• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GPCR A2AAR Agonist Binding and Induced Conformation Changes of Functional Switches

    2014-07-19 11:17:08XueqinPangJianyongLiu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Xue-qin Pang,Jian-yong Liu

    State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    GPCR A2AAR Agonist Binding and Induced Conformation Changes of Functional Switches

    Xue-qin Pang,Jian-yong Liu?

    State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    Agonist binding of A2Aadenosine receptor(A2AAR)shows protective e ff ects against infl ammatory and immune.E ff orts are exerted in understanding the general mechanism and developing A2AAR selectively binding agonists.Using molecular dynamics(MD)simulations,we have studied the interactions between A2AAR and its agonist(adenosine),and analyzed the induced dynamic behaviors of the receptor.Key residues interacting with adenosine are identi fied:A632.61,I662.64,V843.32,L853.33,T883.36,F1685.29,M1775.38,L2496.51, H2506.52,and N2536.55interacting with adenosine with affinities larger than 0.5 kcal/mol. Moreover,no interaction between adenosine and L1675.28is observed,which supports our previous fi ndings that L1675.28is an antagonist speci fi c binding reside.The dynamic behaviors of agonist bound A2AAR are found to be di ff erent from apo-A2AAR in three typical functional switches:(i)tight“ionic lock”forms in adenosine-A2AAR,but it is in equilibrium between formation and breakage in apo-A2AAR;(ii)the“rotamer toggle switch”, T883.36/F2426.44/W2466.48,adopted di ff erent rotameric conformations in adenosine-A2AAR and apo-A2AAR;(iii)adenosine-A2AAR has a fl exible intracellular loop 2(IC2)and α-helical IC3,while apo-A2AAR preferred α-helical IC2 and fl exible IC3.Our results indicate that agonist binding induced di ff erent conformational rearrangements of these characteristic functional switches in adenosine-A2AAR and apo-A2AAR.

    A2Aadenosine receptor,Molecular dynamics,Adenosine,Speci fi c binding, Conformational dynamics,Ionic lock,Rotamer toggle switch,Secondary structure

    I.INTRODUCTION

    Adenosine is produced under conditions of infection, injury,or stress.It acts as an endogenous agonist to A2Aadenosine receptor(A2AAR),which belongs to the G-protein coupled receptors(GPCRs)trans-membrane protein family.A2AAR adopts active and inactive allosteric equilibrium upon extracellular chemical stimuli[1].The binding of adenosine to A2AAR can activate the receptor and exert neural functions in the central nervous system[2],most possibly by elevating the intracellular level of cyclic AMP(cAMP)[3].It has been demonstrated that A2AAR agonist can suppress inf l ammation.Meanwhile,it has been observed in A2AAR silenced mice enhanced inf l ammatory response. Thus,agonist bound A2AAR shows protective effects against inf l ammatory and immune[4-6].In order to understand how agonist bound A2AAR suppresses the inf l ammatory responses,different mechanisms were proposed.The activation of NF-κB(nuclear factor kappalight-chain-enhancer of activated B cells)pathway was demonstrated f i rstly[7].But other studies revealed different pathways where the NF-κB was not activated[8, 9].The general mechanism of A2AAR activation is far from clear.

    In the past decades,new achievements were obtained on determining the molecular structures and dynamic properties of A2AAR.Crystal structures binding with either agonist[10,11]or antagonist[12-14]were reported.These new structures lead to crucial hints to the functional mechanisms.Meanwhile,computational studies revealed dynamic information of A2AAR,and provided detailed understandings of its functionality. Conformational dynamics of A2AAR bound with agonist,adenosine or UK432097,suggested that the binding of adenosine was highly dynamical while UK432097 stabilized a much tighter neighborhood of active conformation.It thus explained the 100-to 1000-fold greater efficacy of UK432097 compared to adenosine [15].Simulations of A2AAR in both cholesterolfree and cholesterol-bound POPC(1-palmitoyl-2-oleoylsn-glycero-3-phosphocholine)membrane bilayers suggested that cholesterol could bind with A2AAR at the interface of TM1,TM2,and TM3,and be functioned as a cofactor with the agonist in GPCR activation[16].However,due to crystal packing and the low resolution of crystal structures(ranging from 2.6?A to 3.6?A),some loops of the protein are incomplete or shown in poor resolution.In this work,we describe the agonist binding at molecular level and illustrate important A2AAR conformation changes,which were not reported in previous studies on A2AAR agonist binding.

    Adenosine is an endogenous agonist to A2AAR.It bounds to A2AAR and activates the receptor to exert neural functions in the central nervous system in human body[2].Drugs,either agonist or antagonist, will compete with adenosine for binding with A2AAR and then enhance or inhibit the activation of A2AAR, respectively.Thus to study the binding of adenosine and the induced dynamic behaviors of the receptor is of fundamental importance.This could be useful for the future experimental studies to unravel the molecular mechanism of A2AAR functioning.A2AAR shares the conserved topology structural fold in the GPCR protein family,in which the conformation of the highly conserved motifs and secondary structures of the loops rearrange,switching on and of fthe receptor.Among them,the“ionic lock”,“rotamer toggle switch”,and IC2/IC3 are identif i ed to be the characteristic functional switches of proteins in GPCR family.The conformations of these switches are different between active and inactive GPCRs[17-28].Fluorescence resonance energy transfer(FRET)[29]and site-directed spin labeling(SDSL)[30]could monitor the conformation adjustments of some key regions.However,direct tracking of the coherent conformation changes is difficult to achieve.

    In this work,we studied the agonist binding and the induced conformational dynamics of the functional switches in A2AAR by comparing the conformations between apo-A2AAR and adenosine-A2AAR,and suggested structural indicators for A2AAR agonism.According to our observation,the ionic lock,rotamer toggle switch and secondary structures of IC2 and IC3, give different conformations between apo-A2AAR and adenosine-A2AAR.

    II.METHODS

    A.Structure preparation of A2AAR

    The missing intracellular loop 3(IC3)and extracellular loop 2(EC2)were constructed by homo-modeling with Swiss Model[31].The vasopressin V2 receptor (PDBID 2JX4)and β2AR(PDB ID:2RH1)were used as templates,respectively.The generated structures were examined by Verify3D[32]and proven to be physical.Furthermore,a 1000-step energy minimization was performed by AMBER10 package[33].The H++ [34]was applied to determine the protonation state for titratable groups of the protein at pH=7.0.Missing hydrogen atoms in crystal structure were added by LEaP [33].

