• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    O2,CO2,and H2O Chemisorption on UN(001)Surface:Density Functional Theory Study

    2014-07-19 11:17:05RusongLiBinHeFeiWngXuPengHuWng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Ru-song Li,Bin He,Fei Wng,Xu Peng,Hu Wng

    a.Xi’an Research Institute of Hi-Tech,Hongqing Town,Xi’an 710025,China

    b.Type Office of China Academy of Engineering Physics,Mianyang 621900,China

    O2,CO2,and H2O Chemisorption on UN(001)Surface:Density Functional Theory Study

    Ru-song Lia?,Bin Hea,Fei Wanga,Xu Penga,Hua Wangb

    a.Xi’an Research Institute of Hi-Tech,Hongqing Town,Xi’an 710025,China

    b.Type Office of China Academy of Engineering Physics,Mianyang 621900,China

    We performed density functional theory calculations of O2,CO2,and H2O chemisorption on the UN(001)surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized level with the periodic slab model.Chemisorption energies vs.molecular distance from UN(001)surface were optimized for four symmetrical chemisorption sites.The results showed that the bridge parallel,hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2,CO2,and H2O molecular with chemisorption energies of 14.48,4.492,and 5.85 kJ/mol,respectively.From the point of adsorbent(the UN(001)surface),interaction of O2with the UN(001)surface was of the maximum magnitude,then CO2and H2O,indicating that these interactions were associated with structures of the adsorbate.O2chemisorption caused N atoms on the surface to migrate into the bulk,however CO2and H2O had a moderate and negligible effect on the surface,respectively.Calculated electronic density of states demonstrated the electronic charge transfer between s,p orbital in chemisorption molecular and U6d,U5f orbital.

    Chemisorption,Density functional theory,Geometric relaxation,Electronic density of state

    I.INTRODUCTION

    Uranium mononitride(UN)is considered as a promising fuel for the fast nuclear generation IV reactors[1, 2].Compared to many uranium and plutonium oxide nuclear fuel,UN has several advantages[2-7],such as higher melting point and smaller lattice constant,which indicate that UN has stronger anti-corrosion capability.Many research groups have identif i ed the important role of UN in anti-corrosion application since the 1960s [8-11],and performed several experimental and theoretical study.The bulk properties of actinide nitrides have been investigated,especially the elastic and magnetic properties.However,contrary to a large number of available experimental data[12-19],there were few reports related to the f i rst principle calculations on uranium nitrides,particularly chemisorption behaviors of molecular or atoms on the surface of uranium nitrides. Only recently,some groups have simulated the reactivity of molecular/atoms with the surface of uranium nitrides[20-22].These reports indicated that molecule O2would spontaneously dissociate after chemisorption on the(001)surface of UN,then the produced O atoms exhibited a strong chemisorption behavior.To deeply understand molecular O2,CO2and H2O chemisorption on the(001)surface of UN,we apply the density functional theory(DFT)method to perform electronic structure calculations in this work.

    II.METHODOLOGY

    Uranium mononitride(UN)has Nacl-type structure (fcc)with lattice constant a=0.4889 nm,and interatomic dist√ance√ between U and N atoms is 0.248 nm. A periodicthree-layer slab supercell model and single-sided chemisorption mode(a molecule was placed on one side of the slab model,namely 0.5 ML adsorptivity)were used to study molecular chemisorption on the UN(001)surface in all calculations.A vacuum layer of 2.0 nm was added to the unit cell of the layers.

    In this work,we used the generalized gradient approximation(GGA)within the framework of density functional theory(DFT)and PW91 exchange-correlation functional[23-25]with the periodic slab model to simulate the chemisorption for gaseous molecular on the UN(001)surface.The outer fourteen electrons (6s26p65f66d17s2)of U were treated as valence electrons and the remaining seventy-eight electrons were treated as core.DFT semi-core pseudopotentials(DSPP)and a double numerical basis set with polarization functions (DNP)have been used to treat core electrons and valence electrons,respectively.All electron basis sets were used for C,H and O atoms.3×3×1 Monkhorst-Pack kpoint meshes were applied in the Brillouin zone(BZ).Aplane-wave cutof fenergy Ecut=500 eV was chosen.The convergence of self-consistent f i eld(SCF)was less than 1.0×10-5eV/atom.Nomagnetic configuration was appropriate for the light actinide U element from the point of total energy,so U5f electrons were in the delocalized 5f3electronic configuration in this work.

    Single molecule,one per unit cell,was allowed to approach the UN(001)surface along four different symmetrical positions,namely(i)directly on top of a U atom(U-top position);(ii)directly on top of a N atom (N-top position);(iii)on the middle of two nearest neighbor U atoms(bridge position);(iv)adsorption molecule saw a U atom located on the layer directly below the surface hollow site(hollow position).The chemisorption energy ECwas optimized with respect to the height R of the chemisorbed molecule above the surface,and was given by[26]:

    where E(M)is the total energy of the bare UN(001) slab,E(X)is the total energy of the isolated molecule, and E(M+X)is the total energy of the molecule chemisorbed on the surface.

    The relative change for bond length was used to describe the change for U-N bond after molecule chemisorption,and was given by

    where Riis the bond length for the central N atom on the UN(001)surface and the ith U atom,R0is the U-N bond length before chemisorption,and?denoted the relative change for Ri.

