,J.Electrochem. Soc.152,J23(2005).

    [7]M.T.M.Koper,J.Solid State Electrochem.17,339 (2013).

    [8]E.Skulason,V.Tripkovic,M.E.Bjorketun,S.Gudmundsdottir,G.Karlberg,J.Rossmeisl,T.Bligaard, H.Jonsson,and J.K.Norskov,J.Phys.Chem.C 114, 18182(2010).

    [9]N.M.Markovic,B.N.Grgur,and P.N.Ross,J.Phys. Chem.B 101,5405(1997).

    [10]Q.Zhang,Y.Liu,and S.Chen,J.Electroanal.Chem. 688,158(2013).

    [11]E.Santos,P.Quaino,and W.Schmickler,Phys.Chem. Chem.Phys.14,11224(2012).

    [12]D.Eberhardt,E.Santos,and W.Schmickler,J.Electroanal.Chem.461,76(1999).

    [13]Z.Q.Tang,L.W.Liao,Y.L.Zheng,J.Kang,and Y. X.Chen,Chin.J.Chem.Phys.25,469(2012).

    [14]E.Santos,P.Hindelang,P.Quaino,and W.Schmickler, Phys.Chem.Chem.Phys.13,6961(2011).

    [15]J.K.Norskov,T.Bligaard,A.Logadottir,J.R. Kitchin,J.G.Chen,and S.Pandelov,J.Electrochem. Soc.152,J23(2005).

    [16]J.K.Norskov,E.Skulasson,J.Rossmeisl,T.Bligaard, G.Karlberg,J.P.Greeley,and H.Jonsson,Abstracts of Papers of the American Chemical Society,Vol.233, Washington,DC 20036 USA:Am.Chem.Soc.,(2007).

    [17]J.F.Li,Y.F Huang,S.Duan,R.Pang,D.Y.Wu,B. Ren,X.Xu,and Z.Q.Tian,Phys.Chem.Chem.Phys. 12,2493(2010).

    [18]X.Xu,B.Ren,D.Y.Wu,H.Xian,X.Li,P.Shi,and Z.Q.Tian,Surf.Interf.Anal.28,111(1999).

    [19]D.Y.Wu,S.Duan,X.M.Liu,Y.C.Xu,Y.X.Jiang, B.Ren,X.Xu,S.H.Lin,and Z.Q.Tian,J.Phys. Chem.A 112,1313(2008).

    [20]F.Yang,Master Thesis Dissertation,Heifei:University of Science and Technology of China,(2013).

    [21]J.Kang,Master Thesis Dissertation,Heifei:University of Science and Technology of China,(2013).

    [22]Q.J.Chen,Y.L.Zheng,L.W.Liao,J.Kang,and Y. X.Chen,Sci.Sin.Chim.41,1777(2011).

    [23]K.A.Soliman and L.A.Kibler,Electrochim.Acta 52, 5654(2007).

    [24]W.Schmickler and E.Santos,Interfacial Electrochemistry,Springer-Verlag Berlin and Heidelberg GmbH& Co.K,(2010).

    [25]S.Hammes-Schiffer and A.A.Stuchebrukhov,Chem. Rev.110,6939(2010).

    [26]X.D.Song,Y.F.Zhao,P.X.Zhang,and G.H.Zhang, Inter.J.Quantum Chem.111,2109(2011).

    [27]R.Pang,L.J.Yu,D.Y.Wu,B.W.Mao,and Z.Q. Tian,Electrochim.Acta 101,272(2013).

    [28]D.Eberhardt,E.Santos,and W.Schmickler,J.Electroanal.Chem.419,23(1996).

    [29]L.M.Doubova,and S.Trasatti,J.Electroanaly.Chem. 467,164(1999).