    B.Construction of apo-A2AAR and adenosine-A2AAR

    The apo-A2AAR model was obtained by removing the binding antagonist ZM241385 from the crystal structure.Adenosine-A2AAR model was prepared with Autodock 4.0 package[35]with the same protocol used in our previous work[36].The number of torsions in adenosine is 5.Referring to Autodock tutorial[35]and the reported applications[37],we performed 250 docking trials with 2.5×106poses evaluated in each trial and the one with the highest binding affinity was recorded in each trial.To cluster the 250 poses reported at the end of each docking experiment,we have tested the RMSD-tolerance of 2.0,1.0,and 0.5?A.The RMSD-tolerance of 2.0?A will cluster the binding modes into one big group and cannot classify different docking modes well. The RMSD-tolerance of 0.5?A will cluster the binding modes into too many small groups.The RMSD-tolerance of 1.0?A can cluster the binding modes into several representative groups.Thus,the resulting binding modes were clustered by RMSD-tolerance of 1.0?A. Four biggest clusters with more than 15 members were gathered.To get the most probable binding mode,the one with lowest binding energy score in each of the four clusters was chosen to perform further MD simulation. The binding modes were further determined with MD simulations and detailed binding energy calculations.

    C.System setup and force f i eld parameters for MD simulations

    In VMD[38],each A2AAR model was inserted into a 100?A×100?A POPC bilayers.POPC molecules within 5.0?A of any A2AAR atoms were removed.The A2AAR-lipid was solvated by 50?A thick water layers in both sides.The full system was neutralized with Clcounter-ions with Amber.The f i nal system size was 100?A×100?A×159?A,containing~1.32×105atoms.

    MD simulations were performed by NAMD package [39]with Amber force f i eld FF99SB for the protein and GAFF for adenosine and POPC lipids.Atomic charges of adenosine were derived from R.E.D[40],in which structure optimizations and electrostatic potential calculations were taken with Gaussian 03[41]at the level of HF/6-31G?.The partial charges were fitted using RESP algorithm.The atom types were allocated by ANTECHAMBER module.The atom charge and atom type of POPC was referred to that in Ref.[42].

    D.Protocol of MD simulation

    Firstly,the system was relaxed by a combined energy minimization and MD simulation scheme.The protein,adenosine,POPC molecules and crystal water were f i xed with a force constant of 2 kcal/(mol·?A2),and the solvent was relaxed using 104-step energy minimization followed by 5×105-step NPγT MD simulation.Af-ter that,the constrain on POPC molecules was removed and the whole system was relaxed by another 104-step energy minimization and 5×105-step NPγT MD simulation.The agonist,crystal water and protein molecules were relaxed gradually using the same protocol.

    The whole system was heated gradually to 310 K by Langevin dynamics with a damping coefficient of 1.0 ps-1.NPγT ensemble was used with the surface tension of 60 mN/m and the pressure of 1.01325 bar. The Langevin piston Nos′e-Hoover method was used to control the pressure[43,44],with the damping and oscillation time scales of Langevin piston as 50 and 100 fs, respectively.Covalent bonds involving hydrogen were restrained by the SHAKE algorithm[45].The shortranged nonbonded interaction was switched of fgradually from 10?A to 12?A.The PME method[46]was applied to treat long-range electrostatic interactions,and the grid size is 120?A×120?A×180?A.A multiple-timestep algorithm was used with the covalent force evaluated every 1.0 fs.For the f i rst 10 ns simulation,the multiple time step scheme of 1.0 fs for short-range nonbonded force and 2.0 fs for long-range electrostatic force was used;then the time steps of 2.0 fs for short-range nonbonded force and 4.0 fs for long-range electrostatic force were used in the following simulation.

    E.Binding energy decomposition

    Binding energies between adenosine and protein molecules were calculated and decomposed on each residue of the protein with the MM-GBSA module in Amber[33].The calculations were performed according to the thermodynamic cycle shown in Fig.1.The energy terms were averaged over 103frames,which were extracted from each 10 ns trajectory in every 40th ns of the MD simulation.Snapshots of 40-50,90-100,and 140-150 ns were calculated,respectively.In the energy decomposition,the contributions of each term were decomposed to each residue of the protein.The binding mode selection of adenosine was performed in the same way.Since we mainly focused on which residues contribute greatly to ligand binding,we did not consider entropy contribution in this work[47-50].

    F.Analysis protocols

    The root-mean-square deviation(RMSD),distances between specif i c atom pairs,dihedral angles of residues, and hydrogen bonding interactions were analyzed by PTRAJ module of AMBER10.RMSD of protein and ligands were used to evaluate the convergence of the simulation.DSSP algorithm[51]was applied to assign the secondary structure content of IC2 and IC3 during MD simulation.

    FIG.1 Thermodynamic cycle used in the binding free energy calculations.

    FIG.2 Clustered histogram of different binding poses for adenosine-A2AAR.RMSD-tolerance of 1.0?A was used.

    III.RESULTS AND DISCUSSION

    A.Determined adenosine binding mode via docking and binding energy decomposition

    FIG.3 Adenosine-A2AAR binding mode illustrations.(a)Four selected binding modes predicted by Autodock.The rigid protein in docking process is shown in grey cartoon.Adenosine is shown in green,cyan,magenta and yellow sticks in the binding modes of Ade-4,Ade-8,Ade-10,and Ade-19,respectively.(b)Binding mode of Ade-8 predicted by Autodock. (c)Comparison between the Autodock result and the f i nal snapshot from short MD simulation of the Ade-8 binding mode. Ade-A2AAR from MD simulation is shown in cartoon and colored in magenta.(d)Final snapshot from the short MD simulation of Ade-8.The protein is shown in magenta cartoon,adenosine is shown in magenta sticks,and residues within 3 ?A of adenosine are shown in green sticks.

    FIG.4 Binding energy decompositions of the four selected binding modes between adenosine and A2AAR.The total binding energy was decomposed on each residue of A2AAR and interactions greater than 0.5 kcal/mol were illustrated.

    To determine the binding site of adenosine,we f i rst predicted the binding mode between adenosine and A2AAR by AutoDock,and then selected the most typical binding mode from short MD simulations and binding energy decomposition calculations.Four clusters with more than 15 members were gathered(Fig.2).To get the most probable binding mode,the one with lowest binding energy score in each of the 4 clusters were chosen for further calculations(Fig.2 and Fig.3(a,b)). Since the docking program did not consider the f l exibility of the protein structure,we performed MD simulations on the four most representative structures to achieve the equilibrium(Fig.3(c,d)).Binding energies between adenosine and protein were calculated with MM-GBSA in every 10 ps during the simulation, and further decomposed into terms of contributions on a per-residue basis for each binding mode.Residues, such as F1825.43,H2506.52,N2536.55,I2747.39,H2787.43, and S2817.46were reported to be important for agonist binding in experiments[52].Meanwhile,mutations of N2536.55A and H2506.52A would abolish agonist binding[14].It thus reveals that N2536.55and H2506.52play crucial roles in agonist binding.(Residues are labeled according to the Ballesteros-Weinstein residue numbering method[53],and supplementary material). As shown in Fig.4,in the binding mode of Ade-8,adenosine interacted strongly with most of those residues, especially with N2536.55and H2506.52.However,in the other three predicted binding modes,no interaction between adenosine and H2506.52,which is crucial for agonist binding,was detected.Therefore,we chose Ade-8 as the most reasonable binding mode for further MD simulation.Besides,all the interactions predicted in Ade-8 are observed in the recently reported agonist bound A2AAR crystal structure(PDBID 2YDO,but in poor resolution,3.0?A),which proves the validity of our model[11].For the interaction observed in the crystal structure,all of the four binding modes failed to predict the interactions between adenosine and A632.61, N1815.42,and S2777.42.This might be because the f i xed protein did not equilibrate enough during the short MD simulation and the f l exibility of the protein was not fully considered during the binding energy calculation.However,it could also be an artifact of the poor resolution of the crystal structure.All of the predicted bindingmodes,as well as the recently published crystal structure,lack strong interactions between adenosine and F1825.43,H2787.43and S2817.46.Since the ligand binding experiments were done with other agonist rather than adenosine,different ligand types might be the reason for this.