    III.SURFACE CONFIGURATION FOR THE UN(001) SURFACE

    To test validity of the computational parameters,we fi rst cleaved the UN(001)surface,then checked convergence of the total energy of the UN(001)surface with di ff erent vacuum thicknesses.We considered the vacuum thickness test to be convergent as long as the total energy was less than 10 meV,and the calculation result is shown in Fig.1.The result indicated that the total energy of the system was convergent when the vacuum thickness was larger than 1.8 nm.Therefore,we added a vacuum layer of 2.0 nm onto the unit cell of the slabs in order to reduce the in fl uence of boundary condition on the calculation,and a model for the UN(001)surface is plotted in Fig.2.

    The interactions of the surface atoms with UN matrix atoms would be unstable due to the absence of adjacent atom,which was contrary to the matrix atoms.Meanwhile,these non-equilibrium interactions might cause the surface atoms to relax,reconstruct, fi nd a new equilibrium site after cleaving,and fi nally lower the total energy of the surface system.Moreover,this relaxation behavior might change U-N bond length.A configuration model for relaxation calculation is shown in Fig.3, and the results are listed in Table I.

    FIG.1 Convergence test of the vacuum thickness for the UN(001)surface.

    FIG.2 A calculation model for the UN(001)surface.

    In this work,relaxation was def i ned as the relative change of U-N bond length.We f i xed the lowest-layer atoms during relaxation calculation for the UN(001) surface,and presented in Table I.The total energy for this system reduced by about 0.739 eV.However,the relative relaxation was ignorable(the maximum relative 1.109%),so we f i xed the atoms in two low-lying layers to calculate in the following section,otherwise particular declaration.

    IV.CHEMISORPTION BEHAVIOR OF GASEOUS MOLECULAR ON THE UN(001)SURFACE

    The energy minimum principle demonstrates that the higher the system symmetry,the lower the system energy,and the more stable the system.Therefore,we preferred the gaseous molecular to be chemisorbed onto the high symmetrical position in the crystal surface. UN crystal has face-centered cubic(fcc)structure,andseveral high symmetrical chemisorption positions exist on the surface,we considered four representative positions in this work,namely bridge(B),hollow(H),U-top(U)and N-top(N),as shown in Fig.4.The central atom or the geometrical centre of the chemisorbed molecule was directly placed on the top of individual position to study the chemisorption behavior of molecule on these positions.Chemisorption parameters included not only position,but also chemisorption orientation and height of the chemisorbed molecule to the surface. The chemisorption orientation was associated with the molecule structure,while the chemisorption height depended on stability of the system configuration.

    TABLEI Calculated results for configuration relaxation. Ri(i=1,2,in nm)and dij(i=1,2,j=1,2,in nm)represent U-N bond length in the intralayer and interlayer,respectively.

    FIG.3 A configuration model for relaxation calculation.Ri(i=1,2)and dij(i=1,2,j=1,2)represent U-N bond length in the intralayer and interlayer,respectively.

    A.Chemisorption behavior of molecule O2on the UN(001)surface

    As we all know,the chemisorption behavior of molecule O2on the UN(001)surface crystal would be crucial to understand the anti-corrosion mechanisms for UN compound.Experiment result showed that O2is a linear molecule,and O-O bond length is 0.1209 nm. We considered two chemisorption modes for molecule O2approaching the UN(001)surface to investigate O2chemisorption behavior:parallel(P)and vertical(V). The P configuration calculation for U-top chemisorption position was not fulfilled in one single cell.Therefore,we only considered the V configuration for U-top chemisorption position to save the computational resource.

    FIG.4 Diagram of four symmetrical chemisorption positions for the UN(001)surface:bridge,hollow,U-top,and N-top.

    FIG.5 System configuration of O2molecule on UN(001) surface(a)before and(b)after chemisorption.

    For different chemisorption height from the UN(001) surface,the total energy of O2-UN(001)system would change.Chemisorption height was def i ned as the nearest distance for molecule O2from the UN(001)surface, and expressed by the fractional coordinates.The results for the total energy of O2-UN(001)system are listed in Table II.We optimized the system configuration with the minimum energies,the results for O2chemisorption energies,O-O bond lengths,and Mulliken charges of individual configuration are presented in Table III.We could see that the most stable chemisorption position for O2was BP.The total energy of this system would decrease after optimization.As depicted in Fig.5,compared to the non-optimized configurations,optimization induced molecule O2to migrate towards U atom,while N atom moved into the bulk.We labeled the atoms in the calculation configuration to describe the relaxation behavior,and the atom sequence was marked in Fig.5(b).The distance of O from the ith O was used to describe the relative displacement for the atoms in the calculated configuration.The result showed that O-O bond length increased,and O2obviously moved outwards.However,N on the UN(001)surface migratedinto the bulk,as shown in Table IV.To further understand the interaction of O2with the UN(001)surface, we analyzed the projected density of states(PDOSs) before and after O2chemisorption in term of the electronic structure calculations,and shown in Fig.6.

    TABLE II Total energies of O2-UN(001)system.h denotes the chemisorption height for O2,and the BP,BV,HP,HV, NP,NV and UV configurations represent approaching the bridge position in parallel manner,the bridge position in vertical manner,the hollow position in parallel manner,the hollow position in vertical manner,the N-top position in parallel manner, the N-top position in vertical manner,the U-top position in vertical manner,respectively.

    TABLE III Chemisorption configurations,chemisorption energies Echemisorption(in kJ/mol),O-O bond lengths dO-Oand Mulliken charges Q for O2.

    TABLE IV Relative displacements for the atoms in the optimized configuration.

