• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Chemical Studies on Structure and Detonation Performance of Bis(2,2-dinitropropyl ethylene)formal

    2014-07-19 11:17:08ShuqingYnXiohongLi
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Shu-qing Yn,Xio-hong Li

    a.School of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,China

    b.College of Physics and Engineering,Henan University of Science and Technology,Luoyang 471003, China

    Quantum Chemical Studies on Structure and Detonation Performance of Bis(2,2-dinitropropyl ethylene)formal

    Shu-qing Yana,Xiao-hong Lib?

    a.School of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,China

    b.College of Physics and Engineering,Henan University of Science and Technology,Luoyang 471003, China

    Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method,a new gem-dinitro energetic plasticizer,bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for high-performance energetic material.IR spectrum,heat of formation,and detonation performances were predicted.The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound.The results show that the four N-NO2BDEs are nearly equal to the values of 164.38 kJ/mol,which shows that the title compound is a stable compound.The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF.The crystal structure obtained by molecular mechanics belongs to P21space group,with lattice parameters Z=2,a=13.8017?A, b=13.4072?A,c=5.5635?A.

    Density functional theory,Detonation property,Thermal stability,bis(2,2-dinitropropyl ethylene)formal

    I.INTRODUCTION

    The demand for high-performance explosives and propellants has led to intensive investigations on improving their energetic,mechanical,and storage properties and safe handling.Attempts have focused primarily on using more energetic ingredients like binders,plasticizers,etc.It has been reported that plasticizers in combination with a binder aid in processing of propellants by achieving optimum viscosity[1]and the molecular structure and quantity available in the plasticizer system signif i cantly affect the mechanical properties of the propellant[2,3].In modern energetic propellant composition,conventional plasticizers are being gradually replaced by energetic plasticizers which have azido,nitro ester,fluoronitro,fluoroamino,nitro groups or combination of energetic groups in the same molecule[4-9]. Of these,nitrate ester groups are a fertile source of energetic plasticizers.Some energetic plasticizers containing nitrate ester groups are synthesized[10-13].

    Energetic plasticizers containing the gem-dinitro groups have generally low sensitivity to unplanned stimuli and are attractive due to their high oxygen content and high energy.These gem-dinitro energetic plasticizers are frequently prepared by a reaction of nitro alcohols and formaldehyde in the presence of an acid[14-19],including bis(2,2-dinitropropyl)acetal (BDNPA),bis(2,2-dinitrobutyl)formal(BDNBF),and bis(2,2-dinitropropyl)diformal(BDNPDF).

    Optimum energetic plasticizers need to have low viscosity,low sensitivity to stimuli,high thermal stability,and high oxygen balance[20].But these demands are contradictory and no existing energetic plasticizers can achieve the ideal requirements,despite the large number of energetic plasticizers developed so far.In view of this,a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal(BDNPEF),has been studied in detail due to the good compatibility with polyether-based polyurethane binders.

    The cost and danger associated with synthesizing and testing new energetic plasticizers have driven to computationally assist the design of energetic plasticizers. Theoretical studies not only make it possible to screen candidate compounds,but also provide understanding in terms of the relationships between molecular structure and properties[21,22].

    In the present study,density functional theory and molecular mechanics(MM)methods were employed to evaluate crystal structure and properties of BDNPEF, such as heat of formation,infrared spectrum,thermodynamic properties,detonation performance and thermal stability.The molecular structure is shown in Fig.1. The calculation results show that BDNPEF may be avery promising high-energy plasticizer.

    FIG.1 Molecular framework of BDNPEF.

    II.METHODS AND COMPUTATIONAL DETAILS

    Computations were performed with Gaussian 03 package[23]at B3LYP[24-26]method with 6-311+G(2d,p)basis set.The geometric parameters were allowed to be optimized and no constraints were imposed on molecular structure during optimization process.Vibrational analysis was performed thereafter at the same level with the Gaussian 03 program package. The optimized structure was characterized to be true local energy minima on potential energy surfaces without imaginary frequencies.On the basis of the principle of statistical thermodynamics[27],standard molar heat capacity(),standard molar entropy(),and standard molar enthalpy()from 200 K to 800 K were derived from the scaled frequencies using a selfcompiled program.

    The natural bond orbital(NBO)calculations were performed using the NBO 3.1 program as implemented in the Gaussian 03 package at B3LYP/6-311+G(2d,p) level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem,which is a measure of the intermolecular delocalization or hyperconjugation.

    To measure the strength of bonds and relative stability of the molecule,the bond dissociation energies (BDEs)of various bonds in molecule are calculated. BDE is the required energy in homolysis of a bond and is commonly denoted by difference between total energies of product and reactant after zero point energy correction.The expressions for the homolysis of R1-R2bond and calculation of BDE are shown as follows:

    where R1-R2denotes the neutral molecule,and R1· and R2·stand for the corresponding product radicals after the bond dissociation,BDE(R1-R2)is the bond dissociation enthalpy of the bond R1-R2.The latter three items in Eq.(2)are the enthalpies of the corresponding radicals and the parent compound,respectively.

