• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Investigations on Graphite Oxide Immersed in Water or Methanol

    2014-07-19 11:17:08WanwanGengWenhuiZhaoLanfengYuan
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Wan-wan Geng,Wen-hui Zhao,Lan-feng Yuan

    Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    Theoretical Investigations on Graphite Oxide Immersed in Water or Methanol

    Wan-wan Geng,Wen-hui Zhao,Lan-feng Yuan?

    Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    Different structures of graphite oxide(GO)with and without water are optimized by density functional theory.Without H2O in interlayer space,the optimized interlayer distances are about 6?A,smaller than the experimental values of 6.5-7?A.On the other hand,the interlayer distances of hydrated graphite oxide structures are in good agreement with experimental observations.Based on the optimized GO structures,we then simulate the immersion of GO in water or methanol by molecular dynamics.For the dry GO,water and methanol molecules do not enter the nanopore.While for the hydrated GO,the liquid molecules enter the interlayer space and enlarge the interlayer distance,semi-quantitatively reproducing the experimental phenomena.

    Graphite oxide,Immersion,Density functional theory,Molecular dynamics

    I.INTRODUCTION

    Although the f i rst preparation of graphite oxide(GO) was as early as in the 1850’s by oxidizing graphite with KClO3/HNO3[1-4],its structure and chemical composition remains unclear till now,because direct structural information about GO can hardly be obtained.Because of its various interesting properties and close relation with graphene,GO has been used in diverse areas.For example,it is used in thin film technologies because of its hexagonal in-plane structure and ability to be exfoliated layer by layer,and can be used as an insulating material for nanodevices[5,6].Large-scale graphene can be produced by GO layers followed by chemical reduction[7,8].GO can also be used as a precursor to form polystyrene graphene composites and transparent conducting film[9,10].Furthermore,it can be used as the electrodes of batteries and supercapacitors because of its large interlayer distance[11,12].

    Nowadays,GO is obtained by strong oxidation of graphite[13-16].GO with different oxidation levels can be synthesized by several methods[17-22].According to the results of NMR,XPS,and IR spectroscopy, several structural models have been proposed for GO [23-25].It is believed that GO has a layered structure with epoxide and hydroxyl groups distributed on hexagonal carbon layers.The structure is strongly disordered, and the GO sheets are buckled.The carboxyl and alkyl groups are located at the edge of GO f l ake[21].In comparison with graphite,whose interlayer distance is 3.4 ?A,GO has a signif i cantly increased interlayer distance of 6.5?A to 7?A[13,14].

    A unique property of GO is its ability to incorporate polar solvents into interlayer space under ambient conditions.For example,when GO is immersed in water under 1 bar,the water molecules can be easily absorbed into GO,increasing the interlayer distance of GO to~11?A[13-16].With increase of pressure, the interlayer distance goes up continuously,and at a maximum of 1.3-1.5 GPa the lattice expands by about 28%-30%.Above 1.3-1.5 GPa,the interlayer distance quickly goes down with pressure,and reaches~9?A under 2 GPa.The explanation to this sharp downturn is that in this pressure range the bulk water becomes solid,while water in the interlayer space is still fluid,so no bulk water can be pressed into the nanopore,but interlayer water can be pressed out from the nanopore.This process is reversible,resulting in a unique breathing of the structure upon pressure variation[26].On the other hand,a high-pressure study of GO immersed in methanol showed a different pattern of interlayer distance vs.pressure.Under pressure of 1 bar,the interlayer distance is~9?A,indicating that some methanol molecules enter the GO.But the change in interlayer distance is very small for pressure from 1 bar to 0.2 GPa,so the amount of methanol in the interlayer space should be roughly constant.When the pressure is increased to 0.2-0.8 GPa,a sharp increase of cell volume shows up,ref l ecting further insertion of methanol into the nanopores.With further increase of pressure,the interlayer distance gradually goes down from the maximum value of~12?A under 0.8 GPa. However,this decrease with methanol is much slowerthan that with water.For example,the interlayer distance of GO/methanol is 11.5?A under 2 GPa.Therefore,it is inferred that the interlayer methanol molecules are f i xed,and cannot be pressed out like the interlayer water molecules[27].

    In this work,we study the immersion of GO in H2O or MeOH at the atomic level,and compare with the experimental results.To obtain a reasonable structure of GO,we f i rst build several models of GO and optimize them with density functional theory(DFT).It is revealed that to get the interlayer distance consistent with its experimental value,the GO model must incorporate H2O.Based on the optimized GO structures, we then perform molecular dynamics(MD)simulations for GO immersed in water or methanol.It is found that both liquid molecules can enter the nanopore of hydrated GO,consistent with the experimental results.