    B.Structure stability evaluation during MD simulation

    The stability of the simulation was evaluated by RMSD with the crystal structure as refe?rence.Rapidrises of the protein RMSD pro fi le(3-4A)within the fi rst 3 ns simulation suggested that protein conformation has been rearranged from the crystal structure(Fig.5(a)).These structure changes mainly resulted from two factors,one was the membrane environment,which indicated the di ff erence between the protein conformations in membrane(simulation)and in water(crystal);the other one was the replacement of exogenous T4L section(crystal)with homology-modeled structures of EC2 and IC3(simulation).The RMSD plateau after 20 ns suggested that the resulted structures were reasonably stable.As revealed by the fl uctuation of the adenosine RMSD(Fig.5(a)),the binding of adenosine is quite dynamic.Adenosine alternated its binding pose after~40 ns during the MD simulation, relative to the predicted binding mode.The adenosine in the new binding pose showed a similar conformation as the recent published adenosine-A2AAR crystal structure[11].However,in the MD simulations which started from the adenosine-A2AAR crystal,the bound adenosine also inverted compared to the crystal structure,and had similar conformation as we predicted[15]. Thus,our simulation also supported that adenosine was highly dynamic when it bound to A2AAR[15].

    C.Identif i ed key adenosine-binding residues in A2AAR via interaction energy analysis

    In order to identify important A2AAR residues that interacted with adenosine,we analyzed the interactions between A2AAR and adenosine by averaging the binding energy over 3 trajectories for adenosine-A2AAR. Residues with interactions stronger than 0.5 kcal/mol are shown in Fig.6.The detailed decompositions with standard deviation are shown in Table I.Among the experimentally reported residues,which are important to agonist binding[14,52],adenosine interacted strongly with H2506.52and N2536.55.Besides,the interactions between adenosine and A632.61,I662.64,V843.32, L853.33,T883.36,F1685.29,M1775.38and L2496.51were also detected.These interactions are consistent with the recently reported agonist bound A2AAR crystal structure,which proves the validity of our model[11]. In our previous work,L1675.28was found to be the antagonist specif i c binding residue,which only interactedwith antagonist but not agonist[36].During the MD simulation of adenosine-A2AAR,no strong interaction (binding affinity smaller than 0.2 kcal/mol)between L1675.28and adenosine was formed,which further supports our point.

    TABLE IBinding energy decomposition of adenosine-A2AAR in MD simulation.Residues,whose interactions with adenosine were stronger than 0.5 kcal/mol,are shown.

    D.Adenosine binding induced the formation of the tight ionic-lock

    The ionic lock was believed to be important in the inactive state of GPCR[14,17,23,54,55],but it was broken in the crystal structure of the inactive A2AAR [14].Our previous work suggested that the ionic lock in apo-A2AAR is equilibrated between forms of formation and that of breakage,while it stayed broken in the two antagonist binding holo-A2AARs[36].Besides,the analysis on hydrogen bond interactions of R1023.50and E2286.30suggested that the ionic lock is consisted of R1023.50-E2286.30,R1073.55-E2286.30,or R1023.50-H2306.32.In adenosine-A2AAR,the distances between R1023.50-E2286.30are the shortest.Thus we considered the R1023.50-E2286.30as the ionic lock.Figure 7 shows the time series of the shortest distance between this residue pair.In adenosine-A2AAR,salt bridge between R1023.50and E2286.30formed and maintained throughout the MD simulation.While in apo-A2AAR,the salt bridge between R1023.50and E2286.30formed and maintained within the f i rst 160 ns.Then the salt bridge between R1073.55and E2286.30formed from 190 ns to 200 ns.Compared to apo-A2AAR,for which the ionic lock equilibrated between lock and unlock states,adenosine-A2AAR formed tight ionic lock.The smaller ionic lock distances in adenosine-A2AAR indicated that agonist binding enhanced the lock and reduced the relative distance between TM3 and TM6.

    FIG.5(a)The RMSD of protein and adenosine during the MD simulation.Backbone atoms of the protein and heavy atoms of the bound ligand were included in the RMSD calculations.(b)Binding mode comparison between the simulation and recent published crystal structure.Adenosine structure is shown in sticks,with the predicted binding mode colored in green,the simulated binding mode at 50 ns in yellow and the crystal structure(PDBID:2ydo)in magenta.The protein at 50 ns is shown in yellow cartoon,while the 2ydo crystal structure is shown in magenta cartoon.

    FIG.6 Protein-ligand interactions of adenosine-A2AAR.(a)Binding energy decomposition.(b)Illustration of interaction in adenosine-A2AAR.A2AAR is shown in green cartoon,adenosine is shown in magenta stick-spheres,residues interacted with adenosine are shown in blue sticks.

    E.Adenosine binding induced rotamer toggle switch in A2AAR

    Rotamer toggle switch was another structural element that could switch the GPCRs between active and inactive states by changing their χ1 rotamers(measured by the N-Cα-Cβ-Cγ torsion angle)in response to ligand binding[22].T883.36/F2426.44/W2466.48was identif i ed as the rotamer toggle switch in A2AAR.But this rotamer toggle switch adopted different rotation states between apo-A2AAR and adenosine-A2AAR.W2466.48remained in gauche-state(χ1 near-60?)in adenosine-A2AAR,but shifted to trans(χ1 near±180?)in apo-A2AAR(Fig.8).T883.36and F2426.44took trans rotamers in adenosine-A2AAR,but both of them switched to gauche-in apo-A2AAR(Fig.8).Rotamer toggle switch of the same conformations in adenosine-A2AAR is also reported in antagonist bound holo-A2AARs[36].

    F.Antagonist binding induced secondary structure changes of IC2 and IC3

    FIG.7 Ionic lock time series of apo-A2AAR and adenosine-A2AAR,which were assessed by both the side chain and backbone distances between residues involved.The corresponding distances observed in two inactive rhodopsin crystal structures (PDBID 1U19 and 1L9H)are indicated by orange lines.(a)The ionic lock of apo-A2AAR was evaluated by the closest side chain and backbone distances between residue pairs of R1023.50-E2286.30and R1073.55-E2286.30.The nearest N-O distance between R1023.50and E2286.30is shown in cyan,and the nearest N-O distance between R1073.55and E2286.30is shown in light pink.The smoothed side chain distances(N-O distances)and backbone distances(Cα-Cα distance) are shown in black and blue,respectively.(b)The ionic lock of adenosine-A2AAR was assessed by the distances between R1023.50and E2286.30.The distance between R102(NH1)and E228(OE1)is shown in light pink;the distance between R102(NH1)and E228(OE2)is shown in cyan,the nearest N-O distance is shown in black,while the Cα-Cα distance is shown in blue.