    Detonation velocity(D)and pressure(P)are the most important targets of scaling the detonation characteristics of energetic materials.For the explosives with C,H,N and O elements,these parameters can be calculated using the Kamlet-Jacbos(K-J)equations [28]:

    where ρ is the packed density,N is the moles of gas produced by per gram of explosives,ˉM is an average molar weight of detonation products,and Q is the estimated heat of detonation.N,ˉM,and Q are determined according to the largest exothermic principle[29].

    Since the condensed phase for most energetic compounds is solid,the calculation of detonation properties requires solid phase heat of formation(HOF) (?Hf,solid).According to Hess’s law of constant heat summation[30],the gas-phase HOF(?Hf,gas)and heat of sublimation(?Hf,sub)can be used to evaluate the solid phase HOF:

    Politzer et al.found that the heats of sublimation can correlate well with the molecular surface area and electrostatic interaction indexof energetic compounds [31,32].The empirical expression of the approach is as follows:

    where A is the surface area of the 0.001 electron/bohr3isosurface of electronic density of the molecule,ν describes the degree of balance between positive and negative potential on the isosurface,and δt2otis a measure of variability of the electrostatic potential on the molecular surface.The coefficients a,b,and c were determined by Rice and coworker[33]:a=2.670×10-4kcal/mol, b=1.650 kcal/mol and c=2.966 kcal/mol.The descriptors A,ν and δt2otwere calculated using the computational procedures proposed by Lu[34].

    The possible polymorphs and crystal structure of the title compound were predicted by rigorous molecular packing calculations using polymorph module of Material Studio[35]since high-energy compounds are usuallyin condensed phases,especially solid form.The compass force-f i eld is used to search the possible molecular packing among the most probable seven space groups (P21/c,P-1,P212121,Pbca,C2/c,P21,and Pna21)[36, 37].

    TABLEI Selected bond lengths and angles of the title compound computed at B3LYP/6-311+G(2d,p)level.

    III.RESULTS AND DISCUSSION

    A.Optimized structures

    It is necessary to study the geometric structures before discussing other properties.Some bond lengths and angles obtained from B3LYP/6-311+G(2d,p)method are tabulated in Table I.From Table I,it is noted that the C-N bond lengths range from 1.524?A to 1.535?A, which are longer than the normal C-N single bond length(1.47?A)[38].The C-O bond lengths of BDNPEF range from 1.380?A to 1.415?A,which are shorter than that of the usual C-O(1.42?A).These varieties of C-O bond lengths are mainly due to the electronic delocalization in molecule.

    B.Infrared spectra

    The IR spectrum is one basic property of a compound and often used to analyze or identify substances.Therefore,it is of great signif i cance to calculate the IR spectrum of the title compound by a theoretical method. Here,vibrational frequencies were calculated by using DFT B3LYP/6-311+G(2d,p)level.Figure 2 presents the simulated IR spectrum based on the scaled harmonic vibrational frequencies for BDNPEF.

    For BDNPEF,there are f i ve main characteristic regions.The modes in 2900-3188 cm-1are associated with C-H stretch.In this region,the strongest characteristic peak is at 3052 cm-1.The modes in 1620-1708 cm-1are associated with the N=O asymmetric stretch of nitro groups and the strong characteristic peak is at 1660 cm-1.The modes in 1340-1492 cm-1are associated with the C-H bending.The modes in 1037-1228 cm-1are mainly associated with C-O stretch together with the C-H bending, and the strongest characteristic peak is at 1140 cm-1, which corresponds to the C-O stretch.The modes below 1000 cm-1are associated with the C-N stretch, the rocking of nitro groups and methyl groups together with the CNO bending.

    FIG.2 The simulated infrared spectrum for BDNPEF.

    TABLE II Calculated energies and HOF of species.

    C.Heat of formation

    HOF is an important parameter for calculation of the detonation performance and can be used to estimate the amount of energy released or absorbed in a chemical reaction.Increasing the HOF will generally increase the detonation performance.One can obtain the standard HOF at 298.15 K through using the atomization reaction or isodesmic reaction method.In this work isodesmic reaction method was employed[39].

    The accuracy of HOF obtained theoretically was conditioned by the reliability of HOF of the reference compounds.The HOF for BDNPEF can be derived from the isodesmic reaction,shown in Fig.3.

    TABLE II lists the total energies(E0),?Hf,gasof the reference compounds involved in the reaction.The calculated HOF for BDNPEF is also included.

    D.Detonation properties

    FIG.3 The isodesmic reaction.

    TABLE III Predicted density and detonation properties of the title compound.

    Detonation velocity D and pressure P are the important parameters to evaluate the performances of energetic materials.As for C,H,O,and N-containing explosives,they can be estimated using the K-J equations[28].In this work,we computed the condensed phase heat of formation of the title compound through the method of Byrd and Rice[33].