    O2s and O2p orbital PDOSs shifted towards lower energy band after O2chemisorption,indicating that the red shift effect occurred in O2frequency,as shown in Fig.6(a).We did not consider other s,p orbitals in U atom because U6d and U5f orbitals dominate the electronic properties of U atom.PDOSs of U6d and U5f orbitals before and after chemisorption are depicted in Fig.6(b).After chemisorption,peak of U6d PDOS apparently widened,which showed that U6d orbital had a very strong interaction with the substrate.Peak value of U5f PDOS decreased from 247.36 electron/eV to 221.25 electron/eV,the peak position shifted from 0.35 eV to 0.546 eV,and the peak area of U5f PDOS diminished,showing that 5f orbital lost electrons.A new f state appeared in the energy range of-1.5 eV to -0.5 eV,and a new d state emerged in the energy range from-5 eV to-4 eV,which implied that O2s or O2p electrons contributed to U6d and U5f orbital,as shown in Fig.6(b).Figure 6(c)and(d)depicted U6d,U5f,O2s orbital and U6d,U5f,O2p orbital PDOSs for O atom being the nearest neighbor of U atom,respectively.As shown in Fig.6(c),O2s orbital hybridized with U6d orbital,and produced a very small peak.While O2s orbital PDOS did not obviously overlapped with U5f orbital.However,O2p orbital and U6d,U5f orbital formed an unambiguous hybridization peak,as shown in Fig.6(d),which was in sharp contrast with Fig.6(c). The larger the overlapping area of PDOS,the higher the hybridized bonding.Therefore,the electronic charge of U6d orbital transferred to O2s and O2p orbital(mainly 2p orbital),while U5f orbital transferred to O2p orbital.

    B.Chemisorption behavior of CO2on the UN(001) surface

    FIG.6 Projected density of states(PDOSs)of O2s,O2p orbital(a),U6d,U5f orbital(b),O2s,U6d,U5f orbital(c),and O2p,U6d,U5f orbital(d)before and after O2chemisorption on the BP position of the UN(001)surface.The Fermi energy stands at 0 eV.

    TABLE V Calculated total energies of CO2-UN(001)system.h denoted the chemisorption height for CO2.

    As we all know,CO2is a linear molecule,and the experimental C-O bond length is 0.116 nm.We considered the same approaching mode for CO2as O2,namely P and V modes.The central atom or the geometrical centre of the chemisorbed CO2was directly placed on the top of individual chemisorption positions.We fi rst calculated the total energy of CO2-UN(001)system through seven di ff erent con fi gurations,then chose the chemisorption height h for the lowest total energy as the optimal height for the chemisorption con fi guration,and the calculated results of the total energy are presented in Table V, fi nally,we optimized these con fi gurations to search the optimal chemisorption position.

    The geometrical parameters,chemisorption energies,bond lengths,and Mulliken charges for CO2chemisorbed on different positions on the UN(001)surface are listed in Table VI.According to the minimum energy principle,the configuration with the maximum chemisorption energy was the most stable chemisorption configuration.Therefore,the most stable configuration for CO2chemisorbed on the UN(001)surface was HP,as shown in Table VI.To further understand the interaction of CO2with the UN(001)surface,we an-alyzed PDOSs before and after CO2chemisorption in term of the electronic structure calculations,and shown in Fig.7.

    FIG.7 PDOSs of(a)C/O 2s,2p orbital,(b)U6d,U5f orbital,(c)O2s,U6d,U5f orbital,and(d)O2p,U6d,U5f orbital before and after CO2chemisorption on the HP position of the UN(001)surface.The Fermi energy stands at 0 eV.

    TABLE VIChemisorption configurations,chemisorption energy Echemisorption(in kJ/mol),O-O bond lengths dO-Oand Mulliken charge Q for molecule CO2.

    C/O 2s,2p orbital PDOSs shifted towards lower energy band after O2chemisorption,implying that the red shift effect occurred in CO2frequency,as shown in Fig.7(a).We also did not consider other s,p orbital in U because U6d and U5f orbital dominated the electronic properties of U atom.PDOSs of U6d and U5f orbital before and after chemisorption were depicted in Fig.7(b).After chemisorption,the peak value of U6d PDOS in the energy range of 0-1 eV decreased from 17.4 electron/eV to 13.9 electron/eV,while the peak value of PDOS in the energy range of-5 eV to-4 eV decreased from 17.0 electrons/eV to 16.0 electrons/eV, showing that U6d orbital lost electrons,as shown in Fig.7(b).Figure 7(c)and(d)depicted U6d,U5f,O2s orbital and U6d,U5f,O2p orbital PDOSs for O atom being the nearest neighbor of U atom,respectively.As shown in Fig.7(c),O2s orbital and U6d orbital formed a very small hybridization peak,and O2s orbital PDOS did not obviously overlap with U5f orbital.However, O2p orbital and U6d,U5f orbital produced an unambiguous hybridization peak,as shown in Fig.7(d),which was in sharp contrast with Fig.7(c).The larger the overlapping area of PDOS,the higher the hybridized bonding.Therefore,the electronic charge of U6d orbital transferred to O2s and O2p orbital(mainly O2p orbital),while U5f orbital transferred to O2p orbital, these results were similar to O2chemisorption.

    C.Chemisorption behavior of molecule H2O on the UN(001)surface

    Previous report showed that H2O chemisorbed on U metal would result in formation of UO2passivation film on the metal surface,and this film could prevent U metal from further oxidization[7].Therefore,investigation of H2O chemisorption on the UN surface would be helpful for deeply understanding the anti-corrosion mechanisms of U metal because UN passivation film wasalso a corrosion-resistant material.