    FIG.8 Rotamer changes of T883.36/F2426.44/W2466.48in apo-A2AAR(a)and adenosine-A2AAR(b).(gauche+,χ1 near 60?;gauche-,χ1 near-60?;and trans,χ1 near±180?).W2466.48switched to a trans conformation in apo-A2AAR,whereas it remained gauche-in adenosine-A2AAR.F2426.44sampled frequently as gauche-in apo-A2AAR,whereas it remained trans in adenosine-A2AAR.T883.36frequently sampled gauche-in apo-A2AAR,whereas it mostly adopted trans conformations in adenosine-A2AAR.

    For all GPCRs,IC2(TM3-IC2-TM4)and IC3(TM5-IC3-TM6)were believed to be“switch regions”that could alter the equilibrium between active and inactive states.The change in secondary structures of IC2 and IC3 could indicate the activation or inactivation of GPCR.The formation of α-helical IC2 might restrain GPCRs in their inactive states and weaken their binding to G proteins[24,28].The α-helical IC3 was suggested to be crucial for interactions between GPCR and the G proteins,and to further activate G proteins[56, 57].Our previous study showed that apo-A2AAR preferred α-helical IC2 and f l exible IC3;whereas in antagonist bound holo-A2AARs,an irregular IC2 and a short α-helical or 310-helical IC3 were more frequently observed[36].We compared the secondary structures of IC2 and IC3 between the apo-A2AAR and adenosine-A2AAR.In apo-A2AAR,IC2 adopted α-helix,while in adenosine-A2AARs it frequently behaved as irregular loops(Fig.9(a,c)and cartoons shown in Fig.10).For IC3,though the initial structure from homo-model was a long α-helix,it quickly transited to irregular loops and remained f l exible in apo-A2AAR,whereas a short α-helix(or 310-helix)was formed in adenosine-A2AAR (Fig.9(b),(d)and Fig.10).Thus,adenosine binding in A2AAR induced the secondary structure adjustments in IC2 and IC3,and the induced conformational changes are similar to those in antagonist bound A2AAR.The conformational changes of IC2 and IC3 in A2AAR couldbe a dynamic indicator for the binding of both agonist and antagonist.

    FIG.9 Secondary structure contents of IC2 and IC3 in the apo-A2AAR and adenosine-A2AAR during MD simulations. α-helix is colored in black,310-helix is colored in blue,extended strand in β ladder and isolated β-bridge are colored in green,hydrogen bonded turns,bends and coils are called loops,and colored in cyan,yellow and red,respectively.(a)IC2 in apo-A2AAR preferred a short α-helix.(b)IC3 adopted f l exible irregular loops in apo-A2AAR.(c)In adenosine-A2AAR, IC2 frequently exhibited irregular loops.(d)IC3 formed a short α-helix or 310-helix in adenosine-A2AAR.

    FIG.10 Secondary structures of apo-A2AAR and adenosine-A2AAR shown in cartoon with TMs colored in rainbow(TM1 limon,TM2 green,TM3 purple,TM4 pink,TM5 salmon,TM6 marine,TM7 cyan and TM8 wheat).For IC2,α-helix is colored in blue and irregular loops colored in yellow.For IC3,α-helix is colored in red while irregular loops colored in green. (a)In apo-A2AAR,IC2 formed quite stable α-helix while IC3 is a fl exible loop.(b)In adenosine-A2AAR,IC2 samples fl exible loops more frequently and IC3 formed α-helixes.(c)and(d)The back view of apo-A2AAR and adenosine-A2AAR, respectively.

    IV.CONCLUSION

    In this work,the adenosine binding to A2AAR and its induced conformational dynamics were studied.Firstly we investigated the agonist binding and identif i ed key interacting residues by binding energy calculation and its decomposition.Besides H2506.52and N2536.55, A632.61,I662.64,V843.32,L853.33,T883.36,F1685.29, M1775.38and L2496.51were also detected to interact with adenosine,which was consistent with the recently published adenosine-A2AAR crystal structure. Moreover,no strong interaction between adenosine and L1675.28was observed,which agreed with our previous fi ndings that L1675.28is an antagonist speci fi c binding reside[36].Thus,enhancing the antagonist binding with L1675.28could possibly trigger the A2AAR inactivation,and agonist interacting with L1675.28could possibly lower the activating efficiency.

    Furthermore,wedemonstratedthecharacteristic functional switches:ionic lock,rotamer toggle switch and IC2/IC3,by comparing apo-A2AAR with adenosine-A2AAR.Tight ionic lock between TM3 and TM6 formed in adenosine-A2AAR,while the ionic lock in apo-A2AAR equilibrated between lock and unlock comformations.The rotamer toggle switch, T883.36/F2426.44/W2466.48,adopted different χ1 rotation states in apo-A2AAR and adenosine-A2AAR.Besides,apo-A2AAR adopted α-helical IC2 and f l exible IC3,while adenosine-A2AAR showed f l exible IC2 and α-helical IC3.

    Together with our previous work on antagonist bound A2AARs[36],the results suggested that agonist/antagonist bound A2AARs had similar rotamer toggle switch conformation and secondary structures of IC2/IC3,which were different from apo-A2AAR.Meanwhile,tight ionic lock was formed in agonist-A2AAR, but it was broken in antagonist bound A2AAR and equilibrated between formation and breakage in apo-A2AAR.Thus,the agonism/antagonism dynamic behaviors of these switches could be used as monitors of A2AAR activation/inactivation transition and help to unravel the functional mechanisms of A2AAR.

    Supplementary material:Ballesteros-Weinstein residue numbering methods are shown as follows.For GPCRs,in addition to numbering the residues by their positions in the primary amino acid sequence, the residues have also been numbered in superscripts (X.YY)that indicate their position in each transmembrane helix(X,helix number,from 1 to 8)relative to the most conserved reference residue in that helix(YY). This residue is arbitrarily assigned the number 50,and numbers decrease toward the N-terminus and increase toward the C-terminus.However,the numbering is not used in loop regions beyond residues X.20 and/or X.80 or T4L.For example,W2466.48is the 246th amino acid in A2AAR,and it is 2 residues N-terminus adjacent to the most conserved reside P2486.50in TM6.

    [1]M.A.Hanson and R.C.Stevens,Structure 17,8 (2009).

    [2]J.Zezula and M.Freissmuth,Br.J.Pharmacol.153, S184(2008).

    [3]J.A.Beavo and L.L.Brunton,Nat.Rev.Mol.Cell Biol.3,710(2002).

    [4]V.Ramkumar,D.M.Hallam,and Z.Z.Nie,Jpn.J. Pharmacol.86,265(2001).

    [5]J.Linden,Annu.Rev.Pharmacol.41,775(2001).