    [30]E.Skulason,G.Karlberg,J.Rossmeisl,T.Bligaard,J. P.Greeley,H.Jonsson,and J.K.Norskov,Abstracts of Papers of the American Chemical Society,Vol.233, Washington,DC 20036 USA:Am.Chem.Soc.,(2007).

    ceived on May 28,2013;Accepted on June 8,2013)

    ?Author to whom correspondence should be addressed.E-mail:yachen@ustc.edu.cn,Tel./FAX:+86-551-6360035

    亚洲精品一卡2卡三卡4卡5卡| 成年版毛片免费区| 美女 人体艺术 gogo| 亚洲成人久久爱视频| x7x7x7水蜜桃| 国产区一区二久久| 亚洲男人的天堂狠狠| 午夜久久久久精精品| 亚洲一区二区三区不卡视频| 日本免费一区二区三区高清不卡| 日韩欧美三级三区| 久久天躁狠狠躁夜夜2o2o| 精品无人区乱码1区二区| 日韩有码中文字幕| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 黄色 视频免费看| 美女高潮喷水抽搐中文字幕| 国产不卡一卡二| 国产精品亚洲一级av第二区| 国产久久久一区二区三区| 在线观看免费午夜福利视频| 国产精品日韩av在线免费观看| ponron亚洲| 嫩草影视91久久| 欧美激情久久久久久爽电影| 丁香欧美五月| 美女国产高潮福利片在线看| 女性被躁到高潮视频| 老熟妇乱子伦视频在线观看| 欧美成人午夜精品| 婷婷丁香在线五月| 亚洲色图 男人天堂 中文字幕| 午夜福利视频1000在线观看| 国产精品美女特级片免费视频播放器 | 波多野结衣av一区二区av| 久久亚洲精品不卡| 亚洲成人国产一区在线观看| 19禁男女啪啪无遮挡网站| 日韩欧美免费精品| 母亲3免费完整高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久国产精品久久久| 国产熟女xx| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 午夜免费激情av| 久久久精品国产亚洲av高清涩受| 桃色一区二区三区在线观看| 国产精品久久视频播放| 日韩精品青青久久久久久| 国产三级黄色录像| 午夜免费成人在线视频| 欧美又色又爽又黄视频| 很黄的视频免费| 日韩大码丰满熟妇| 免费女性裸体啪啪无遮挡网站| 女生性感内裤真人,穿戴方法视频| av视频在线观看入口| 国产精华一区二区三区| 好男人在线观看高清免费视频 | 久久婷婷成人综合色麻豆| 18禁黄网站禁片免费观看直播| 1024香蕉在线观看| 俄罗斯特黄特色一大片| 成人手机av| xxxwww97欧美| 黄片播放在线免费| 国产熟女xx| 妹子高潮喷水视频| av在线播放免费不卡| 国产精品免费一区二区三区在线| 国产精品久久视频播放| 丁香六月欧美| 亚洲自拍偷在线| 黄色视频,在线免费观看| 日本一区二区免费在线视频| 韩国av一区二区三区四区| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 很黄的视频免费| 国产伦一二天堂av在线观看| 巨乳人妻的诱惑在线观看| 人成视频在线观看免费观看| 国产久久久一区二区三区| 又紧又爽又黄一区二区| 日韩三级视频一区二区三区| 日本撒尿小便嘘嘘汇集6| 9191精品国产免费久久| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 大型黄色视频在线免费观看| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 欧美成人免费av一区二区三区| 91九色精品人成在线观看| 91字幕亚洲| 十八禁网站免费在线| 久久精品91无色码中文字幕| 国产精品一区二区三区四区久久 | 欧美激情高清一区二区三区| bbb黄色大片| 中文字幕久久专区| 黄色成人免费大全| 巨乳人妻的诱惑在线观看| 99国产综合亚洲精品| 可以在线观看的亚洲视频| 一本精品99久久精品77| 欧美精品亚洲一区二区| 91成人精品电影| 露出奶头的视频| 国产国语露脸激情在线看| 真人做人爱边吃奶动态| 国内少妇人妻偷人精品xxx网站 | 黄色 视频免费看| 日本精品一区二区三区蜜桃| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| 免费一级毛片在线播放高清视频| 91成人精品电影| 亚洲人成77777在线视频| 91老司机精品| 两性夫妻黄色片| 国产视频内射| 午夜日韩欧美国产| 亚洲 国产 在线| 国产av在哪里看| 久久久久久久久久黄片| 亚洲精品久久国产高清桃花| 午夜激情福利司机影院| 亚洲国产中文字幕在线视频| 九色国产91popny在线| 波多野结衣巨乳人妻| 午夜福利在线在线| 成人亚洲精品一区在线观看| 麻豆成人午夜福利视频| 欧美中文日本在线观看视频| 亚洲av片天天在线观看| 高清在线国产一区| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 露出奶头的视频| 久久性视频一级片| 正在播放国产对白刺激| 成人国产一区最新在线观看| 草草在线视频免费看| 免费观看人在逋| 91麻豆av在线| 国产伦一二天堂av在线观看| www.