    TABLE VII Calculated total energies of H2O-UN(001)system.h denotes the chemisorption height for CO2.BU,BD,HU, HD,NU and ND configurations represent bridge H-up,bridge H-down,hollow H-up,hollow H-down,N-top H-up and N-top H-down,respectively.

    FIG.8 System configuration before(a)and after(b) chemisorption.

    As we all know,H2O is a planar V-type molecule,and the experimental H-O bond length is 0.10 nm,∠HOH bond angle is 104.5?.We considered three symmetrical positions for studying H2O chemisorption on the UN(001)surface:H-up,H-down and H-par,where H-up and H-down denoted that H2O plane was vertical with the UN(001)surface from the upper side and the lower side,respectively,while H-par indicated that H2O plane was parallel with the UN(001)surface.For different chemisorption height from the UN(001)surface, the total energy of H2O-UN(001)system would change. According to the minimum energy principle,the total energy of a system would be the minimum value for H2O chemisorption on the optimal position,and the system would be the most stable one.

    A chemisorption height h was def i ned as the nearest distance for the central O atom in H2O from the UN(001)surface.The results for the total energy of H2O-UN(001)system with different h are listed in Table VII.We optimized the systems with the minimum energies,and calculated results for H2O chemisorption energies,H-O bond lengths,∠HOH bond angles and Mulliken charges of individual configuration are listed in Table VIII.From Table VIII we could see that the most stable chemisorption position for H2O was BU(maximum chemisorption energy 5.85 kJ/mol),so H in H2O was vertically chemisorbed on the UN(001)surface from the upper side,as shown in Fig.8(b).Z coordinate of U atom increased by about 0.1%,indicating that H2O chemisorption had a negligible effect on the UN(001) surface.However,H2O not only migrated,but also rotated around O atom.∠HOH bond angle increased by about 5?,while U-O bond length decreased from 0.2932 nm to 0.2634 nm.We labeled every atom in H2O to observe the position changes of H2O before and after optimization,as shown in Fig.8.Calculated results of the relative change for X,Y,and Z coordinates were presented in Table IX,where?X,?Y,and?Z denoted the relative change for X,Y,and Z coordinates, respectively.

    To further understand the interaction of H2O with the UN(001)surface,we analyzed PDOSs before and after H2O chemisorption in term of the electronic structure calculations,and shown in Fig.9.

    FIG.9 Projected density of states(PDOSs)of(a)H1s,O2s,O2p orbital,(b)U6d and U5f orbital,(c)O2s,U6d,and U5f orbital and(d)O2p,U6d,U5f orbital before and after H2O chemisorption on the BU position of the UN(001)surface.The Fermi energy stands at 0 eV.

    TABLE VIII Chemisorption configurations,chemisorption energy Echemisorption,O-O bond lengths dO-O,bond angles, and Mulliken charges Q for H2O.

    TABLE IX Relative changes for X,Y and Z coordinates of H and O atoms in the optimized H2O

    Figure 9(a)depicted H1s,O2s,and O2p PDOSs before and after chemisorption.H1s,O2s,O2p PDOSs shifted towards lower energy band after H2O chemisorption,indicating that the red shift effect occurred in H2O frequency,as shown in Fig.9(a).PDOSs of U6d and U5f orbital before and after chemisorption are plotted in Fig.9(b).Chemisorption had a negligible effect on the shapes of PDOSs of U6d and U5f orbital,however,the peak area of U6d PDOS in the energy range of-1 and 1 eV obviously diminished,showing that U6d orbital lost electrons,as shown in Fig.9(b).The peak position of U5f orbital shifted from 0.35 eV to 0.468 eV,showing that U5f orbital also lost electrons.O2s PDOS did not obviously overlap with U6d and U5f orbital,as shown in Fig.9(c).While in the energy range of-7 eV to-6 eV, -5 eV to-4 eV,O 2p orbital and U6d orbital formed a very small hybridization peak,as shown in Fig.9(d). Therefore,O atom in H2O and U atom on the UN(001) surface formed a covalent bond,and a small amount of U6d orbital electrons transferred to O2p orbital.Thesmaller the overlapping area,the weaker the chemical bonding,and the lower the transferred charges,which was in consistent with the Mulliken charge analysis.

    V.CONCLUSION

    We performed the density functional theory calculations of O2,CO2,and H2O chemisorption on the UN(001)surface using the generalized gradient approximation(GGA)and PW91 exchange-correlation functional at non-spin polarized level with the periodic slab model,the results showed that(i)bridge parallel(BP), hollow parallel(HP)and bridge hydrogen-up(BU)adsorption sites were the most stable site for O2,CO2and H2O,respectively.(ii)O2s and O2p orbital PDOSs shifted towards lower energy band after O2chemisorption,and the red shift effect occurred in O2frequency. O2p orbital and U6d,U5f orbital formed an unambiguous hybrid peak,and the electronic charge of U6d and 5f orbital mainly transferred to O2p.(iii)C/O 2s,2p orbital PDOSs shifted towards lower energy band after O2chemisorption,and the red shift effect also occurred in CO2frequency.O2s orbital and U6d orbital formed a very small hybrid peak,and O2s orbital PDOS did not obviously overlapped with U5f orbital.However,O2p orbital and U6d,U5f orbital formed an unambiguous hybrid peak,the electronic charge of U6d and U5f orbital mainly transferred to O2p orbital.(iv)H1s,O2s, O2p PDOSs shifted towards the lower energy band after H2O chemisorption,indicating that the red shift effect also occurred in H2O frequency.U6d and U5f orbital both lost electrons.O2s PDOS did not obviously overlapped with U6d and U5f orbital,that is to say,O atom in H2O and U atom on the UN(001)surface formed a covalent bond,and a small amount of U6d orbital electrons transferred to O2p orbital.In the future,we plan to investigate other molecular and atoms chemisorption on the surface of actinide compounds(especially the more promising nuclear fuel,such as Pu and U compounds),provide the corresponding anti-corrosion techniques,and improve the operational life and efficiency.