    [6]M.V.Sitkovsky,D.Lukashev,S.Apasov,H.Kojima, M.Koshiba,C.Caldwell,A.Ohta,and M.Thiel,Annu. Rev.Immunol.22,657(2004).

    [7]S.Majumdar,and B.B.Aggarwal,Oncogene 22,1206 (2003).

    [8]Q.Liu,J.Li,J.Khoury,S.P.Colgan,and J.C.Ibla, J.Biol.Chem.284,13686(2009).

    [9]J.Khoury,J.C.Ibla,A.S.Neish,and S.R.Colgan,J. Clin.Invest.117,703(2007).

    [10]F.Xu,H.X.Wu,V.Katritch,G.W.Han,K.A.Jacobson,Z.G.Gao,V.Cherezov,and R.C.Stevens, Science 332,322(2011).

    [11]G.Lebon,T.Warne,P.C.Edwards,K.Bennett,C. J.Langmead,A.G.W.Leslie,and C.G.Tate,Nature 474,521(2011).

    [12]T.Hino,T.Arakawa,H.Iwanari,T.Yurugi-Kobayashi, C.Ikeda-Suno,Y.Nakada-Nakura,O.Kusano-Arai,S. Weyand,T.Shimamura,N.Nomura,A.D.Cameron, T.Kobayashi,T.Hamakubo,S.Iwata,and T.Murata, Nature 482,237(2012).

    [13]A.S.Dore,N.Robertson,J.C.Errey,I.Ng,K.Hollenstein,B.Tehan,E.Hurrell,K.Bennett,M.Congreve, F.Magnani,C.G.Tate,M.Weir,and F.H.Marshall, Structure 19,1283(2011).

    [14]V.P.Jaakola,M.T.Griffith,M.A.Hanson,V.Cherezov,E.Y.T.Chien,J.R.Lane,A.P.Ijzerman,and R. C.Stevens,Science 322,1211(2008).

    [15]J.Y.Lee and E.Lyman,Biophys.J.102,2114(2012).

    [16]E.Lyman,C.Higgs,B.Kim,D.Lupyan,J.C.Shelleys, R.Farid,and G.A.Voth,Structure 17,1660(2009).

    [17]P.Scheerer,J.H.Park,P.W.Hildebrand,Y.J.Kim,N. Krauss,H.W.Choe,K.P.Hofmann,and O.P.Ernst, Nature 455,497(2008).

    [18]D.L.Farrens,C.Altenbach,K.Yang,W.L.Hubbell, and H.G.Khorana,Science 274,768(1996).

    [19]S.P.Sheikh,T.A.Zvyaga,O.Lichtarge,T.P.Sakmar, and H.R.Bourne,Nature 383,347(1996).

    [20]R.Singh,D.P.Hurst,J.Barnett-Norris,D.L.Lynch, P.H.Reggio,and F.Guarnieri,J.Pept.Res.60,357 (2002).

    [21]L.Shi,G.Liapakis,R.Xu,F.Guarnieri,J.A.Ballesteros,and J.A.Javitch,J.Biol.Chem.277,40989 (2002).

    [22]K.Palczewski,T.Kumasaka,T.Hori,C.A.Behnke, H.Motoshima,B.A.Fox,I.Le Trong,D.C.Teller, T.Okada,R.E.Stenkamp,M.Yamamoto,and M. Miyano,Science 289,739(2000).

    [23]T.Warne,M.J.Serrano-Vega,J.G.Baker,R. Moukhametzianov,P.C.Edwards,R.Henderson,A. G.Leslie,C.G.Tate,and G.F.Schertler,Nature 454, 486(2008).

    [24]E.S.Burstein,T.A.Spalding,and M.R.Brann,J. Biol.Chem.273,24322(1998).

    [25]S.K.F.Wong,E.M.Parker,and E.M.Ross,J.Biol. Chem.265,6219(1990).

    [26]J.Wess,T.I.Bonner,F.Dorje,and M.R.Brann,Mol. Pharmacol.38,517(1990).

    [27]S.K.F.Wong,and E.M.Ross,J.Biol.Chem.269, 18968(1994).

    [28]J.F.Shan,H.Weinstein,andE.L.Mehler, Biochemistry-US 49,10691(2010).

    [29]M.Ambrosio,A.Zurn,and M.J.Lohse,Neuropharmacology 60,45(2011).

    [30]C.Altenbach,K.Yang,D.L.Farrens,Z.T. Farahbakhsh,H.G.Khorana,and W.L.Hubbell, Biochemistry-US 35,12470(1996).

    [31]K.Arnold,L.Bordoli,J.Kopp,and T.Schwede,Bioinformatics 22,195(2006).

    [32]D.Eisenberg,R.Luthy,and J.U.Bowie,Macromolecular Crystallography,Pt.B,277,396(1997).

    [33]T.A.D.D.A.Case,T.E.Cheatham,III,C.L.Simmerling,J.Wang,R.E.Duke,R.Luo,M.Crowley, R.C.Walker,W.Zhang,K.M.Merz,B.Wang,S. Hayik,A.Roitberg,G.Seabra,I.Kolossva′ary,K.F. Wong,F.Paesani,J.Vanicek,X.Wu,S.R.Brozell,T. Steinbrecher,H.Gohlke,L.Yang,C.Tan,J.Mongan, V.Hornak,G.Cui,D.H.Mathews,M.G.Seetin,C. Sagui,V.Babin,and P.A.Kollman,AMBER 10,San Francisco:University of California(2008).

    [34]J.C.Gordon,J.B.Myers,T.Folta,V.Shoja,L.S. Heath,and A.Onufriev,Nucleic Acids Res.33,W368 (2005).

    [35]O.Trott and A.J.Olson,J.Comput.Chem.31,455 (2010).

    [36]X.Q.Pang,M.J.Yang,and K.L.Han,Proteins Proteins.81,1399(2013).

    [37]O.Vajragupta,P.Boonchoong,G.M.Morris,and A. J.Olson,Bioorg.Med.Chem.Lett.15,3364(2005).

    [38]W.Humphrey,A.Dalke,and K.Schulten,J.Mol. Graphics.14,33(1996).

    [39]J.C.Phillips,R.Braun,W.Wang,J.Gumbart,E. Tajkhorshid,E.Villa,C.Chipot,R.D.Skeel,L.Kale, and K.Schulten,J.Comput.Chem.26,1781(2005).

    [40]F.Y.Dupradeau,C.Cezard,R.Lelong,E.Stanislawiak,J.Pecher,J.C.Delepine,and P.Cieplak,Nucleic Acids Res 36,D360(2008).

    [41]G.W.T.M.J.Frisch,H.B.Schlegel,G.E.Scuseria, M.A.Robb,J.R.Cheeseman,J.A.Jr.Montgomery, T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam, S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M. Cossi,G.Scalmani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J. Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao, H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian, J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R. Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin, R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M. C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A. G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G. Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng, A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J. A.Pople,Gaussian 03,Revision C.02,Wallingford CT: Gaussian,Inc.,(2004).