自偷自拍.com| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 成人永久免费在线观看视频| 嫩草影视91久久| 亚洲av美国av| 91国产中文字幕| 精品久久久久久久久久久久久 | 国产在线观看jvid| 免费观看人在逋| 99久久精品国产亚洲精品| 国产在线精品亚洲第一网站| 色老头精品视频在线观看| 老熟妇仑乱视频hdxx| 亚洲自拍偷在线| 成人亚洲精品一区在线观看| 国产成人影院久久av| 日韩欧美国产在线观看| 久热爱精品视频在线9| 日本 av在线| 满18在线观看网站| 久久精品国产99精品国产亚洲性色| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 18禁黄网站禁片免费观看直播| 亚洲国产精品成人综合色| 久久午夜亚洲精品久久| 中文字幕最新亚洲高清| 12—13女人毛片做爰片一| 国产午夜精品久久久久久| 可以在线观看的亚洲视频| 久久 成人 亚洲| 大型黄色视频在线免费观看| 久久中文字幕人妻熟女| 午夜老司机福利片| 波多野结衣巨乳人妻| 国产亚洲精品第一综合不卡| 琪琪午夜伦伦电影理论片6080| 免费在线观看黄色视频的| 性欧美人与动物交配| 亚洲最大成人中文| 日韩欧美国产一区二区入口| 欧美激情 高清一区二区三区| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区 | 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 亚洲精品久久国产高清桃花| 国产高清videossex| 欧美不卡视频在线免费观看 | 欧美激情 高清一区二区三区| 丝袜人妻中文字幕| 亚洲第一电影网av| 免费无遮挡裸体视频| 亚洲精品久久成人aⅴ小说| 亚洲精华国产精华精| 久久久久久久久中文| 亚洲精品久久成人aⅴ小说| 亚洲成人久久爱视频| 欧美精品亚洲一区二区| 黄频高清免费视频| 中文字幕av电影在线播放| 亚洲片人在线观看| 99精品久久久久人妻精品| 婷婷亚洲欧美| 黄色视频,在线免费观看| 91大片在线观看| 午夜免费成人在线视频| 欧美日韩福利视频一区二区| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 啦啦啦韩国在线观看视频| 国内揄拍国产精品人妻在线 | 亚洲电影在线观看av| 俄罗斯特黄特色一大片| 99国产精品99久久久久| 香蕉av资源在线| 99久久精品国产亚洲精品| 精品国产亚洲在线| 亚洲精华国产精华精| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 在线观看日韩欧美| 色综合婷婷激情| 亚洲精品在线观看二区| 天天添夜夜摸| 无人区码免费观看不卡| 一本大道久久a久久精品| 精品人妻1区二区| 伊人久久大香线蕉亚洲五| 亚洲国产欧洲综合997久久, | 成人亚洲精品av一区二区| 黄色毛片三级朝国网站| 国产乱人伦免费视频| 日本五十路高清| 母亲3免费完整高清在线观看| 男女那种视频在线观看| 国产99白浆流出| 淫秽高清视频在线观看| 成人18禁在线播放| 亚洲中文字幕一区二区三区有码在线看 | av天堂在线播放| 99热只有精品国产| 久久婷婷人人爽人人干人人爱| 这个男人来自地球电影免费观看| 50天的宝宝边吃奶边哭怎么回事| 2021天堂中文幕一二区在线观 | 国产成+人综合+亚洲专区| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 妹子高潮喷水视频| 听说在线观看完整版免费高清| 最新在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 男人舔奶头视频| 亚洲av熟女| 久久午夜综合久久蜜桃| 国产精品免费视频内射| 午夜免费观看网址| 久久九九热精品免费| 国产人伦9x9x在线观看| 精品福利观看| 久久国产精品男人的天堂亚洲| 亚洲av美国av| 日日干狠狠操夜夜爽| 精品高清国产在线一区| 国产av不卡久久| 亚洲国产精品久久男人天堂| 国产真人三级小视频在线观看| bbb黄色大片| 国产午夜福利久久久久久| 国产精品 国内视频| 搞女人的毛片| 欧美日韩乱码在线| 成人永久免费在线观看视频| 色综合站精品国产| 国内精品久久久久精免费| 在线永久观看黄色视频| 国产精品久久电影中文字幕| 国产野战对白在线观看| 女警被强在线播放| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 久久草成人影院| 国产高清有码在线观看视频 | 