    VI.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.51271198)and Self-Topics Fund of Xi’an Research Institute of High Technology(No.YX2012cxpy06).Ru-song Li would like to thank Wen Li from Xi’an Research Institute of Hi-Tech for useful discussions and studentship support.

    [1]P.D.Wilson,The Nuclear Fuel Cycle,Oxford:Oxford University Press,(1996).

    [2]D.Bocharov,D.Gryaznov,Y.F.Zhukovskii,and E.A. Kotomin,Surf.Sci.605,396(2011).

    [3]M.B.Shuai,H.R.Hu,X.Wang,P.J.Zhao,and A.M. Tian,J.Mol.Struct.:THEOCHEM 536,269(2001)

    [4]P.P.Dholabhai and A.K.Ray,J.Alloys Compd.444-445,356(2007)

    [5]C.J.Burns,Science 309,1823(2005).

    [6]E.N.Hodkin and M.G.Nicholas,J.Nucl.Mater.47, 23(1973).

    [7]E.N.Hodkin,J.Nucl.Mater.67,171(1977).

    [8]H.Shibata,T.Tsuru,M.Hirata,and Y.Kaji,J.Nucl. Mater.401,113(2010).

    [9]P.F.Weck,E.Kim,N.Balakrishnan,F.Poineau,C. B.Yeamans,and K.R.Czerwinski,Chem.Phys.Lett. 443,82(2007).

    [10]R.A.Evarestov,A.V.Bandura,M.Losev,E.A.Kotomin,Y.F.Zhukovskii,and D.Bocharov,J.Comput. Chem.29,2079(2008).

    [11]L.Petit,A.Svane,Z.Szotek,W.M.Temmerman,and G.M.Stocks,Phys.Rev.B 80,045124(2009).

    [12]S.Sunder and N.H.Miller,J.Alloys Compd.271,568 (1998).

    [13]M.S.Brooks and D.Glotzel,Physica B 102,51(1980).

    [14]M.S.Brooks,J.Phys.F 14,639(1984).

    [15]D.Sedmidubsky,R.J.Konings,and P.Novak,J.Nucl. Mater.344,40(2005).

    [16]E.A.Kotomin,R.W.Grimes,Y.Mastrikov,and N.J. Ashley,J.Phys.:Condens.Matter.19,106208(2007).

    [17]A.F.Raymond and A.K.Ray,Phys.Rev.B 76,115101 (2007).

    [18]A.G.Ritchie,J.Nucl.Mater.102,170(1981).

    [19]K.Winer,C.A.Colmenares,and R.L.Smith,Surf. Sci.183,67(1987).

    [20]R.A.Evarestov,A.V.Bandura,M.V.Losev,E.A.Kotomin,Yu.F.Zhukovskii,and D.Bocharov,J.Comput. Chem.29,2079(2008).

    [21]Yu.F.Zhukovskii,D.Bocharov,E.A.Kotomin,R. A.Evarestov,and A.V.Bandura,Surf.Sci.603,50 (2009).

    [22]Yu.F.Zhukovskii,D.Bocharov,and E.A.Kotomin,J. Nucl.Mater.393,504(2009).

    [23]B.Delley,Comput.Mate.Sci.117,122(2000).

    [24]B.Delley,J.Chem.Phys.113,7756(2000).

    [25]B.Delley,Phys.Rev.B 66,155125(2002).

    [26]A.F.Raymond and A.K.Ray,Phys.Rev.B 75,195112 (2007).

    ceived on January 30,2013;Accepted on December 5,2013)

    ?Author to whom correspondence should be addressed.E-mail:rusong231@126.com

    另类精品久久| 国产日韩欧美亚洲二区| h视频一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲精品久久久久久婷婷小说| 18禁裸乳无遮挡动漫免费视频| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 91成人精品电影| 大香蕉久久网| 日本与韩国留学比较| 多毛熟女@视频| 一区二区三区免费毛片| 高清在线视频一区二区三区| 性高湖久久久久久久久免费观看| 99久久精品热视频| 一本久久精品| 日本欧美视频一区| 欧美精品一区二区大全| 如何舔出高潮| 欧美高清成人免费视频www| 高清黄色对白视频在线免费看 | av女优亚洲男人天堂| 丁香六月天网| 午夜福利网站1000一区二区三区| 97在线视频观看| 曰老女人黄片| 夜夜爽夜夜爽视频| 美女脱内裤让男人舔精品视频| 亚洲美女视频黄频| 婷婷色综合www| 国产在线一区二区三区精| 人妻制服诱惑在线中文字幕| 欧美日韩精品成人综合77777| 综合色丁香网| 熟妇人妻不卡中文字幕| 精品国产露脸久久av麻豆| 亚洲熟女精品中文字幕| 热re99久久国产66热| 亚洲精品国产av蜜桃| 久久精品国产亚洲av涩爱| 亚洲精品,欧美精品| 国产日韩一区二区三区精品不卡 | 亚洲av不卡在线观看| 在线精品无人区一区二区三| 69精品国产乱码久久久| 久久国产亚洲av麻豆专区| 美女视频免费永久观看网站| 欧美激情极品国产一区二区三区 | 久久久午夜欧美精品| 久久久精品94久久精品| 丰满饥渴人妻一区二区三| 熟女av电影| 国产精品偷伦视频观看了| 18禁在线播放成人免费| 国产精品蜜桃在线观看| 女性生殖器流出的白浆| 各种免费的搞黄视频| 久久国内精品自在自线图片| 久久这里有精品视频免费| 伊人亚洲综合成人网| 午夜久久久在线观看| 国产 精品1| 久久久精品免费免费高清| 久久久久久久久久久久大奶| 一级二级三级毛片免费看| 国产精品一二三区在线看| 尾随美女入室| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区大全| 少妇裸体淫交视频免费看高清| 另类精品久久| 成人亚洲欧美一区二区av| 亚洲综合色惰| 51国产日韩欧美| 国产精品国产av在线观看| 亚洲av中文av极速乱| 亚洲精品国产色婷婷电影| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 国产成人91sexporn| 插阴视频在线观看视频| tube8黄色片| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 亚洲欧美日韩另类电影网站| 九草在线视频观看| 18禁裸乳无遮挡动漫免费视频| 亚洲av免费高清在线观看| 国产色婷婷99| 亚洲欧美精品专区久久| 91久久精品国产一区二区成人| 熟妇人妻不卡中文字幕| 永久免费av网站大全| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 欧美激情极品国产一区二区三区 | 国产精品一二三区在线看| 99九九线精品视频在线观看视频| 国产免费视频播放在线视频| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 日韩电影二区| 欧美激情极品国产一区二区三区 | 简卡轻食公司| 黑人巨大精品欧美一区二区蜜桃 | 精品国产国语对白av| 最近的中文字幕免费完整| 国产日韩欧美亚洲二区| 国产一区二区三区综合在线观看 | 日韩欧美一区视频在线观看 | av黄色大香蕉| 纵有疾风起免费观看全集完整版| 国产日韩一区二区三区精品不卡 | 成年女人在线观看亚洲视频| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 男女无遮挡免费网站观看| 亚洲av中文av极速乱| 天美传媒精品一区二区| 97在线人人人人妻| 日韩av不卡免费在线播放| 丰满迷人的少妇在线观看| 特大巨黑吊av在线直播| 人妻夜夜爽99麻豆av| 免费av中文字幕在线| 国产69精品久久久久777片| 久久鲁丝午夜福利片| 日本wwww免费看| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 亚洲怡红院男人天堂| 亚洲欧美清纯卡通| 久久久欧美国产精品| 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 观看免费一级毛片| 久久99蜜桃精品久久| 热re99久久国产66热| 99热这里只有是精品50| 久久国产乱子免费精品| 在线观看人妻少妇| 国产探花极品一区二区| 22中文网久久字幕| 少妇被粗大猛烈的视频| 国产视频首页在线观看| 免费观看的影片在线观看| 丰满饥渴人妻一区二区三| 男人添女人高潮全过程视频| 波野结衣二区三区在线| av播播在线观看一区| 黑人猛操日本美女一级片| 国产在视频线精品| 亚洲美女搞黄在线观看| 国产一区二区三区综合在线观看 | 国产精品福利在线免费观看| 噜噜噜噜噜久久久久久91| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 亚洲经典国产精华液单| av免费观看日本| 一级毛片电影观看| 最后的刺客免费高清国语| 免费看日本二区| 99久久精品一区二区三区| 亚洲中文av在线| 黄片无遮挡物在线观看| 2018国产大陆天天弄谢| 亚洲国产最新在线播放| 丝袜在线中文字幕| 亚洲欧美成人精品一区二区| 日本黄大片高清| 国产成人免费观看mmmm| 黄色怎么调成土黄色| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 国产精品偷伦视频观看了| 大片免费播放器 马上看| 少妇精品久久久久久久| av福利片在线| 51国产日韩欧美| 女人久久www免费人成看片| 日韩三级伦理在线观看| 在线亚洲精品国产二区图片欧美 | 国产成人91sexporn| 最近的中文字幕免费完整| 亚洲中文av在线| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频 | 91精品国产国语对白视频| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 久久久久网色| 