    Density is one of the critical factors that determine the energetic properties of compounds.According to the K-J equations[28],density greatly affects the detonation performance.Detonation pressure is dependent on the square of the density,while detonation velocity is proportional to the density.In the work,we calculated the density of the title compounds using the method of Politzer[31].In addition,it is noted that detonation pressure and velocity are overestimated if gas phase HOFs instead of solid phase values are used [30].Using Eqs.(5),(6)and the computational procedures proposed by Lu[34],the?Hf,solid,?Hf,suband the related descriptors A,ν andare obtained.

    TABLE III lists the surface area A,ν,,?Hf,sub,?Hf,solid,V,ρ,D,and P of the title compound.In order to have a comparison,the ρ,D,and P of trinitrotoluene(TNT)are also included[42].

    Obviously,the detonation velocity and pressure of BDNPEF(D=7.08 km/s,P=20.20 GPa)are comparable to TNT.This shows that BDNPEF is a potential energetic material.

    E.Thermal stability

    For the energetic materials,it is of practical interest whether they are thermodynamically stable enough. A good energetic material should have a high stability.Thus,studies on the bond dissociation or pyrolysis mechanism are important to understand the decomposition process of the energetic materials because they are directly relevant to the sensitivity and stability of the energetic compounds.For some compounds,a key initiating step appears to be the rupture of a particular bond,a“trigger linkage”[31].At present,there is a consensus that nitro groups often represent the primary cause of initiation reactivity of organic polynitro compounds[43-45].

    In this work,two possible initial steps,i.e.the breakings of C1-N1 and C1-N2 bonds(or C9-N3 and C9-N4 bonds)for BDNPEF in the chain,are considered.The calculated results show that the C1-N1 and C1-N2 BDEs are nearly equal and are all 164.38 kJ/mol.Obviously,the title compound is a stable compound according to the stability request of HEDC(BDE≈80-120 kJ/mol).

    F.Molecular packing prediction and density

    The crystal structure of the title compound in this work is predicted by COMPASS force f i eld[46],which can produce the gas-and condensed-phase properties reliably for a broad range of systems[47].Using COMPASS force f i eld,we can pack arrangements in all reasonable space groups to search for the low-lying minima in the lattice energy surface.The structure optimized by B3LYP/6-311+G(2d,p)method is considered as input structure for polymorph search.Table IV lists the lattice parameters in all reasonable space groups.

    It is noted from Table IV that the energies range from-47.9 to-65.1 kJ/(mol·cell)and the structure with P21symmetry has the lowest energy.Most stable polymorph usually possesses the least energy at 0 K,so the title compound tends to exist in the P21group.The corresponding lattice parameters are Z=2, a=13.8017?A,b=13.4072?A,c=5.5635?A,ρ=1.60 g/cm3. Figure 4 gives the molecular packing of the title compound in P21space group.

    G.Thermodynamic properties

    Based on the scaled vibrational frequencies,the thermodynamic functions including standard molar heat capacity,entropyand enthalpy,are obtained based on statistical thermodynamic principle. The temperature-dependent relations for the thermody-namic functions are as follows and expressed in Fig.5.

    TABLE IV Unit cell parameters of the possible molecular packings of the title compound.

    FIG.4 Molecular packing of the title compound in P21space group.

    FIG.5 The relationships between the thermodynamic functions and temperature T for the title compound.

    The corresponding correlation coefficients for,,andare 0.9935,0.9996,and 0.9994.It is noted that all thermodynamic properties increase with the increase of temperature because of the larger contribution of vibrational movement at the higher temperature.

    IV.CONCLUSION

    In this work,a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated theoretically by using B3LYP/6-311+G(2d,p)method. Compared with TNT,the title compound is a potential energetic material with the predicted detonation velocity(7.08 km/s)and detonation pressure(20.20 GPa). Based on the results of bond order and bond dissociation energy,the four N-NO2BDEs are nearly equal and are all 164.38 kJ/mol,which shows that the title compound is a stable compound.In addition,the most possible space group of the title compound predicted by COMPASS force f i eld is P21space group.

    V.ACKNOWLEDGMENTS

    This work was supported by the Key Project of Henan Educational Committee(No.12A140004),China Postdoctoral Science Foundation(No.2013M531361), and Jiangsu Planned Projects for Postdoctoral Research Funds(No.1201015B).

    [1]A.Provatas,Energetic Polymers and Plasticizers for Explosive Formulations-A Review of Recent Advances, DSTO-TR-0966,(2000).

    [2]X.H.Li,Z.X.Tang,X.Z.Zhang,and X.D.Yang,J. Hazard.Mater.165,372(2009).

    [3]A.Provatas,CharacterizationandPolymerization Studies of Energetic Binder Systems,DSTO-TR-1171, (2001).