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| www.www免费av| 国产又黄又爽又无遮挡在线| 老汉色∧v一级毛片| av在线天堂中文字幕| 久久久久国产一级毛片高清牌| 一区二区三区激情视频| 亚洲男人天堂网一区| xxxwww97欧美| 妹子高潮喷水视频| 天天添夜夜摸| 国产aⅴ精品一区二区三区波| 悠悠久久av| av在线天堂中文字幕| 色尼玛亚洲综合影院| 国产精品亚洲一级av第二区| 精品国产乱码久久久久久男人| 我的亚洲天堂| 欧美av亚洲av综合av国产av| 十八禁人妻一区二区| 午夜福利成人在线免费观看| 精品一区二区三区视频在线观看免费| 亚洲无线在线观看| 国产区一区二久久| 在线国产一区二区在线| 2021天堂中文幕一二区在线观 | 女人爽到高潮嗷嗷叫在线视频| 国内揄拍国产精品人妻在线 | 69av精品久久久久久| 亚洲一区高清亚洲精品| 成年版毛片免费区| 亚洲精品色激情综合| 亚洲人成伊人成综合网2020| 国产熟女xx| 一进一出好大好爽视频| 中文字幕精品亚洲无线码一区 | 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区久久 | 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 少妇 在线观看| 亚洲熟妇中文字幕五十中出| 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 亚洲色图av天堂| 亚洲av成人av| 在线av久久热| 日本成人三级电影网站| 啦啦啦 在线观看视频| 亚洲欧美精品综合久久99| 亚洲成人免费电影在线观看| 哪里可以看免费的av片| 国产国语露脸激情在线看| 免费无遮挡裸体视频| 免费高清视频大片| 亚洲成国产人片在线观看| 亚洲中文字幕日韩| 色综合站精品国产| 观看免费一级毛片| 国产精品香港三级国产av潘金莲| 欧美人与性动交α欧美精品济南到| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区| 精品久久久久久成人av| 99久久久亚洲精品蜜臀av| 亚洲一码二码三码区别大吗| 黄色a级毛片大全视频| 国产视频内射| 91在线观看av| 欧美激情 高清一区二区三区| 女人被狂操c到高潮| 老司机靠b影院| av超薄肉色丝袜交足视频| 在线国产一区二区在线| 国产成年人精品一区二区| 成人18禁在线播放| 欧美在线黄色| 精品熟女少妇八av免费久了| 午夜两性在线视频| 久久中文字幕一级| 中文字幕久久专区| 啦啦啦免费观看视频1| 男人操女人黄网站| 欧美不卡视频在线免费观看 | 天天添夜夜摸| 在线播放国产精品三级| 欧美又色又爽又黄视频| 国产亚洲av嫩草精品影院| 一本大道久久a久久精品| 欧美午夜高清在线| 欧美色欧美亚洲另类二区| 亚洲 欧美 日韩 在线 免费| 国产午夜精品久久久久久| 特大巨黑吊av在线直播 | 国产日本99.免费观看| 国产亚洲精品av在线| 神马国产精品三级电影在线观看 | 香蕉国产在线看| 免费在线观看视频国产中文字幕亚洲| 久久久久久大精品| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人下体高潮全视频| 久久草成人影院| 久久久久久人人人人人| 国产精品 国内视频| 91九色精品人成在线观看| 亚洲中文av在线| 级片在线观看| 波多野结衣av一区二区av| a在线观看视频网站| 亚洲午夜理论影院| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 国产成人精品无人区| 人妻丰满熟妇av一区二区三区| 18禁观看日本| 国产精品爽爽va在线观看网站 | 白带黄色成豆腐渣| 欧美激情高清一区二区三区| 欧美大码av| 亚洲国产毛片av蜜桃av| 嫁个100分男人电影在线观看| 国产精品亚洲美女久久久| 日韩精品免费视频一区二区三区| 国产亚洲av嫩草精品影院| 免费在线观看视频国产中文字幕亚洲| 变态另类丝袜制服| 日本三级黄在线观看| 91成人精品电影| 久久香蕉激情| 亚洲精品一卡2卡三卡4卡5卡| 黑丝袜美女国产一区| 久久伊人香网站| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美激情综合另类| 日日爽夜夜爽网站| 嫩草影院精品99| www日本在线高清视频| cao死你这个sao货| 欧美三级亚洲精品| 精品一区二区三区四区五区乱码| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 看黄色毛片网站| 日韩欧美免费精品| 女同久久另类99精品国产91| 久久香蕉激情| 成人三级黄色视频| 最近最新中文字幕大全电影3 | 亚洲九九香蕉| 啦啦啦观看免费观看视频高清| 中文字幕人成人乱码亚洲影| 国产日本99.