国产一区二区三区综合在线观看 | 极品人妻少妇av视频| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 一边亲一边摸免费视频| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 日韩伦理黄色片| 麻豆成人午夜福利视频| 精品国产露脸久久av麻豆| 成人18禁高潮啪啪吃奶动态图 | 日韩欧美一区视频在线观看 | 一级毛片aaaaaa免费看小| 精华霜和精华液先用哪个| 中文乱码字字幕精品一区二区三区| 亚洲人成网站在线观看播放| 国产一区二区在线观看日韩| 校园人妻丝袜中文字幕| 亚洲国产精品成人久久小说| 久久久久久久久久久丰满| 亚洲久久久国产精品| 男人舔奶头视频| 欧美少妇被猛烈插入视频| 丝袜脚勾引网站| 精品视频人人做人人爽| 一级毛片黄色毛片免费观看视频| 国产一区二区在线观看av| 午夜福利视频精品| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 九九久久精品国产亚洲av麻豆| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| .国产精品久久| 一本色道久久久久久精品综合| 亚洲欧美一区二区三区国产| 色94色欧美一区二区| 国产亚洲最大av| av黄色大香蕉| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频| 午夜视频国产福利| 午夜激情久久久久久久| 国产色爽女视频免费观看| 国产真实伦视频高清在线观看| 国产老妇伦熟女老妇高清| 看十八女毛片水多多多| av国产精品久久久久影院| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 久久久久久久国产电影| 久久久午夜欧美精品| 久久国内精品自在自线图片| 大香蕉久久网| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 亚洲国产欧美在线一区| 丝袜喷水一区| 少妇人妻久久综合中文| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区| 成人无遮挡网站| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| 久久久亚洲精品成人影院| 人妻人人澡人人爽人人| 久久女婷五月综合色啪小说| 91精品国产国语对白视频| 国产精品不卡视频一区二区| 男女国产视频网站| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 青春草国产在线视频| 我的老师免费观看完整版| 在线观看国产h片| 亚洲三级黄色毛片| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 最新中文字幕久久久久| 国产乱来视频区| 寂寞人妻少妇视频99o| 99久久综合免费| 亚洲,欧美,日韩| 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 老司机影院毛片| 91在线精品国自产拍蜜月| 日韩电影二区| av免费在线看不卡| 国产乱人偷精品视频| 美女主播在线视频| 久久久久久久大尺度免费视频| 男人舔奶头视频| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 国产精品久久久久久精品电影小说| 99视频精品全部免费 在线| 黄色毛片三级朝国网站 | 丰满少妇做爰视频| 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 久久久国产精品麻豆| 国产黄片视频在线免费观看| 伊人久久精品亚洲午夜| 亚洲情色 制服丝袜| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 黄色欧美视频在线观看| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 18禁动态无遮挡网站| 91aial.com中文字幕在线观看| 51国产日韩欧美| 中文天堂在线官网| 国产美女午夜福利| 亚洲国产精品一区二区三区在线| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 亚洲高清免费不卡视频| 99精国产麻豆久久婷婷| 亚洲va在线va天堂va国产| 成人亚洲精品一区在线观看| 美女内射精品一级片tv| 久久国产精品大桥未久av | 国产女主播在线喷水免费视频网站| 亚洲综合精品二区| 欧美三级亚洲精品| 国产亚洲精品久久久com| 熟女电影av网| 婷婷色综合www| 国产av精品麻豆| 六月丁香七月| 九九在线视频观看精品| 亚洲va在线va天堂va国产| 久久久久久久久久人人人人人人| av卡一久久| 国产欧美亚洲国产| 嫩草影院入口| 人体艺术视频欧美日本| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 一本一本综合久久| 永久免费av网站大全| 女性被躁到高潮视频| 欧美xxⅹ黑人| 亚洲欧美中文字幕日韩二区| 亚洲激情五月婷婷啪啪| 久久精品夜色国产| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的| 亚洲精品视频女| 简卡轻食公司| 日日啪夜夜撸| 免费看av在线观看网站| av免费观看日本| 欧美 日韩 精品 国产| 观看av在线不卡| 美女视频免费永久观看网站| 国产欧美日韩综合在线一区二区 | 久久99蜜桃精品久久| 国产亚洲一区二区精品| 免费观看a级毛片全部| 国产一级毛片在线| 精品国产乱码久久久久久小说| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 亚洲人成网站在线播| 国产欧美日韩综合在线一区二区 | 日本av免费视频播放| 成人二区视频| 亚洲欧美成人综合另类久久久| 亚洲精品乱码久久久v下载方式| 国产精品秋霞免费鲁丝片| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频 | 国产精品一区二区在线不卡| 伦精品一区二区三区| 精品少妇久久久久久888优播| 亚洲在久久综合| 啦啦啦中文免费视频观看日本| 国产欧美亚洲国产| av国产久精品久网站免费入址| 黄色日韩在线| av不卡在线播放| 亚洲第一区二区三区不卡| 老司机影院成人| 九九在线视频观看精品| 