    [4]J.P.Agrawal and R.D.Hodgson,Organic Chemistry of Explosives,West Sus sex,England:John Wiley& Sons Ltd.,(2007).

    [5]J.X.Shao,X.L Cheng,and X.D Yang,Chin.Phys. 15,329(2006).

    [6]Y.P.Ji,P.R.Li,W.Wang,Y.Lan,and F.Ding,Chin. J.Explos.Propellants 28,47(2005).

    [7]J.X.Shao,X.L Cheng,and X.D.Yang,Struct.Chem. 16,457(2005).

    [8]R.H.Taylor and H.Ala,US Patent 5579634,(1996).

    [9]K.Menke and S.Eisele,Propellants Explos.Pyrotech. 22,112(1997).

    [10]N.Marsh and A.Marsh,Clin.Exp.Pharmacol.Physiol. 27,313(2000).

    [11]J.Akhavan,The Chemistry of Explosives,2nd Edn, UK:The Royal Society of Chemistry,(2004).

    [12]A.T.Camp,L.A.Dickinson,and P.R.Mosher,US Patent 3634158,(1972).

    [13]S.B.Preston,US Patent 5454891(1995).

    [14]M.A.Barrio,J.Hu,P.Z.Zhou,and N.Cauchon,J. Pharm.Biomed.Anal.41,738(2006).

    [15]M.Jang and R.M.Kamens,Environ.Sci.Technol.35, 4758(2001).

    [16]J.S.Kim,J.R.Cho,K.D.Lee,and J.K.Kim,US Patent 0056663(2007).

    [17]M.A.Lenskii,E.E.Shul’ts,A.A.Androshchuk,and G.A.Tolstikov,Russ.J.Org.Chem.45,1772(2009).

    [18]K.C.Barsanti and J.F.Pankow,Atmos.Environ.38, 4371(2004).

    [19]M.Jang,N.M.Czoschke,S.Lee,and R.M.Kamens, Science 298,814(2002).

    [20]Y.Chen,Y.Kwon,and J.S.Kim,J.Ind.Eng.Chem. 18,1069(2012).

    [21]X.H.Li,Z.M.Fu,and X.Z.Zhang,Struct.Chem.23, 515(2012).

    [22]X.H.Li,R.Z.Zhang,and X.Z.Zhang,Struct.Chem. 24,393(2013).

    [23]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,V.G.Zakrzewski,J. A.Montgomery,R.E.Stratmann,J.C.Burant,S.Dapprich,J.M.Millam,A.D.Daniels,K.N.Kudin,M.C. Strain,O.Farkas,J.Tomasi,V.Barone,M.Cossi,R. Cammi,B.Mennucci,C.Pomelli,C.Adamo,S.Clifford,J.Ochterski,G.A.Petersson,P.Y.Ayala,Q. Cui,K.Morokuma,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.Cioslowski,J.V.Ortiz,A.G.Baboul,B.B.Stefanov,G.Liu,A.Liashenko, P.Piskorz,I.Komaromi,R.Gomperts,R.L.Martin, D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A. Nanayakkara,C.Gonzalez,M.Challacombe,P.M.W. Gill,B.Johnson,W.Chen,M.W.Wong,J.L.Andres, C.Gonzalez,M.Head-Gordon,E.S.Replogle,and J. A.Pople,Gaussian 03,Revision B.02,Pittsburgh PA: Gaussian Inc.,(2003).

    [24]A.D.Becke,J.Chem.Phys.97,9173(1992).

    [25]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [26]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [27]T.L.Hill,Introduction to Statistic Thermodynamics, New York:Addison-Wesley,(1960).

    [28]M.J.Kamlet and S.J.Jacobs,J.Chem.Phys.48, 23(1968).

    [29]X.H.Zhang and Z.H.Yun,Explosive Chemistry,Beijing:National Defence Industry Press,(1989).

    [30]P.W.Atkins,Physical Chemistry,Oxford:Oxford University Press,(1982).

    [31]P.Politzer,P.Lane,and J.S.Murray,Cent.Eur.J. Energ Mater.8,39(2011).

    [32]P.Politzer and J.S.Murray,Cent.Eur.J.Energ. Mater.8,209(2011).

    [33]E.F.C.Byrd and B.M.Rice,J.Phys.Chem.A 110, 1005(2006).

    [34]T.Lu,Multiwfn Revision 2.5.2,Beijing:Beijing Science and Technology,(2012).

    [35]Materials Studio Blends Module,Version 4.4,Software for Miscibility Estimation:Theory in Blends,San Diego,CA:Accelrys Software Inc.,(2008).

    [36]A.D.Mighell,V.L.Himes,and J.R.Rodgers,Acta Crystallogr.39,737(1983).

    [37]R.Srinivasan,Acta Crystallogr.A 48,917(1992).

    [38]Y.Sasada,Molecular and Crystal Structures in Chemistry Handbook,3rd Edn.Maruzen,Tokyo:The Chemical Society of Japan,(1984).

    [39]W.J.Hehre,L.Radom,and P.V.R.Schleyer,Ab initio Molecular Orbital Theory,New York:Wiley,(1986).

    [40]D.R.Lide,Handbook of Chemistry and Physics,84th Edn.,Boca Raton,FL:CRC Press LLC,(2004).

    [41]G.Pilcher,A.S.Pell,and D.J.Coleman,Trans.Faraday Soc.60,499(1964).

    [42]H.M.Xiao,Structures and Properties of Energetic Compounds,Beijing:National Defense Industrial Press, (2004).

    [43]X.H.Li,R.Z.Zhang,and X.Z.Zhang,Struct.Chem. 22,577(2011).

    [44]X.H.Li,R.Z.Zhang,X.D.Yang,and H.Zhang,J. Mol.Struc.:THEOCHEM 815,151(2007).

    [45]X.H.Li,R.Z.Zhang,and X.Z.Zhang,J.Hazard. Mater.183,622(2010).

    [46]H.Sun,J.Phys.Chem.B 102,7338(1998).

    [47]X.J.Xu,W.H.Zhu,and H.M.Xiao,J.Phys.Chem. B 111,2090(2007).

    ceived on June 26,2013;Accepted on July 19,2013)

    ?Author to whom correspondence should be addressed.E-mail:Lorna639@163.com

    www.熟女人妻精品国产| 欧洲精品卡2卡3卡4卡5卡区| 少妇裸体淫交视频免费看高清 | 久久久水蜜桃国产精品网| 又黄又粗又硬又大视频| 色av中文字幕| 久久天躁狠狠躁夜夜2o2o| 免费观看人在逋| 91精品三级在线观看| 18禁国产床啪视频网站| 国产av在哪里看| 激情视频va一区二区三区| 人人妻人人澡欧美一区二区 | 一个人免费在线观看的高清视频| 最近最新免费中文字幕在线| 男人舔女人下体高潮全视频| 巨乳人妻的诱惑在线观看| 88av欧美| 色精品久久人妻99蜜桃| 婷婷丁香在线五月| 国产精品电影一区二区三区| 最近最新中文字幕大全电影3 | 免费高清在线观看日韩| 午夜福利视频1000在线观看 | 久久伊人香网站| 欧美日韩一级在线毛片| 亚洲av电影在线进入| 亚洲av美国av| 亚洲aⅴ乱码一区二区在线播放 | 91在线观看av| 九色国产91popny在线| 国产精品 欧美亚洲| 桃色一区二区三区在线观看| 黄色视频不卡| 91字幕亚洲| 久久国产精品影院| 男女下面进入的视频免费午夜 | 久久精品国产亚洲av高清一级| 久久人妻熟女aⅴ| 精品欧美国产一区二区三| 日本一区二区免费在线视频| 精品欧美国产一区二区三| 国产精品精品国产色婷婷| 国产黄a三级三级三级人| 黄色视频,在线免费观看| 1024视频免费在线观看| 搡老妇女老女人老熟妇| 少妇被粗大的猛进出69影院| 精品久久久久久,| videosex国产| 日本一区二区免费在线视频| 亚洲情色 制服丝袜| 亚洲国产中文字幕在线视频| 久久国产精品人妻蜜桃| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久亚洲av鲁大| 国产三级黄色录像| 亚洲人成77777在线视频| 亚洲七黄色美女视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 精品久久久精品久久久| 丁香欧美五月| 少妇裸体淫交视频免费看高清 | 自线自在国产av| 久久天堂一区二区三区四区| 国产伦人伦偷精品视频| 国产麻豆69| 我的亚洲天堂| 国产精品免费视频内射| 欧美老熟妇乱子伦牲交| 夜夜爽天天搞| 美女扒开内裤让男人捅视频| 欧美绝顶高潮抽搐喷水| 久久久久久人人人人人| 免费在线观看完整版高清| а√天堂www在线а√下载| 午夜免费观看网址| 一区在线观看完整版| 夜夜躁狠狠躁天天躁| 欧美日韩黄片免| 亚洲久久久国产精品| 老鸭窝网址在线观看| 亚洲精品国产一区二区精华液| 欧美不卡视频在线免费观看 | 老汉色∧v一级毛片| 一进一出好大好爽视频| 操出白浆在线播放| 国产1区2区3区精品| 老熟妇仑乱视频hdxx| av有码第一页| 亚洲精品av麻豆狂野| 午夜视频精品福利| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 高清在线国产一区| 国产亚洲精品综合一区在线观看 | 人妻丰满熟妇av一区二区三区| 国产99白浆流出| 免费高清视频大片| 久久久国产成人免费| 久久影院123| 久久久久国产精品人妻aⅴ院| www.自偷自拍.com| 成在线人永久免费视频| 亚洲一区高清亚洲精品| 热re99久久国产66热| 亚洲电影在线观看av| av欧美777| 成在线人永久免费视频| 成人国语在线视频| 欧美性长视频在线观看| 欧美+亚洲+日韩+国产| 欧美日本中文国产一区发布| 成人手机av| √禁漫天堂资源中文www| 又黄又爽又免费观看的视频| 亚洲伊人色综图| 亚洲国产看品久久| 欧美黄色片欧美黄色片| 麻豆av在线久日| 人妻久久中文字幕网| 国产99久久九九免费精品| 国产视频一区二区在线看| 国产精品香港三级国产av潘金莲| 国产精品精品国产色婷婷| 一进一出抽搐动态| 可以在线观看毛片的网站| 国产精品国产高清国产av| 欧美日韩黄片免| 亚洲第一青青草原| 国产精品久久视频播放| xxx96com| 悠悠久久av| 黄片小视频在线播放| 国产精品精品国产色婷婷| 中文字幕人妻熟女乱码| 久久青草综合色| 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 国产精品自产拍在线观看55亚洲| 午夜老司机福利片| 亚洲色图综合在线观看| 美国免费a级毛片| 日本黄色视频三级网站网址| 男女下面进入的视频免费午夜 | 老司机在亚洲福利影院| 在线永久观看黄色视频| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区| 老司机深夜福利视频在线观看| 悠悠久久av| 免费看a级黄色片| 久久久国产精品麻豆| 日本一区二区免费在线视频| 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 最近最新免费中文字幕在线| 亚洲精品国产一区二区精华液| 亚洲色图av天堂| 日本欧美视频一区| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品久久男人天堂| 亚洲精品一卡2卡三卡4卡5卡| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 国产亚洲欧美精品永久| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| av免费在线观看网站| 久久精品aⅴ一区二区三区四区| 一个人观看的视频www高清免费观看 | or卡值多少钱| 狂野欧美激情性xxxx| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 国产亚洲精品综合一区在线观看 | 国产乱人伦免费视频| 国产国语露脸激情在线看| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 亚洲片人在线观看| 欧美成人一区二区免费高清观看 | 热re99久久国产66热| 久久欧美精品欧美久久欧美| 人人妻人人爽人人添夜夜欢视频| 国产极品粉嫩免费观看在线| 亚洲最大成人中文| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 日韩大尺度精品在线看网址 | 久久久久国内视频| 日日摸夜夜添夜夜添小说| 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 女警被强在线播放| 精品一区二区三区av网在线观看| 久久人人97超碰香蕉20202| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美激情在线| 国产三级在线视频| 欧美成人性av电影在线观看| 免费久久久久久久精品成人欧美视频| 嫩草影视91久久| 久久国产精品男人的天堂亚洲| 亚洲av熟女| 成熟少妇高潮喷水视频| 亚洲中文字幕日韩| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| 又紧又爽又黄一区二区| 精品久久久久久久毛片微露脸| 亚洲黑人精品在线| 亚洲情色 制服丝袜| 九色亚洲精品在线播放| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 国产亚洲精品一区二区www| 丁香欧美五月| 久久九九热精品免费| 人妻丰满熟妇av一区二区三区| 精品电影一区二区在线| 国产高清有码在线观看视频 | 女同久久另类99精品国产91| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 久久精品亚洲熟妇少妇任你| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 国产又色又爽无遮挡免费看| 亚洲av熟女| 久久人人爽av亚洲精品天堂| 两个人免费观看高清视频| 久久精品国产亚洲av高清一级| www.精华液| 久久精品亚洲熟妇少妇任你| 好男人电影高清在线观看| 精品乱码久久久久久99久播| 99久久国产精品久久久| 国产精品一区二区精品视频观看| 免费高清视频大片| 极品人妻少妇av视频| 老司机深夜福利视频在线观看| 一区二区日韩欧美中文字幕| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 久久久久亚洲av毛片大全| 十八禁网站免费在线| 国产亚洲av嫩草精品影院| 看片在线看免费视频| 精品人妻1区二区| 亚洲国产精品成人综合色| 亚洲欧洲精品一区二区精品久久久| 老熟妇仑乱视频hdxx| 日韩欧美免费精品| 亚洲在线自拍视频| 无遮挡黄片免费观看| a级毛片在线看网站| 久久热在线av| 日本五十路高清| 亚洲七黄色美女视频| 午夜久久久久精精品| 少妇粗大呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 欧美乱色亚洲激情| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 国产成人av激情在线播放| 精品国内亚洲2022精品成人| 日韩成人在线观看一区二区三区| 国产亚洲av嫩草精品影院| 咕卡用的链子| 久久天堂一区二区三区四区| 国产成人欧美在线观看| 国产成+人综合+亚洲专区| 日韩精品免费视频一区二区三区| 天天添夜夜摸| 欧美黄色淫秽网站| 精品少妇一区二区三区视频日本电影| 成人免费观看视频高清| 国产激情久久老熟女| 身体一侧抽搐| 亚洲精品中文字幕一二三四区| www.精华液| 亚洲 欧美 日韩 在线 免费| 国产三级黄色录像| 欧美+亚洲+日韩+国产| videosex国产| 国产精品野战在线观看| 99精品欧美一区二区三区四区| 校园春色视频在线观看| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 国产亚洲精品第一综合不卡| 老司机午夜十八禁免费视频| 纯流量卡能插随身wifi吗| 一本久久中文字幕| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯| av电影中文网址| 亚洲精品国产精品久久久不卡| 91大片在线观看| 国产一区在线观看成人免费| 老司机午夜福利在线观看视频| 精品电影一区二区在线| 国产精品乱码一区二三区的特点 | 久久伊人香网站| 成人三级黄色视频| 亚洲人成伊人成综合网2020| 久久欧美精品欧美久久欧美| 热99re8久久精品国产| 身体一侧抽搐| 国产欧美日韩一区二区精品| 999精品在线视频| a在线观看视频网站| 欧美精品亚洲一区二区| 免费搜索国产男女视频| 手机成人av网站| 免费观看人在逋| 亚洲 欧美 日韩 在线 免费| 桃红色精品国产亚洲av| 激情视频va一区二区三区| 视频在线观看一区二区三区| 变态另类成人亚洲欧美熟女 | 亚洲中文字幕一区二区三区有码在线看 | 亚洲情色 制服丝袜| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 国产一级毛片七仙女欲春2 | 国产成人精品无人区| 午夜日韩欧美国产| 国产精品爽爽va在线观看网站 | 在线观看舔阴道视频| 少妇被粗大的猛进出69影院| 可以在线观看的亚洲视频| 亚洲精品国产区一区二| 一区二区三区精品91| 精品少妇一区二区三区视频日本电影| a在线观看视频网站| 亚洲欧美日韩另类电影网站| 亚洲aⅴ乱码一区二区在线播放 | 天天一区二区日本电影三级 | 黄网站色视频无遮挡免费观看| 亚洲五月天丁香| 手机成人av网站| 男女下面插进去视频免费观看| 欧美绝顶高潮抽搐喷水| 一夜夜www| 国产精品亚洲美女久久久| 国产成人精品在线电影| 9191精品国产免费久久| 免费看美女性在线毛片视频| 欧美性长视频在线观看| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 亚洲av熟女| 岛国在线观看网站| 最近最新免费中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 一级片免费观看大全| 777久久人妻少妇嫩草av网站| 亚洲aⅴ乱码一区二区在线播放 | 色婷婷久久久亚洲欧美| 国产成人精品无人区| 美女国产高潮福利片在线看| av视频在线观看入口| 日韩国内少妇激情av| 91av网站免费观看| 曰老女人黄片| 国内毛片毛片毛片毛片毛片| 久久影院123| 亚洲精品在线观看二区| 免费不卡黄色视频| 97人妻精品一区二区三区麻豆 | 夜夜躁狠狠躁天天躁| 亚洲熟妇中文字幕五十中出| 啦啦啦观看免费观看视频高清 | 熟妇人妻久久中文字幕3abv| 欧美日韩乱码在线| 精品福利观看| 在线观看免费日韩欧美大片| 国产高清视频在线播放一区| 免费在线观看黄色视频的| 一进一出抽搐gif免费好疼| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 国产精品秋霞免费鲁丝片| 自线自在国产av| 性少妇av在线| 99re在线观看精品视频| 级片在线观看| 亚洲精品美女久久av网站| 精品国内亚洲2022精品成人| 亚洲av电影在线进入| 美国免费a级毛片| 18禁美女被吸乳视频| 757午夜福利合集在线观看| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看| 亚洲精品久久国产高清桃花| 免费在线观看影片大全网站| 黄色片一级片一级黄色片| 国产野战对白在线观看| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆 | 国产精品一区二区免费欧美| 宅男免费午夜| 亚洲男人的天堂狠狠| 午夜福利18| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 久久精品91无色码中文字幕| 激情视频va一区二区三区| 久久香蕉激情| 亚洲自拍偷在线| 婷婷丁香在线五月| 久久婷婷人人爽人人干人人爱 | 久久精品影院6| 可以在线观看毛片的网站| 亚洲狠狠婷婷综合久久图片| 色老头精品视频在线观看| 一边摸一边抽搐一进一小说| 成人av一区二区三区在线看| 欧美色欧美亚洲另类二区 | 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| 国产免费男女视频| 视频在线观看一区二区三区| 国产高清视频在线播放一区| 最新在线观看一区二区三区| 啦啦啦免费观看视频1| svipshipincom国产片| 国产成年人精品一区二区| 