    II.COMPUTATIONAL METHODS AND SIMULATION DETAILS

    To incorporate a series of levels of oxidation,we consider three chemical formulae of graphite oxide,i.e., C8O(OH),C8O2(OH)2,and C8O(OH)4.An issue is that real samples of GO are believed to be hygroscopic in general,and the concentration of water is about 6%-11%in weight[19,20].Therefore,we also build models of hydrated GO by introducing one water molecule per chemical formula into the unit cells.This corresponds to H2O of 14%for the less oxidized GO (C8O(OH)),and 11%and 10%for the two highly oxidized GOs(C8O2(OH)2and C8O(OH)4),respectively [28].In the geometry optimizations,several positions are considered for the water molecules.

    The density functional calculations are carried out with the Vienna ab initio Simulation Package(VASP) [29,30].The projector-augmented wave(PAW)method [31,32]with PBE functional is used for electron-ion interaction,and the Perdew-Wang form[33]of the generalized gradient approximation(GGA)is adopted to describe electronic exchange and correlation.A kineticenergy cutof fof 500 eV is selected for the plane wave basis set.The Brillouin zone is sampled with a 6×7×2 irreducible Monkhorst-Pack k-point grid[34].The convergence criteria for force and energy are 0.01 eV/?A and 0.1 meV,respectively.

    We then carry out molecular dynamics simulations of GO immersed in H2O or MeOH using the GROMACS 4.5 software[35].We pick a 5×5×1 supercell of GO in the optimized geometry,and then put it into a 50?A×50?A×50?A box filled with H2O or MeOH molecules.NPT simulations are f i rst performed at 300 K and 1 bar,and then the pressure is increased gradually with increment of 0.1 GPa.

    The potentials for H2O and CH3OH molecules are TIP3P[36,37]and OPLS united-atom[38,39]force fields,respectively.The OPLS force field is employed for the GO system,too.The OPLS united-atommethanol model proposed by Jorgensen et al.and Haughney et al.have been widely used in liquid simulations[40].

    TABLEI Structural parameters in optimized configurations of GO structures.

    III.RESULTS AND DISCUSSION

    A.Low oxidation GO:C8O(OH)

    Figure1showstheoptimizedconfigurationof C8O(OH).Because of the epoxide and hydroxyl groups distributed on hexagonal carbon layers,the GO sheets are puckered.The corresponding cell parameters are listed in Table I.The cell parameters for a sheet are a=4.975?A and b=4.313?A,roughly twice of those of graphite,indicating that the sheet structure of GO is similar to that of graphite.The optimized interlayer distance is c/2=5.381?A,which is smaller than the interlayer distances observed by experiment(6.5-7?A)at ambient temperature and pressure[19,20].The most likely reason for this discrepancy is that the pristine samples of GO usually contain water[15-20].Structures with intercalated H2O molecules will be discussed later.The distance between an O atom in an epoxide group and an H atom in a OH group of a neighboring layer is 1.945?A.This length is in the range of hydrogen bonding,and this feature is a determining factor for the interlayer distance.

    B.High oxidation graphite oxides:C8O2(OH)2and C8O(OH)4

    We next consider another chemical formula of GO with higher oxygen content,C8O2(OH)2,which was also studied in Ref.[19].Figure 2(A)and(B)show two local minima configurations of C8O2(OH)2.The corresponding cell parameters are listed in Table I,too.The interlayer distance is expanded to 5.770 and 5.976?A, respectively.As Fig.2(A)shows,the distance between a H atom of an OH group and a neighboring O atom in the same layer is 1.945?A,shorter than the interlayer hydrogen bonding distance of 2.412?A.The correponding distance in Fig.2(B)is 2.226?A,also shorter than the interlayer hydrogen bonding distance of 2.398?A. Therefore,the intralayer hydrogen bonding is stronger than the interlayer hydrogen bonding.

    TABLE II Structural parameters in optimized configurations of hydrated GO structures.

    FIG.1 Optimized configurations of C8O(OH):top view (left)and side view(right).

    FIG.2OptimizedconfigurationsofC8O2(OH)2and C8O(OH)4:top views(up panel)and side views(down panel).

    C.Hydrated GO

    In general,the pristine sample of GO is not dry, because its preparation usually needs H2O,and it is hard to separate water from GO.The concentration of water(in weight percentage)is in the range of 6%-11%in real samples[19,20].Therefore,it is reasonable to add some number of water molecules into the GO models.So we build the models of C8O(OH)·H2O(14%H2O),C8O2(OH)2·H2O (11%H2O),and C8O(OH)4·H2O(10%H2O).Figures 3 and 4 display the optimized configurations of these compositions,and the corresponding cell parameters are listed in Table II.Their interlayer distances are significantly increased and become close to the range of the experimental values[20].The origin for this great in-crease of interlayer distances lies on the three hydrogen bonds around the H2O molecule.As for the difference of interlayer distances among different structures,we can also f i nd some tendencies.The higher the degree of oxidation is,the bigger the interlayer distance is.In addition,the distribution of the hydroxyl on different layers also plays a role.

    FIG.3 Optimized configurations of hydrated C8O(OH)and C8O(OH)4:top views(up panel)and side views(down panel).

    FIG.4 Optimized configurations of hydrated C8O2(OH)2(a)and(b):top views(up panel)and side views(down panel).