啦啦啦中文免费视频观看日本| 久久精品熟女亚洲av麻豆精品| 国产 一区精品| 人妻人人澡人人爽人人| 国产伦在线观看视频一区| 少妇丰满av| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 国产高清有码在线观看视频| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 超碰97精品在线观看| 伊人亚洲综合成人网| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 亚洲内射少妇av| 新久久久久国产一级毛片| 在线观看免费日韩欧美大片 | 国产亚洲av片在线观看秒播厂| 免费不卡的大黄色大毛片视频在线观看| 亚洲第一av免费看| 欧美另类一区| 99re6热这里在线精品视频| 亚洲色图综合在线观看| 99视频精品全部免费 在线| 日本欧美国产在线视频| 婷婷色麻豆天堂久久| 国产无遮挡羞羞视频在线观看| 观看av在线不卡| 久久精品国产亚洲av天美| 一本色道久久久久久精品综合| 中文字幕久久专区| 99九九线精品视频在线观看视频| 亚洲中文av在线| 最后的刺客免费高清国语| 男女免费视频国产| 麻豆精品久久久久久蜜桃| 婷婷色综合大香蕉| 日本91视频免费播放| 少妇的逼好多水| 97超碰精品成人国产| 精品少妇久久久久久888优播| 国产黄片美女视频| 老司机亚洲免费影院| 国产永久视频网站| 丝袜在线中文字幕| 色吧在线观看| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 成年人免费黄色播放视频 | 日本黄色日本黄色录像| 午夜91福利影院| 国产精品一区二区性色av| 亚洲精品第二区| 国产熟女午夜一区二区三区 | 精品熟女少妇av免费看| 国产美女午夜福利| 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 欧美国产精品一级二级三级 | 亚洲精品成人av观看孕妇| 纵有疾风起免费观看全集完整版| 亚洲精品成人av观看孕妇| 免费观看a级毛片全部| 97在线人人人人妻| 免费av中文字幕在线| 久久精品国产亚洲av涩爱| 嫩草影院新地址| 亚洲国产精品999| 青春草亚洲视频在线观看| 国产伦在线观看视频一区| 欧美性感艳星| 日韩精品免费视频一区二区三区 | 日产精品乱码卡一卡2卡三| 晚上一个人看的免费电影| 女人精品久久久久毛片| 久久久欧美国产精品| 免费观看无遮挡的男女| 亚洲av日韩在线播放| 麻豆精品久久久久久蜜桃| 亚洲欧洲国产日韩| 久久婷婷青草| 国产综合精华液| 欧美最新免费一区二区三区| 99久久精品国产国产毛片| 午夜日本视频在线| 亚洲不卡免费看| 777米奇影视久久| 国产伦理片在线播放av一区| 国产免费一区二区三区四区乱码| 国产女主播在线喷水免费视频网站| 国产亚洲一区二区精品| 桃花免费在线播放| 日韩在线高清观看一区二区三区| 亚洲婷婷狠狠爱综合网| 一级,二级,三级黄色视频| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久久精品电影小说| av播播在线观看一区| 十八禁高潮呻吟视频 | 伦理电影大哥的女人| 五月天丁香电影| 亚洲美女黄色视频免费看| av黄色大香蕉| 久久ye,这里只有精品| 三级经典国产精品| 国产 精品1| av福利片在线| 久久狼人影院| 啦啦啦中文免费视频观看日本| 欧美三级亚洲精品| 国产无遮挡羞羞视频在线观看| 女人精品久久久久毛片| 久久亚洲国产成人精品v| 18禁在线无遮挡免费观看视频| 边亲边吃奶的免费视频| 中文字幕亚洲精品专区| 少妇的逼好多水| 日韩,欧美,国产一区二区三区| 亚洲四区av| 深夜a级毛片| 国产精品麻豆人妻色哟哟久久| 99九九线精品视频在线观看视频| 国产av码专区亚洲av| 青春草国产在线视频| 亚洲av男天堂| 国产伦理片在线播放av一区| 婷婷色综合www| 日本与韩国留学比较| 在线观看人妻少妇| 免费大片18禁| av.在线天堂| 超碰97精品在线观看| 日韩三级伦理在线观看| 在线精品无人区一区二区三| 国产精品熟女久久久久浪| 欧美日韩视频精品一区| 成人综合一区亚洲| 亚洲,一卡二卡三卡| 亚洲国产精品一区二区三区在线| 国产精品久久久久久久久免| 国产成人精品婷婷| 国产成人精品福利久久| 日韩 亚洲 欧美在线| 成人国产麻豆网| av视频免费观看在线观看| 大片免费播放器 马上看| 亚洲av中文av极速乱| 国产乱人偷精品视频| 中国国产av一级| 一级毛片黄色毛片免费观看视频| 国产69精品久久久久777片| 爱豆传媒免费全集在线观看| 精品人妻熟女毛片av久久网站| 在线 av 中文字幕| av福利片在线| 国产av一区二区精品久久| 久久午夜福利片| 亚洲真实伦在线观看| 少妇精品久久久久久久| 嫩草影院新地址| 欧美精品一区二区大全| av线在线观看网站| 一级二级三级毛片免费看| 欧美xxⅹ黑人| 国产欧美日韩一区二区三区在线 | 97精品久久久久久久久久精品| 亚洲怡红院男人天堂| 熟女av电影| 大香蕉97超碰在线| 免费观看a级毛片全部| 成年女人在线观看亚洲视频| 嫩草影院入口| 自拍偷自拍亚洲精品老妇| 国产一区有黄有色的免费视频| 一级毛片久久久久久久久女| 制服丝袜香蕉在线| 国产91av在线免费观看| 97超视频在线观看视频| 日韩一区二区视频免费看| 国产精品女同一区二区软件| 国产在视频线精品| 亚洲欧美日韩东京热| 观看美女的网站| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 只有这里有精品99| 免费黄网站久久成人精品| 一级毛片 在线播放| 成人综合一区亚洲| 日韩强制内射视频| 国产欧美亚洲国产| 日韩免费高清中文字幕av| 日韩欧美 国产精品| 青春草国产在线视频| 少妇人妻 视频| 午夜影院在线不卡| 久久ye,这里只有精品| 伊人久久精品亚洲午夜| 王馨瑶露胸无遮挡在线观看| 国产免费福利视频在线观看| 一级黄片播放器| 最新中文字幕久久久久| 日本欧美视频一区| 欧美性感艳星| .国产精品久久| 熟女人妻精品中文字幕| 国产一区二区三区av在线| 十八禁高潮呻吟视频 | 久久久久久人妻| av又黄又爽大尺度在线免费看| 蜜桃在线观看..| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 免费黄色在线免费观看| 99热国产这里只有精品6| 一级爰片在线观看| 我要看日韩黄色一级片| 三级经典国产精品| 简卡轻食公司|