国产99久久九九免费精品| 男女下面插进去视频免费观看| 国产精品乱码一区二三区的特点 | 国产一级毛片七仙女欲春2 | 91老司机精品| 久久久久久大精品| 在线十欧美十亚洲十日本专区| 一个人观看的视频www高清免费观看 | 成人国产一区最新在线观看| 一区在线观看完整版| 亚洲中文字幕一区二区三区有码在线看 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜a级毛片| xxx96com| 国产精品自产拍在线观看55亚洲| 岛国在线观看网站| 成人手机av| 精品少妇一区二区三区视频日本电影| 母亲3免费完整高清在线观看| 精品不卡国产一区二区三区| 日本一区二区免费在线视频| 国产真人三级小视频在线观看| 国产高清videossex| 日本精品一区二区三区蜜桃| 亚洲av片天天在线观看| 一个人观看的视频www高清免费观看 | 宅男免费午夜| 久久久久久久久中文| 欧美日韩乱码在线| 久久香蕉精品热| 69精品国产乱码久久久| 丁香欧美五月| 黑人欧美特级aaaaaa片| 淫秽高清视频在线观看| 一边摸一边抽搐一进一出视频| 国产精品久久视频播放| 国产99白浆流出| 好男人在线观看高清免费视频 | 久久人妻福利社区极品人妻图片| 国产精品99久久99久久久不卡| 国产亚洲av嫩草精品影院| 乱人伦中国视频| 国产亚洲欧美精品永久| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 视频在线观看一区二区三区| 好男人电影高清在线观看| 欧美成人免费av一区二区三区| 欧美激情 高清一区二区三区| 热re99久久国产66热| cao死你这个sao货| 久久婷婷成人综合色麻豆| 亚洲免费av在线视频| 在线永久观看黄色视频| 精品久久久久久久人妻蜜臀av | 国产亚洲精品av在线| av网站免费在线观看视频| 黄色 视频免费看| 两人在一起打扑克的视频| 国产男靠女视频免费网站| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 欧美一级毛片孕妇| 午夜福利18| 中出人妻视频一区二区| 精品国产美女av久久久久小说| 久久 成人 亚洲| 高清黄色对白视频在线免费看| 亚洲一区二区三区色噜噜| 亚洲免费av在线视频| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看 | 性色av乱码一区二区三区2| 精品久久久精品久久久| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 咕卡用的链子| 在线天堂中文资源库| 在线免费观看的www视频| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱 | 女性被躁到高潮视频| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 国产激情欧美一区二区| 长腿黑丝高跟| 中文字幕av电影在线播放| 国产成人精品在线电影| 在线观看舔阴道视频| 欧美日韩乱码在线| 欧美精品啪啪一区二区三区| 亚洲一码二码三码区别大吗| www日本在线高清视频| 久久精品国产亚洲av高清一级| 成人国产综合亚洲| 久久天躁狠狠躁夜夜2o2o| 国产亚洲av高清不卡| 91国产中文字幕| 老汉色∧v一级毛片| 日本一区二区免费在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲免费av在线视频| 美女午夜性视频免费| 日本三级黄在线观看| 黄片小视频在线播放| 高潮久久久久久久久久久不卡| 亚洲熟妇熟女久久| 丝袜美足系列| 男女之事视频高清在线观看| 九色亚洲精品在线播放| 高清毛片免费观看视频网站| 老熟妇仑乱视频hdxx| √禁漫天堂资源中文www| 午夜福利免费观看在线| 亚洲欧美激情在线| 成年女人毛片免费观看观看9| 亚洲av成人av| 亚洲色图av天堂| 99精品久久久久人妻精品| 日韩欧美一区视频在线观看| 久久久久久久久中文| 国产成人影院久久av| 91成人精品电影| 人妻丰满熟妇av一区二区三区| cao死你这个sao货| 神马国产精品三级电影在线观看 | 久久草成人影院| 日韩三级视频一区二区三区| 国产精品免费视频内射| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 激情在线观看视频在线高清| 99久久国产精品久久久| 亚洲第一青青草原| 日韩国内少妇激情av| 可以在线观看的亚洲视频| 他把我摸到了高潮在线观看| 亚洲一区二区三区不卡视频| 麻豆国产av国片精品| 久热这里只有精品99| 亚洲av片天天在线观看| 久久九九热精品免费| 国产男靠女视频免费网站| 成人亚洲精品av一区二区| 一进一出好大好爽视频| 脱女人内裤的视频| 免费看美女性在线毛片视频| 一边摸一边做爽爽视频免费| 大码成人一级视频| 男女床上黄色一级片免费看| 中文字幕精品免费在线观看视频| 老鸭窝网址在线观看| 一区二区三区激情视频| 久久久精品国产亚洲av高清涩受| 国产精品免费一区二区三区在线| 欧美乱色亚洲激情| 一区二区三区精品91| 精品人妻1区二区| 日本三级黄在线观看| 国产三级黄色录像| 女性被躁到高潮视频| 久热这里只有精品99| 香蕉丝袜av| 天天一区二区日本电影三级 | 久久久久国内视频| 嫩草影视91久久| 国内精品久久久久久久电影| 日本五十路高清|