    FIG.5 GO immersed in water or methanol at the beginning of molecular dynamics simulations.

    As for the highest oxidation GO species C8O(OH)4, its configuration is shown in Fig.2(c).The intralayer hydrogen bonding distance is 2.821?A,close to the interlayer hydrogen bonding distance of 2.782?A.The interlayer distance is further expanded to 6.068?A,but still considerably smaller than the experimental values.

    D.Molecular dynamics simulations

    The GO structures we choose to simulate in an excess of water or methanol are C8O2(OH)2(a)and its hydrated counterpart C8O2(OH)2·H2O(a),because C8O2(OH)2·H2O(a)is the only structure whose interlayer distance(6.84?A)is in the experimental range of 6.5-7.0?A,although those of the other hydrated GOs are not far from this range also.Besides,its concentration of H2O is 11%,in the experimental range of 6%-11%.As a comparasion,the water concentration in C8O(OH)·H2O,14%,is a bit too high.

    As the f i rst step,we use two layers of the dry model C8O2(OH)2(a)to simulate graphite oxide immersed in water or methanol solution.The simulation starts from 1 bar,and the pressure is increased gradually in step of 0.1 GPa.Every step lasts 8 ns.As shown in Fig.5,in the initial state of the system,there is no fluid molecule between the two sheets of GO.When the simulation goes by,in the interlayer space there is still no water or methanol molecule.Because of this,the interlayer distance does not increase with the pressure as the experimental results.Obviously,this is due to the short interlayer distance of the model(5.77?A),too much smaller than the experimental value of 6.5-7?A[27].Therefore, the interaction between the layers is too strong,and it is hard for the GO to expand to accommodate solvent molecules.

    FIG.6 GO and its interlayer space when immersed in H2O: top view(up)and side view(down).

    Then we repeat the simulations for the hydrated model C8O2(OH)2·H2O(a).The molecular dynamics simulation starts also from 1 bar,and the pressure is also increased in step of 0.1 GPa,while the time for every step is changed to 20 ns.

    As shown in Fig.6 and Fig.7,H2O or MeOH molecules can now enter into the interlayer space,along with severe distortion of the GO sheets and great increase in the interlayer distance.Therefore,it can be concluded that the initial interlayer distance is crucial when simulating the immersion of GO in liquid.Under the same conditions,the number of water molecules in the interlayer space is more than that of methanol molecules.

    Having established the qualitative success of the simulations,we then look at more quantitative details to compare with experiments.When C8O2(OH)2·H2O(a) is immersed into water at 300 K and 1 bar,the degree of expansion is similar to the experimental result, namely,a hop from~7?A to~11?A[27].But with ongoing increase of the pressure,the interlayer distance maintains around 11?A(Fig.8),in contrast to the experimental behavior of a peak value under 1.3-1.5 GPa [27].On the other hand,when C8O2(OH)2·H2O(a)is immersed into methanol at 300 K and 1 bar,a hop of the interlayer distance is also observed,consistent with experiments,as shown in Fig.9.Nevertheless,the interlayer distance is found to be~12?A,larger than the experimental value of~9?A.Actually,this magnitude is similar to the maximum value in experiments when the pressure is 0.8 GPa[27].With continuing increase of pressure,the interlayer distance in simulations gradu-ally decreases,similar to the experimental results above 0.8 GPa.

    FIG.7 GO and its interlayer space when immersed in methanol:top view(up)and side view(down).

    FIG.8 Interlayer distance d dependence on pressure P of GO/H2O.

    These discrepancies might be understood from two aspects.Firstly,in experiments,the sudden decrease of interlayer distance under 1.3-1.5 GPa for GO/H2O is correlated to the solidif i cation of bulk water under this pressure.However,in our additional MD simulation for bulk water with the same force f i eld(TIP3P), it does not freeze under 1.5 GPa,ref l ecting a drawback of this water model.Therefore,it is no wonder that our simulations for GO/H2O cannot reproduce this feature. Secondly,we only adopt two layers to mimic a bulk GO, and each layer has only 100 carbon atoms.Given the degree of simplif i cation of our models and their good behaviors on the admissibility of the fluid molecules into the nanopore and on the initial expansion of the interlayer distance,its failure to gain more quantitative results is acceptable.

    FIG.9 Interlayer distance d dependence on pressure P of GO/MeOH.

    It is interesting to compare the physical pictures of the experiments with our simulations.For GO/H2O, the simulations agree with the experiments in that the interlayer water is liquid,while the solidif i cation of bulk water under 1.3-1.5 GPa is absent in simulations.For GO/MeOH,the interlayer MeOH molecules cannot be pressed out in both simulations and experiments,but it is too easy for them to enter the nanopore in simulations.To simulate the experimental phenomena with higher precision,we need to build a system with more layers of GO,more carbon atoms per layer,and more solvent molecules.

    IV.CONCLUSION

    To investigate the immersion of GO in H2O or MeOH, we optimize GO structures and simulate the immersion processes.Several GO structures with di ff erent oxidation levels are considered.To get an inter?layer distanceclose to the experimental value of 6.5-7A,it is crucial that the GO structures should contain water.Two layers of the GO structure C8O2(OH)2(a)or its hydrated version are tried in MD simulations for immersion.The fl uid molecules do not enter the nanopore of the dry GO.On the other hand,both H2O and MeOH can be inserted into the hydrated GO interlayer space,consistent with experiments.Furthermore,the jumps of the interlayer distance due to this immersion are also evaluated relatively well.We do not get quantitative consistency with experiments on the variation of interlayer distance vs.pressure,which is beyond the capability of our highly simpli fied models.Despite this,these calculations and simulations have deepened our understanding to these fascinating phenomena,and may lead to systematic improvements along this direction.

    V.ACKNOWLEDGMENTS

    ThisworkissupportedbytheNationalNaturalScienceFoundationofChina(No.20603032, No.20733004,No.21121003,No.91021004,and No.20933006),the Ministry of Science and Technology of China(No.2011CB921400),the National Excellent Doctoral Dissertation of China(No.200736), the Fundamental Research Funds for the Central Universities(No.WK2340000006,No.WK2060140005, and No.WK2060030012),and the USTC-HP HPC project.

    [1]B.C.Brodie,Ann.Chim.Phys.59,466(1860).

    [2]L.Staudenmaier,Ber.Dtsch.Chem.Ges.31,1481 (1898).

    [3]B.Brodie,Ann.Chim.Phys.45,351(1855).

    [4]B.C.Brodie,Philos.Trans.R.Soc.London.A149,249 (1859).

    [5]R.Ruof f,Nature Nanotechnol.3,10(2008).

    [6]M.Hirata,T.Gotou,S.Horiuchi,M.Fujiwara,and M. Phba,Carbon.43,503(2005).

    [7]V.C.Tung,M.J.Allen,Y.Yang,and R.B.Kaner, Nat.Nanotechnol.4,25(2009).

    [8]S.Stankovich,D.A.Dikin,R.D.Piner,K.A.Kohlhass, A.Kleinhammes,Y.Jia,Y.Wu,S.B.T.Nguyen,and R.S.Ruof f,Carbon 45,1558(2007).

    [9]S.Stankovich,D.A.Dikin,G.H.B.Dommett,K.M. Kohlhass,E.J.Zimney,E.A.Stach,R.D.Piner,S.B. T.Nguyen,and R.S.Ruof f,Nature 442,282(2006).

    [10]H.J.Shin,K.K.Kim,S.M.Yoon,A.Benayad,H.K. Park,M.H.Jin,H.K.Jeong,J.Kim,J.Y.Choi,and Y.H.Lee,Adv.Funct.Mater.19,1987(2009).

    [11]D.A.Dikin,S.Stankovich,E.J.Zimney,R.D.Piner, G.H.B.Dommett,G.Evmenenko,S.B.T.Nguyen, and R.S.Ruof f,Nature 448,457(2007).

    [12]I.J.Kim,S.Yang,M.J.Jeon,S.I.Moon,H.S.Kim, Y.P.Lee,K.H.An,and Y.H.Lee,J.Power Sources 173,621(2007).

    [13]W.Scholz and H.P.Boehm,Z.Anorg.Allg.Chem. 369,327(1969).

    [14]A.Lerf,A.Buchsteiner,J.Pieper,S.Sch¨ottl,I.D′ek′any, T.Sz′abo,and H.P.Boehm,J.Phys.Chem.Solids 67, 1106(2006).

    [15]A.Lerf,H.He,M.F¨orster,and J.Klinowski,J.Phys. Chem.B 102,4477(1998).

    [16]U.Hofmann and A.Frenzel,Ber.Dtsch.Chem.Ges. 63,1248(1930).

    [17]T.Nakajima and Y.Matsuo,Carbon 26,357(1988).

    [18]M.Mermoux,Y.Chabre,and A.Rousseau,Carbon 29, 469(1991).

    [19]T.Sz′abo,O.Berkesi,P.Forg′o,K.Josepovits,Y. Sanakis,D.Petridis,and I.D′ek′any,Chem.Mater.18, 2740(2006).

    [20]H.K.Jeong,Y.P.Lee,R.J.Lahaye,M.H.Park,K. H.An,I.J.Kim,C.W.Yang,C.Y.Park,R.S.Ruof f, and Y.H.Lee,J.Am.Chem.Soc.130,1362(2008).

    [21]H.K.Jeong,H.J.Noh,J.Y.Kim,M.H.Jin,C.Y. Park,and Y.H.Lee,Europhys.Lett.82,67004(2008).

    [22]H.He,J.Klinowski,M.Forster,and A.Lerf,Chem. Phys.Lett.287,53(1998).

    [23]C.Hontoria-Lucas,A.J.L′opez-Peinado,J.D.L′opez-Gonz′alez,M.L.Rojas-Cervantes,and R.M.Mart′?n-Aranda,Carbon 33,1585(1995).

    [24]H.He,T.Riedl,A.Lerf,and J.Klinowski,J.Phys. Chem.100,19954(1996).

    [25]A.Lerf,H.He,T.Riedl,M.Forster,and J.Klinowski, Solid State Ionics 101,857(1997).

    [26]A.V.Talyzin,V.L.Solozhenko,O.O.Kurakevych, T.Sz′abo,I.D′ek′any,A.Kurnosov,and V.Dmitriev, Angew.Chem.Int.Ed.47,8268(2008).

    [27]A.V.Talyzin,B.Sundqvist,T.Sz′abo,I.D′ek′any,and V.Dmitriev,J.Am.Chem.Soc.131,18445(2009).

    [28]D.L.Duong,G.Kim,H.K.Jeong,and Y.H.Lee, Phys.Chem.Chem.Phys.12,1595(2010).

    [29]G.Kresse and J.Furthmuller,Comput.Mater.Sci.6, 15(1996).

    [30]G.Kresse and J.Furthmuller,Phys.Rev.B 54,11169 (1996).

    [31]P.E.Blochl,Phys.Rev.B 50,17953(1994).

    [32]G.Kresse and D.Joubert,Phys.Rev.B 59,1758 (1999).

    [33]J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson, M.R.Pederson,D.J.Singh,and C.Fiolhais,Phys. Rev.B 46,6671(1992).

    [34]H.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [35]B.Hess,C.Kutzner,D.van der Spoel,and E.Lindahl, J.Chem.Theory Comput.4,435(2008).

    [36]W.L.Jorgensen,J.Chandrasekhar,and J.D.Madura, J.Chem.Phys.79,926(1983).

    [37]P.Mark and L.Nilsson,J.Comput.Chem.23,1211 (2002).

    [38]M.Haughney,M.Ferrario,and I.R.McDonald,Mol. Phys.58,849(1986).

    [39]W.L.Jorgensen,J.Chandrasekhar,J.D.Madura,R. W.Impey,and M.L.Klein,J.Chem.Phys.79,926 (1983).

    [40]C.J.Shih,S.C.Lin,R.Sharma,M.S.Strano,and D. Blankschtein,Langmuir 28,235(2012).

    ceived on May 28,2013;Accepted on June 3,2013)

    ?Author to whom correspondence should be addressed.E-mail:yuanlf@ustc.edu.cn

    少妇猛男粗大的猛烈进出视频 | 国产av一区在线观看免费| 波多野结衣巨乳人妻| 日本-黄色视频高清免费观看| 日本色播在线视频| 成人漫画全彩无遮挡| 能在线免费观看的黄片| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 国产精品日韩av在线免费观看| 国产精华一区二区三区| 成人鲁丝片一二三区免费| 看黄色毛片网站| 三级男女做爰猛烈吃奶摸视频| 少妇被粗大猛烈的视频| 欧美一区二区国产精品久久精品| 少妇熟女欧美另类| 伦精品一区二区三区| 日本黄大片高清| 香蕉av资源在线| 亚洲av第一区精品v没综合| 国产视频内射| 日韩国内少妇激情av| 22中文网久久字幕| 国产精品爽爽va在线观看网站| 在现免费观看毛片| 国产 一区 欧美 日韩| 成人欧美大片| 国产精品一区二区三区四区免费观看 | 波多野结衣巨乳人妻| 免费看光身美女| 小说图片视频综合网站| 91久久精品电影网| 久久国产乱子免费精品| 91av网一区二区| 99热网站在线观看| 有码 亚洲区| 日日干狠狠操夜夜爽| videossex国产| 精品一区二区三区视频在线| 97超级碰碰碰精品色视频在线观看| 中出人妻视频一区二区| 国产 一区 欧美 日韩| 小蜜桃在线观看免费完整版高清| 日日摸夜夜添夜夜添av毛片| 欧美区成人在线视频| 大型黄色视频在线免费观看| 国产蜜桃级精品一区二区三区| 麻豆国产97在线/欧美| 国产欧美日韩一区二区精品| 人妻久久中文字幕网| av专区在线播放| 久久鲁丝午夜福利片| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 日韩 亚洲 欧美在线| 国产av麻豆久久久久久久| 国产高潮美女av| 国产男人的电影天堂91| 欧美色视频一区免费| 国内精品久久久久精免费| av.在线天堂| 亚州av有码| 午夜精品在线福利| 赤兔流量卡办理| 欧美+亚洲+日韩+国产| 久久久精品94久久精品| 久久久国产成人精品二区| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 欧美在线一区亚洲| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 色综合亚洲欧美另类图片| 国产精品久久视频播放| 欧美最黄视频在线播放免费| 蜜臀久久99精品久久宅男| 露出奶头的视频| 99热全是精品| 国产精品国产高清国产av| 亚洲欧美成人综合另类久久久 | 精品久久久久久久久av| 一本久久中文字幕| 亚洲国产精品久久男人天堂| 亚洲中文日韩欧美视频| 亚洲人成网站在线播放欧美日韩| 亚洲成人中文字幕在线播放| 女生性感内裤真人,穿戴方法视频| 嫩草影院入口| 在线观看午夜福利视频| 国产成人aa在线观看| 午夜福利成人在线免费观看| 国内精品久久久久精免费| 黄色一级大片看看| 99久久久亚洲精品蜜臀av| 久久精品国产自在天天线| 亚洲熟妇中文字幕五十中出| 露出奶头的视频| 亚洲va在线va天堂va国产| 麻豆乱淫一区二区| 国产aⅴ精品一区二区三区波| 在线国产一区二区在线| 在线天堂最新版资源| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 伦理电影大哥的女人| 草草在线视频免费看| 久久久久九九精品影院| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 一个人免费在线观看电影| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 国产黄a三级三级三级人| 亚洲人与动物交配视频| 国内精品一区二区在线观看| 亚洲自偷自拍三级| 免费看av在线观看网站| 国产精品久久久久久久电影| 九九爱精品视频在线观看| 欧美区成人在线视频| 国产高清视频在线观看网站| 国产69精品久久久久777片| 日本熟妇午夜| 高清日韩中文字幕在线| 99热6这里只有精品| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验 | 欧美一区二区亚洲| 丝袜喷水一区| 国产三级在线视频| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 岛国在线免费视频观看| 国产在线精品亚洲第一网站| 日产精品乱码卡一卡2卡三| 精品免费久久久久久久清纯| 亚洲在线观看片| 久久欧美精品欧美久久欧美| 久久天躁狠狠躁夜夜2o2o| 亚洲三级黄色毛片| 色噜噜av男人的天堂激情| 插阴视频在线观看视频| 搡老熟女国产l中国老女人| 欧美bdsm另类| 亚洲成人久久爱视频| 久久久久久久久久成人| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 你懂的网址亚洲精品在线观看 | 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 黄色日韩在线| or卡值多少钱| 一本精品99久久精品77| 午夜影院日韩av| 免费大片18禁| 色视频www国产| 啦啦啦韩国在线观看视频| 在线观看免费视频日本深夜| 无遮挡黄片免费观看| 久久精品综合一区二区三区| 国产亚洲精品久久久com| 高清毛片免费看| 天天一区二区日本电影三级| 日本五十路高清| 国产黄a三级三级三级人| 亚洲欧美清纯卡通| 亚洲av不卡在线观看| 亚洲人成网站在线观看播放| 国产免费一级a男人的天堂| 国产成人91sexporn| 美女内射精品一级片tv| 成人精品一区二区免费| 色吧在线观看| 啦啦啦啦在线视频资源| 国产免费一级a男人的天堂| 亚洲av一区综合| 亚洲第一电影网av| 日本与韩国留学比较| 精品久久久久久久末码| av在线亚洲专区| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说 | 亚洲精品成人久久久久久| 99riav亚洲国产免费| 天堂av国产一区二区熟女人妻| 国产一区二区三区av在线 | 久久久久性生活片| 国产激情偷乱视频一区二区| 成人亚洲欧美一区二区av| 久久精品国产亚洲av香蕉五月| 久久午夜福利片| 晚上一个人看的免费电影| 成人永久免费在线观看视频| 97碰自拍视频| 色哟哟·www| av女优亚洲男人天堂| av在线老鸭窝| 国语自产精品视频在线第100页| 日本色播在线视频| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| 精品久久久噜噜| 中文亚洲av片在线观看爽| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 国产精品伦人一区二区| 国产成人freesex在线 | 欧美另类亚洲清纯唯美| 国产免费男女视频| 欧美一区二区精品小视频在线| 国产高清视频在线观看网站| 禁无遮挡网站| 又黄又爽又刺激的免费视频.| 一级黄色大片毛片| 国产成人91sexporn| 中国美女看黄片| 欧美极品一区二区三区四区| 久久鲁丝午夜福利片| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 99热这里只有精品一区| 亚洲国产精品合色在线| 欧美日韩精品成人综合77777| 狠狠狠狠99中文字幕| 老司机福利观看| 亚洲av二区三区四区| 精品久久国产蜜桃| 亚洲人成网站高清观看| 男女做爰动态图高潮gif福利片| 国产美女午夜福利| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 嫩草影视91久久| 日韩av在线大香蕉| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 亚洲欧美日韩无卡精品| 少妇人妻精品综合一区二区 | 久久欧美精品欧美久久欧美| 精品一区二区三区视频在线| 在线天堂最新版资源| 一夜夜www| 国产欧美日韩精品一区二区| 五月玫瑰六月丁香| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 深夜精品福利| 精品人妻熟女av久视频| 日韩成人伦理影院| 国产中年淑女户外野战色| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 一区二区三区四区激情视频 | 国产高清三级在线| 日本-黄色视频高清免费观看| 国产一区二区在线av高清观看| 秋霞在线观看毛片| 大香蕉久久网| av免费在线看不卡| av女优亚洲男人天堂| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 久久久精品大字幕| 久久亚洲精品不卡| 午夜精品国产一区二区电影 | www.色视频.com| 久久久国产成人精品二区| 欧美一区二区精品小视频在线| 亚洲精品久久国产高清桃花| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| 看十八女毛片水多多多| 午夜福利成人在线免费观看| 99久久九九国产精品国产免费| 国产精品久久久久久精品电影| 熟女人妻精品中文字幕| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 亚洲真实伦在线观看| 国产一区二区激情短视频| 99久国产av精品| 欧美区成人在线视频| 久久精品国产清高在天天线| 老司机影院成人| 色5月婷婷丁香| 久久久久久伊人网av| 99热6这里只有精品| 高清午夜精品一区二区三区 | 日韩精品有码人妻一区| 日韩 亚洲 欧美在线| 伊人久久精品亚洲午夜| 免费av毛片视频| 国产美女午夜福利| 国产精品99久久久久久久久| 一进一出好大好爽视频| 最近的中文字幕免费完整| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 欧美成人精品欧美一级黄| 熟女电影av网| 成人漫画全彩无遮挡| 麻豆国产97在线/欧美| 中国美女看黄片| 青春草视频在线免费观看| 人人妻人人澡人人爽人人夜夜 | av国产免费在线观看| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 国产高清视频在线观看网站| 精品午夜福利视频在线观看一区| 91久久精品电影网| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 久久欧美精品欧美久久欧美| 91久久精品国产一区二区成人| 色av中文字幕| 我的老师免费观看完整版| 免费观看人在逋| 国产乱人偷精品视频| 人妻夜夜爽99麻豆av| 国产黄色小视频在线观看| 亚洲人成网站高清观看| 国产男靠女视频免费网站| 久久久久九九精品影院| av在线亚洲专区| 免费电影在线观看免费观看| 国产美女午夜福利| 99久久九九国产精品国产免费| 国产精品人妻久久久影院| 日本黄色片子视频| 黄色配什么色好看| 久久精品影院6| 成人二区视频| 成人特级黄色片久久久久久久| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 亚洲av中文字字幕乱码综合| 国产 一区精品| 美女 人体艺术 gogo| 国产精品一区二区三区四区免费观看 | 一级毛片我不卡| 久久久久免费精品人妻一区二区| 欧美精品国产亚洲| 欧美中文日本在线观看视频| 在线天堂最新版资源| 岛国在线免费视频观看| 亚洲精华国产精华液的使用体验 | 欧美日韩乱码在线| 别揉我奶头 嗯啊视频| 日本色播在线视频| 日本爱情动作片www.在线观看 | 联通29元200g的流量卡| 美女大奶头视频| 中文字幕精品亚洲无线码一区| 精品福利观看| 有码 亚洲区| 亚洲不卡免费看| 日韩欧美 国产精品| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 91麻豆精品激情在线观看国产| 桃色一区二区三区在线观看| 国产女主播在线喷水免费视频网站 | 免费大片18禁| 亚洲中文日韩欧美视频| 99热只有精品国产| 亚洲一区高清亚洲精品| 成年女人看的毛片在线观看| 69人妻影院| 亚洲欧美成人精品一区二区| 亚州av有码| 在线免费十八禁| 欧美日韩国产亚洲二区| 亚洲18禁久久av| 亚洲欧美精品综合久久99| 久久亚洲国产成人精品v| 国产私拍福利视频在线观看| 久久99热6这里只有精品| 女同久久另类99精品国产91| 日韩成人av中文字幕在线观看 | 深夜精品福利| 蜜桃久久精品国产亚洲av| 99国产极品粉嫩在线观看| 男人的好看免费观看在线视频| 伦精品一区二区三区| 久久人人爽人人爽人人片va| 亚洲久久久久久中文字幕| 久久久午夜欧美精品| 99riav亚洲国产免费| 黄色一级大片看看| 舔av片在线| 国产成人a区在线观看| 久久精品久久久久久噜噜老黄 | 亚州av有码| 亚洲精品乱码久久久v下载方式| 亚洲国产精品sss在线观看| 蜜桃亚洲精品一区二区三区| 国产伦精品一区二区三区视频9| 中文在线观看免费www的网站| 99热只有精品国产| 午夜视频国产福利| 日本爱情动作片www.在线观看 | 简卡轻食公司| 欧美日本亚洲视频在线播放| 亚洲久久久久久中文字幕| 日日撸夜夜添| 国产欧美日韩精品一区二区| 超碰av人人做人人爽久久| 日韩,欧美,国产一区二区三区 | 国产精品女同一区二区软件| 白带黄色成豆腐渣| 国内精品宾馆在线| 日日啪夜夜撸| 亚洲人成网站在线播| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 黄色视频,在线免费观看| 成人高潮视频无遮挡免费网站| 18禁在线无遮挡免费观看视频 | 少妇熟女欧美另类| 美女大奶头视频| 日本在线视频免费播放| 久久精品影院6| 欧美高清成人免费视频www| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 可以在线观看的亚洲视频| 久久人人精品亚洲av| 男女那种视频在线观看| 精品人妻视频免费看| 久久久久性生活片| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| a级毛片免费高清观看在线播放| 尾随美女入室| 18禁在线无遮挡免费观看视频 | 成年免费大片在线观看| 日本 av在线| 成人美女网站在线观看视频| 亚洲性夜色夜夜综合| 国产精品一区二区三区四区免费观看 | 国产在线男女| 一区二区三区四区激情视频 | 亚州av有码| 成人精品一区二区免费| av视频在线观看入口| 一级黄色大片毛片| 日韩 亚洲 欧美在线| 少妇人妻一区二区三区视频| 日韩欧美国产在线观看| 精品久久国产蜜桃| 人妻制服诱惑在线中文字幕| 日本一二三区视频观看| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 国产高清视频在线观看网站| 91狼人影院| 嫩草影院入口| 国产爱豆传媒在线观看| 晚上一个人看的免费电影| 免费电影在线观看免费观看| 18+在线观看网站| 免费人成视频x8x8入口观看| 亚洲欧美精品自产自拍| 桃色一区二区三区在线观看| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 综合色丁香网| 欧美三级亚洲精品| 日本黄色片子视频| 国产精品一及| 欧美日本视频| 久久天躁狠狠躁夜夜2o2o| 成人毛片a级毛片在线播放| 成人二区视频| 黑人高潮一二区| 尾随美女入室| 一本久久中文字幕| 亚洲精品一区av在线观看| 日本三级黄在线观看| 欧美精品国产亚洲| 日本熟妇午夜| 亚洲欧美日韩高清专用| 一级a爱片免费观看的视频| 国产综合懂色| 欧美性感艳星| 插逼视频在线观看| 国产精品一二三区在线看| 国产成人91sexporn| 精品久久久久久久人妻蜜臀av| 亚洲av熟女| 国产免费一级a男人的天堂| 国产单亲对白刺激| 日本精品一区二区三区蜜桃| 熟妇人妻久久中文字幕3abv| 99久久精品国产国产毛片| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 九九热线精品视视频播放| 三级经典国产精品| 可以在线观看的亚洲视频| 男人舔女人下体高潮全视频| 国产av麻豆久久久久久久| 欧美激情在线99| 亚洲成人久久性| 中出人妻视频一区二区| 欧美精品国产亚洲| 久久久久国产网址| 成人av在线播放网站| 看非洲黑人一级黄片| 99热精品在线国产| 日日干狠狠操夜夜爽| 国产精品一区二区性色av| 91精品国产九色| 亚洲熟妇中文字幕五十中出| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 少妇被粗大猛烈的视频| 国产av麻豆久久久久久久| 色播亚洲综合网| 天天躁夜夜躁狠狠久久av| 蜜桃久久精品国产亚洲av| 久久久久久久午夜电影| 黄色日韩在线| 在线看三级毛片| 免费电影在线观看免费观看| 国产精品亚洲美女久久久| 禁无遮挡网站| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 欧美另类亚洲清纯唯美| 一级毛片电影观看 | 一本精品99久久精品77| 欧美一区二区亚洲| 亚洲中文字幕一区二区三区有码在线看| 男人狂女人下面高潮的视频| 国产av不卡久久| 成年版毛片免费区| 一级黄片播放器| 日日撸夜夜添| 成人永久免费在线观看视频| 国产精品嫩草影院av在线观看| www日本黄色视频网| 免费观看精品视频网站| 国产成人a∨麻豆精品| 国产精品久久久久久亚洲av鲁大| 精品人妻一区二区三区麻豆 | 亚洲av中文字字幕乱码综合| 97热精品久久久久久| 日产精品乱码卡一卡2卡三| 久久久a久久爽久久v久久| 精品免费久久久久久久清纯| 一区二区三区高清视频在线| 日本在线视频免费播放| 18禁在线播放成人免费| 色哟哟哟哟哟哟| 女的被弄到高潮叫床怎么办| 久久久久久国产a免费观看| 成人亚洲欧美一区二区av| 国产69精品久久久久777片| 国产男人的电影天堂91| 精品福利观看| 99热这里只有是精品在线观看| 亚洲自偷自拍三级| 老熟妇乱子伦视频在线观看| 秋霞在线观看毛片| 长腿黑丝高跟| 亚洲av五月六月丁香网| 国产日本99.免费观看| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 午夜精品在线福利| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美成人精品一区二区| 99久国产av精品国产电影| 在线观看一区二区三区| 在线播放无遮挡| 在现免费观看毛片| 草草在线视频免费看| 国产精品亚洲美女久久久| 国产真实乱freesex| 一进一出好大好爽视频| 伊人久久精品亚洲午夜| 狂野欧美白嫩少妇大欣赏| 精品乱码久久久久久99久播| 又黄又爽又免费观看的视频| 一级黄片播放器| 国产高清视频在线观看网站| 国语自产精品视频在线第100页| 国产亚洲欧美98| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| or卡值多少钱| 国产黄片美女视频| 长腿黑丝高跟| 色av中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 欧美最新免费一区二区三区|