    [42]T.Wang and Y.Duan,J.Am.Chem.Soc.129,6970 (2007).

    [43]G.J.Martyna,D.J.Tobias,and M.L.Klein,J.Chem. Phys.101,4177(1994).

    [44]S.E.Feller,Y.H.Zhang,R.W.Pastor,and B.R. Brooks,J.Chem.Phys.103,4613(1995).

    [45]J.P.Ryckaert,G.Ciccotti,and H.J.C.Berendsen,J. Comput.Phys.23,327(1977).

    [46]T.Darden,D.York,and L.Pedersen,J.Chem.Phys. 98,10089(1993).

    [47]H.Y.M.Chen,X.X.Lin,Y.T.Chen,M.L.Wang, and J.H.Liu,Commun.Comput.Chem.1,72(2013). [48]Y.Q.Jing and K.L.Han,Expert Opin.Drug Discovery 5,33(2010).

    [49]Y.W.D.M.Li,and K.L.Han,Coord.Chem.Rev. 256,1137(2012).

    [50]M.J.Yang,X.Q.Pang,X.Zhang,and K.L.Han,J. Struct.Biol.173,57(2010).

    [51]W.Kabsch and C.Sander,Biopolymers 22,2577 (1983).

    [52]J.H.Kim,J.Wess,A.M.Vanrhee,T.Schoneberg,and K.A.Jacobson,J.Biol.Chem.270,13987(1995).

    [53]W.H.Ballesteros,Methods Neurosci.25,366(1995).

    [54]J.H.Park,P.Scheerer,K.P.Hofmann,H.W.Choe, and O.P.Ernst,Nature 454,183(2008).

    [55]S.G.Rasmussen,H.J.Choi,D.M.Rosenbaum,T. S.Kobilka,F.S.Thian,P.C.Edwards,M.Burghammer,V.R.Ratnala,R.Sanishvili,R.F.Fischetti,G.F. Schertler,W.I.Weis,and B.K.Kobilka,Nature 450, 383(2007).

    [56]T.Higashijima,S.Uzu,T.Nakajima,and E.M.Ross, J.Biol.Chem.263,6491(1988).

    [57]J.Lechleiter,R.Hellmiss,K.Duerson,D.Ennulat,N. David,D.Clapham,and E.Peralta,EMBO J.9,4381 (1990).

    ceived on July 29,2013;Accepted on July 22,2013)

    ?Author to whom correspondence should be addressed.E-mail:beam@dicp.ac.cn,Tel.:+86-411-84379195,FAX:+86-411-84675584

    a级毛片a级免费在线| 国产精品98久久久久久宅男小说| 制服丝袜大香蕉在线| 99视频精品全部免费 在线| 国产精品亚洲av一区麻豆| 午夜福利免费观看在线| 久久久久亚洲av毛片大全| 亚洲一区二区三区不卡视频| 校园春色视频在线观看| 国模一区二区三区四区视频| 宅男免费午夜| 91字幕亚洲| 欧美日韩国产亚洲二区| 国内久久婷婷六月综合欲色啪| 欧美乱妇无乱码| 久久久国产精品麻豆| 3wmmmm亚洲av在线观看| 白带黄色成豆腐渣| 九色国产91popny在线| 午夜激情欧美在线| 免费观看人在逋| 久久中文看片网| 亚洲精品一区av在线观看| 国产精品99久久99久久久不卡| 99热精品在线国产| 性欧美人与动物交配| 午夜免费激情av| 天天添夜夜摸| 精品久久久久久,| 亚洲 欧美 日韩 在线 免费| 欧美乱码精品一区二区三区| 高清在线国产一区| 一卡2卡三卡四卡精品乱码亚洲| 内地一区二区视频在线| 18美女黄网站色大片免费观看| 国产精华一区二区三区| 午夜福利在线在线| 精品不卡国产一区二区三区| 看黄色毛片网站| 国产成人啪精品午夜网站| 欧美日韩一级在线毛片| 成人午夜高清在线视频| 久久久国产精品麻豆| 超碰av人人做人人爽久久 | 亚洲在线观看片| 国产97色在线日韩免费| 一本久久中文字幕| 偷拍熟女少妇极品色| 国产精品一及| 亚洲成人精品中文字幕电影| 不卡一级毛片| 岛国在线观看网站| 国产伦精品一区二区三区四那| 亚洲久久久久久中文字幕| bbb黄色大片| 欧美xxxx黑人xx丫x性爽| 一个人免费在线观看的高清视频| 亚洲激情在线av| 久久国产乱子伦精品免费另类| 三级国产精品欧美在线观看| 亚洲欧美日韩东京热| 看免费av毛片| 成人18禁在线播放| 亚洲欧美激情综合另类| 午夜老司机福利剧场| 超碰av人人做人人爽久久 | 午夜福利在线观看吧| 国产精品自产拍在线观看55亚洲| 他把我摸到了高潮在线观看| 国产三级在线视频| 三级国产精品欧美在线观看| 精品福利观看| 国产成+人综合+亚洲专区| 亚洲欧美日韩高清在线视频| 国产精品久久电影中文字幕| 一级黄片播放器| 香蕉久久夜色| 日本一本二区三区精品| 欧美3d第一页| 99精品久久久久人妻精品| 亚洲精品久久国产高清桃花| 国产精品女同一区二区软件 | 欧美国产日韩亚洲一区| 欧美色欧美亚洲另类二区| 久久午夜亚洲精品久久| 色播亚洲综合网| 嫩草影院精品99| 亚洲熟妇熟女久久| 国产精品久久久久久精品电影| 村上凉子中文字幕在线| 在线天堂最新版资源| 欧美激情久久久久久爽电影| 在线国产一区二区在线| 一级毛片女人18水好多| 日本在线视频免费播放| 蜜桃亚洲精品一区二区三区| 亚洲人与动物交配视频| 1024手机看黄色片| 成人无遮挡网站| 久久久久久久精品吃奶| 国内毛片毛片毛片毛片毛片| 久久精品影院6| 宅男免费午夜| 婷婷六月久久综合丁香| 亚洲精品成人久久久久久| 久久久久亚洲av毛片大全| 国产高清视频在线播放一区| 小说图片视频综合网站| 少妇熟女aⅴ在线视频| 9191精品国产免费久久| 国产精品野战在线观看| 黑人欧美特级aaaaaa片| 99久久成人亚洲精品观看| 成人亚洲精品av一区二区| 夜夜夜夜夜久久久久| 亚洲人与动物交配视频| 亚洲欧美日韩高清专用| 午夜免费激情av| 成人无遮挡网站| 亚洲精品影视一区二区三区av| 亚洲七黄色美女视频| 免费看美女性在线毛片视频| 亚洲内射少妇av| 天堂动漫精品| 国产私拍福利视频在线观看| 国产伦精品一区二区三区视频9 | 女生性感内裤真人,穿戴方法视频| 国产成年人精品一区二区| 丰满的人妻完整版| 搡女人真爽免费视频火全软件 | 国产亚洲精品av在线| 亚洲在线观看片| 黄色日韩在线| 亚洲国产精品sss在线观看| 人人妻,人人澡人人爽秒播| 好男人电影高清在线观看| 人妻夜夜爽99麻豆av| 身体一侧抽搐| 国内精品美女久久久久久| 全区人妻精品视频| 午夜两性在线视频| 国产亚洲精品久久久久久毛片| 婷婷精品国产亚洲av| 一个人看的www免费观看视频| 少妇高潮的动态图| 免费看光身美女| 日韩国内少妇激情av| 无限看片的www在线观看| 亚洲无线观看免费| 国产伦在线观看视频一区| 成人永久免费在线观看视频| 国产精品亚洲美女久久久| 国产成+人综合+亚洲专区| 熟妇人妻久久中文字幕3abv| 国产免费男女视频| netflix在线观看网站| 18+在线观看网站| 国产亚洲精品综合一区在线观看| 日韩欧美在线乱码| 在线播放无遮挡| 好看av亚洲va欧美ⅴa在| 内射极品少妇av片p| 伊人久久精品亚洲午夜| 日本熟妇午夜| 国产精品一区二区三区四区免费观看 | 精品久久久久久成人av| 欧美成人免费av一区二区三区| 欧美成人免费av一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲人成网站在线播| 欧洲精品卡2卡3卡4卡5卡区| 内地一区二区视频在线| 欧美国产日韩亚洲一区| 精品久久久久久久久久久久久| 国产 一区 欧美 日韩| 中文字幕av在线有码专区| 亚洲无线观看免费| 成人高潮视频无遮挡免费网站| 亚洲av五月六月丁香网| 变态另类成人亚洲欧美熟女| 久久香蕉精品热| 每晚都被弄得嗷嗷叫到高潮| 大型黄色视频在线免费观看| 欧美又色又爽又黄视频| 国产真实伦视频高清在线观看 | aaaaa片日本免费| 又爽又黄无遮挡网站| 亚洲男人的天堂狠狠| 制服人妻中文乱码| 国产成人av激情在线播放| 99久久精品一区二区三区| 在线观看舔阴道视频| 亚洲va日本ⅴa欧美va伊人久久| h日本视频在线播放| 一区二区三区激情视频| 国产爱豆传媒在线观看| 最好的美女福利视频网| 午夜福利欧美成人| 国产私拍福利视频在线观看| 国产精品三级大全| 欧美性感艳星| 免费人成视频x8x8入口观看| 18禁裸乳无遮挡免费网站照片| 久9热在线精品视频| 国产日本99.免费观看| 欧美成人免费av一区二区三区| 精品人妻一区二区三区麻豆 | 日韩有码中文字幕| e午夜精品久久久久久久| 欧美另类亚洲清纯唯美| 亚洲av成人精品一区久久| 午夜日韩欧美国产| 757午夜福利合集在线观看| 亚洲人成网站在线播放欧美日韩| 三级国产精品欧美在线观看| av中文乱码字幕在线| 搡女人真爽免费视频火全软件 | 一区二区三区高清视频在线| 国产野战对白在线观看| avwww免费| 精品乱码久久久久久99久播| 精品人妻1区二区| av天堂中文字幕网| 国产亚洲精品一区二区www| 欧美乱码精品一区二区三区| 又黄又粗又硬又大视频| 精品99又大又爽又粗少妇毛片 | 精品熟女少妇八av免费久了| 欧美日韩乱码在线| 久久精品国产清高在天天线| 男人舔奶头视频| 国产精品99久久99久久久不卡| 成人欧美大片| 午夜福利成人在线免费观看| 亚洲av免费高清在线观看| 香蕉丝袜av| 在线免费观看的www视频| 2021天堂中文幕一二区在线观| av天堂中文字幕网| 亚洲国产欧美网| 国内久久婷婷六月综合欲色啪| 窝窝影院91人妻| 日本熟妇午夜| 999久久久精品免费观看国产| 精品人妻1区二区| 国产免费av片在线观看野外av| 日本免费a在线| 欧美国产日韩亚洲一区| 亚洲av五月六月丁香网| 三级国产精品欧美在线观看| 欧美日本亚洲视频在线播放| 亚洲激情在线av| 嫩草影院精品99| 久久久久国内视频| 中文字幕精品亚洲无线码一区| 国产精品久久电影中文字幕| 免费在线观看成人毛片| 欧美国产日韩亚洲一区| 99久久精品一区二区三区| 操出白浆在线播放| x7x7x7水蜜桃| 色尼玛亚洲综合影院| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 老熟妇仑乱视频hdxx| 国产真人三级小视频在线观看| 亚洲av免费在线观看| 国产精品女同一区二区软件 | 内射极品少妇av片p| 夜夜看夜夜爽夜夜摸| 国产野战对白在线观看| 国产精品免费一区二区三区在线| 最近视频中文字幕2019在线8| 嫩草影院入口| 一级黄片播放器| 制服人妻中文乱码| 久久久久免费精品人妻一区二区| 国产老妇女一区| 亚洲美女黄片视频| 国产精品免费一区二区三区在线| 制服丝袜大香蕉在线| 真人一进一出gif抽搐免费| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费 | 18美女黄网站色大片免费观看| 一级黄片播放器| 真实男女啪啪啪动态图| 日韩国内少妇激情av| 成人av一区二区三区在线看| 在线观看一区二区三区| 淫秽高清视频在线观看| 嫁个100分男人电影在线观看| www国产在线视频色| 国产精品电影一区二区三区| 黄色成人免费大全| 亚洲美女黄片视频| 国产黄a三级三级三级人| 精品久久久久久久末码| 色视频www国产| 啦啦啦观看免费观看视频高清| 成人国产综合亚洲| 亚洲精品在线观看二区| 波多野结衣高清作品| 老鸭窝网址在线观看| 国产中年淑女户外野战色| 精品久久久久久久久久免费视频| 亚洲国产精品合色在线| 日韩欧美国产一区二区入口| 岛国视频午夜一区免费看| 亚洲国产精品成人综合色| 免费在线观看成人毛片| 夜夜躁狠狠躁天天躁| 成人国产综合亚洲| 亚洲真实伦在线观看| 国产国拍精品亚洲av在线观看 | 又爽又黄无遮挡网站| 国产伦精品一区二区三区四那| 欧美日韩综合久久久久久 | 久久精品综合一区二区三区| a在线观看视频网站| 老司机福利观看| 亚洲午夜理论影院| 日本黄大片高清| 国产99白浆流出| 亚洲国产欧美人成| 久久草成人影院| 国产老妇女一区| 床上黄色一级片| 熟女人妻精品中文字幕| 久久久精品大字幕| 国语自产精品视频在线第100页| 亚洲国产精品999在线| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| 国产高清videossex| 老司机在亚洲福利影院| 美女免费视频网站| 国内毛片毛片毛片毛片毛片| 很黄的视频免费| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 国产成人福利小说| 99在线视频只有这里精品首页| xxx96com| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 中亚洲国语对白在线视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添小说| 久久精品91蜜桃| 97超视频在线观看视频| 一本久久中文字幕| 国产aⅴ精品一区二区三区波| 小说图片视频综合网站| 国产欧美日韩一区二区三| 成人无遮挡网站| av黄色大香蕉| 久久香蕉精品热| 色吧在线观看| 高清毛片免费观看视频网站| 天堂影院成人在线观看| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 亚洲精品影视一区二区三区av| 国产久久久一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 男女做爰动态图高潮gif福利片| 欧美成人a在线观看| 国产精品永久免费网站| 又紧又爽又黄一区二区| 免费av毛片视频| 高清毛片免费观看视频网站| 两个人看的免费小视频| 一区二区三区激情视频| 在线看三级毛片| 亚洲国产日韩欧美精品在线观看 | 最近在线观看免费完整版| 免费观看精品视频网站| ponron亚洲| 露出奶头的视频| 国产亚洲欧美98| 伊人久久精品亚洲午夜| 国产不卡一卡二| 亚洲五月天丁香| 久久国产精品人妻蜜桃| 国产极品精品免费视频能看的| 久久精品影院6| 可以在线观看的亚洲视频| 看黄色毛片网站| 午夜福利18| 91在线精品国自产拍蜜月 | 国产三级在线视频| 51午夜福利影视在线观看| 校园春色视频在线观看| 国语自产精品视频在线第100页| 欧美午夜高清在线| 亚洲成av人片免费观看| 美女被艹到高潮喷水动态| 亚洲av成人不卡在线观看播放网| 女生性感内裤真人,穿戴方法视频| 很黄的视频免费| 国产精品乱码一区二三区的特点| 国内揄拍国产精品人妻在线| 国产成人影院久久av| 中文字幕久久专区| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 亚洲久久久久久中文字幕| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 免费在线观看成人毛片| 亚洲va日本ⅴa欧美va伊人久久| 搡女人真爽免费视频火全软件 | 国产成年人精品一区二区| 日韩有码中文字幕| 国产伦一二天堂av在线观看| 国内揄拍国产精品人妻在线| 久久久久九九精品影院| 国产欧美日韩精品一区二区| av中文乱码字幕在线| 欧美激情在线99| 久久国产精品人妻蜜桃| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 日本三级黄在线观看| 国产午夜福利久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 国产97色在线日韩免费| 激情在线观看视频在线高清| 美女黄网站色视频| 国产中年淑女户外野战色| 久久久久国产精品人妻aⅴ院| 亚洲激情在线av| 女警被强在线播放| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 日韩有码中文字幕| 伊人久久精品亚洲午夜| 国产精品免费一区二区三区在线| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩东京热| 国产精品,欧美在线| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩东京热| 97超视频在线观看视频| 久久久久性生活片| 国产精品98久久久久久宅男小说| 亚洲av成人av| 少妇的丰满在线观看| 亚洲人成网站在线播放欧美日韩| 色综合站精品国产| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 日本免费a在线| 九色国产91popny在线| 亚洲精品在线观看二区| 欧美成人a在线观看| 国产欧美日韩精品一区二区| 宅男免费午夜| 久久伊人香网站| 3wmmmm亚洲av在线观看| 少妇的逼好多水| www国产在线视频色| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 亚洲最大成人手机在线| 欧美乱色亚洲激情| 97超视频在线观看视频| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影 | 丁香六月欧美| 国产高清激情床上av| 国产美女午夜福利| 亚洲av二区三区四区| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 亚洲专区中文字幕在线| 日本 欧美在线| 亚洲午夜理论影院| 18禁国产床啪视频网站| 日本黄色片子视频| 国产午夜福利久久久久久| 亚洲av第一区精品v没综合| 日韩大尺度精品在线看网址| 亚洲精品成人久久久久久| 久久久国产成人免费| 免费无遮挡裸体视频| 露出奶头的视频| 男女那种视频在线观看| 欧美在线黄色| 国产精品美女特级片免费视频播放器| 一本综合久久免费| 美女高潮喷水抽搐中文字幕| 蜜桃亚洲精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 91久久精品国产一区二区成人 | 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看电影| 国产激情欧美一区二区| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 日本黄大片高清| 母亲3免费完整高清在线观看| 91在线观看av| 亚洲av成人av| www.熟女人妻精品国产| 精品久久久久久,| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 18禁美女被吸乳视频| 天堂av国产一区二区熟女人妻| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 19禁男女啪啪无遮挡网站| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 国产成人aa在线观看| 夜夜看夜夜爽夜夜摸| 亚洲成人精品中文字幕电影| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 国产高清有码在线观看视频| 色综合婷婷激情| 久久精品影院6| 亚洲天堂国产精品一区在线| 午夜福利欧美成人| 两人在一起打扑克的视频| 91久久精品电影网| 禁无遮挡网站| 国产精品98久久久久久宅男小说| 一夜夜www| 韩国av一区二区三区四区| 国产成人福利小说| 国产精品一区二区免费欧美| 黄色女人牲交| 欧美另类亚洲清纯唯美| 欧美av亚洲av综合av国产av| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| 日本一二三区视频观看| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 亚洲国产日韩欧美精品在线观看 | 九色国产91popny在线| 草草在线视频免费看| 精品午夜福利视频在线观看一区| 日本与韩国留学比较| 很黄的视频免费| 日韩人妻高清精品专区| 99在线视频只有这里精品首页| 成人特级黄色片久久久久久久| 精品久久久久久久末码| 亚洲av五月六月丁香网| 岛国在线免费视频观看| 日韩国内少妇激情av| 超碰av人人做人人爽久久 | 一区二区三区高清视频在线| 男人和女人高潮做爰伦理| 亚洲成人免费电影在线观看| 日韩欧美精品免费久久 | 757午夜福利合集在线观看| 免费观看人在逋| 欧美日韩国产亚洲二区| 国产精品精品国产色婷婷| 午夜免费男女啪啪视频观看 | 丰满乱子伦码专区| 真人做人爱边吃奶动态| 久久久久久国产a免费观看| 美女被艹到高潮喷水动态| АⅤ资源中文在线天堂| 夜夜躁狠狠躁天天躁| 国产高清视频在线观看网站| 国产高清三级在线| 亚洲av美国av| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 国产高清三级在线| 岛国视频午夜一区免费看| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 天堂网av新在线| 国产av不卡久久| 丁香六月欧美| 九九热线精品视视频播放| 午夜免费男女啪啪视频观看 | 99国产综合亚洲精品| 亚洲午夜理论影院| 热99在线观看视频| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 色视频www国产| 欧美av亚洲av综合av国产av| 老司机午夜福利在线观看视频| 不卡一级毛片| 两个人视频免费观看高清| 色老头精品视频在线观看| 51午夜福利影视在线观看| 成人一区二区视频在线观看| 日韩欧美一区二区三区在线观看| 精品人妻一区二区三区麻豆 | 三级男女做爰猛烈吃奶摸视频| 久久久久国内视频| 欧美三级亚洲精品| 国产欧美日韩一区二区精品| 日韩免费av在线播放|