免费观看| 波多野结衣高清无吗| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 亚洲欧美一区二区三区黑人| 人人妻人人看人人澡| 88av欧美| 精品久久久久久成人av| 国产精品影院久久| x7x7x7水蜜桃| 久久精品人妻少妇| 俺也久久电影网| 婷婷精品国产亚洲av| 免费高清在线观看日韩| www.熟女人妻精品国产| 波多野结衣av一区二区av| 久9热在线精品视频| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 黄色视频不卡| 人妻丰满熟妇av一区二区三区| 男女床上黄色一级片免费看| 亚洲欧洲精品一区二区精品久久久| 黄色女人牲交| 国产v大片淫在线免费观看| 午夜影院日韩av| 97超级碰碰碰精品色视频在线观看| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 一区二区三区激情视频| 亚洲五月婷婷丁香| 成人国产综合亚洲| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| 免费高清在线观看日韩| 搡老熟女国产l中国老女人| 国产精品精品国产色婷婷| 成人精品一区二区免费| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| av有码第一页| 国产精品野战在线观看| 国产精品爽爽va在线观看网站 | 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 久久精品91无色码中文字幕| www日本在线高清视频| 国产精品精品国产色婷婷| 精品一区二区三区四区五区乱码| 亚洲一区二区三区色噜噜| a级毛片在线看网站| 国产亚洲精品av在线| АⅤ资源中文在线天堂| 高清在线国产一区| 色在线成人网| 美女 人体艺术 gogo| 成人国产一区最新在线观看| 后天国语完整版免费观看| 精品不卡国产一区二区三区| 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 国产色视频综合| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 妹子高潮喷水视频| 国产欧美日韩一区二区精品| 国产99白浆流出| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 午夜福利视频1000在线观看| 999久久久精品免费观看国产| 在线观看免费日韩欧美大片| 亚洲精品在线美女| 成年人黄色毛片网站| 亚洲中文字幕一区二区三区有码在线看 | 美女扒开内裤让男人捅视频| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区| 久久久久久久午夜电影| 色播在线永久视频| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 男女之事视频高清在线观看| 日本成人三级电影网站| 欧美色视频一区免费| 精品人妻1区二区| 99热这里只有精品一区 | 91国产中文字幕| 999久久久国产精品视频| 日本撒尿小便嘘嘘汇集6| 久久国产精品男人的天堂亚洲| 精品久久久久久久久久久久久 | 很黄的视频免费| 亚洲国产精品999在线| 亚洲天堂国产精品一区在线| 国产一区二区在线av高清观看| 国产免费男女视频| 老鸭窝网址在线观看| 女同久久另类99精品国产91| 大香蕉久久成人网| 亚洲全国av大片| 性欧美人与动物交配| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| 夜夜躁狠狠躁天天躁| 琪琪午夜伦伦电影理论片6080| 搡老熟女国产l中国老女人| 久久久久久久精品吃奶| 亚洲专区国产一区二区| 亚洲精华国产精华精| 欧美三级亚洲精品| 人人妻人人澡人人看| 婷婷精品国产亚洲av在线| 可以免费在线观看a视频的电影网站| 精品国产美女av久久久久小说| 欧美最黄视频在线播放免费| 91av网站免费观看| 亚洲av五月六月丁香网| 亚洲五月婷婷丁香| 男人舔女人的私密视频| 性欧美人与动物交配| 午夜a级毛片| 最近最新中文字幕大全电影3 | 欧美乱妇无乱码| 国产av在哪里看| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 久久精品国产综合久久久| 亚洲国产欧美一区二区综合| 黄色 视频免费看| 午夜激情福利司机影院| 韩国精品一区二区三区| 无人区码免费观看不卡| 亚洲精品一区av在线观看| 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 99久久精品国产亚洲精品| 国产成人系列免费观看| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 色av中文字幕| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 亚洲第一电影网av| 国产免费av片在线观看野外av| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡|