• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2Pressure Shift and Broadening of Water Lines Near 790 nm

    2014-07-19 11:17:05YanLuXinfeiLiAnwenLiuShuimingHu
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Yan Lu,Xin-fei Li,An-wen Liu,Shui-ming Hu

    Hefei National Laboratory for Physical Science at the Microscale,University of Science and Technology of China,Hefei 230026,China

    ARTICLE

    CO2Pressure Shift and Broadening of Water Lines Near 790 nm

    Yan Lu,Xin-fei Li,An-wen Liu?,Shui-ming Hu

    Hefei National Laboratory for Physical Science at the Microscale,University of Science and Technology of China,Hefei 230026,China

    Carbon dioxide pressure-broadened ro-vibrational transitions belonging to the ν2+3ν3band of H216O have been measured with a sensitive cavity ring-down spectrometer.Water vapor of relatively low pressures(<0.5 Torr)was used to limit the self-collisions among water molecules.After the calibration using the precise atomic transitions of Rb and a thermostabilized Fabry-P′erot interferometer,10-5cm-1frequency accuracy has been achieved. Line parameters are derived from least-squares fitting of the spectra using the“soft”collision model.The retrieved line parameters can be applied in the study of water absorption in the CO2-rich atmospheres of planets like Venus and Mars.

    Water,Carbon Dioxide,Pressure-induced half width,Pressure-induced line shift,Cavity ring-down spectroscopy

    I.INTRODUCTION

    The water molecule has an extremely rich spectrum throughout the infrared region.Accurate knowledge of the radiative properties of water vapor is needed in chemical,atmospheric and astronomical studies. Tremendous scientif i c efforts have been put into both experimental and theoretical studies of the spectrum of water vapor.A huge archive of the transitions can be found in some widely used spectroscopic databases including HITRAN[1],GEISA[2],and HITEMP[3]. The spectroscopic parameters,including the transition frequencies,line strengths,and collision-induced line widths,are widely used in various applications.

    The H216O lines near 0.79μm,belonging to the ν2+3ν3and ν1+ν2+2ν3bands,have been extensively studied by Fourier-transform spectroscopy[4-7], intra-cavity laser absorption spectroscopy(ICLAS) [8-10]and cavity ring-down spectroscopy(CRDS) [11].Using a CRDS calibrated with atomic transitions,we have determined the positions of strong H216O lines(S>10-25cm/molecule)with an accuracy of 3×10-5cm-1[12].The line parameters and assignments[13]have been updated in the 2009 edition of HITRAN[1].However,the collision-induced effects vary largely between different perturbing gases.The CO2pressure-induced H2O line shift and broadening in this spectral region have not been studied,but the information is particularly useful in the study of CO2-rich gas samples,for example,the atmosphere of Venus.

    The atmosphere of Venus consists of 96.5%CO2and 3.5%N2.Though water vapor only contributes less than 0.01%of the atmosphere of Venus,it plays an important role in the climate of Venus[14].In this case,the spectroscopy of the CO2perturbed H2O lines is essential in the study of Venus.Here we present laboratory measurements of the H2O lines near 0.79μm broadened by CO2.We select these water lines because they are close to the ν1+5ν3band of CO2,which spreads in the 782-789 nm region.The ν1+5ν3band has also been the f i rst CO2band observed from the spectrum of Venus[15,16],because it is sufficiently strong(but not saturated)and sits in a transparent window of the earth’s atmosphere.

    II.EXPERIMENTS

    Natural carbon dioxide gas samples(stated purity of 99.99%)with pressures between 50 and 300 Torr were used.The sample pressure was measured with a capacitance gauge(MKS 627B)with an accuracy of 0.15%. Water vapor presented in the sample cell as an impurity of the sample gas.The pressure of the water vapor,being well below 1 Torr,can be estimated from the intensities of its absorption lines observed in the measurements.The spectrum was recorded at room temperature(296 K)with a cavity ring-down spectrometer based on a continuous-wave Ti:Sapphire laser.

    The details of the CRDS spectrometer have been presented in Refs.[17,18]and will be only brief l y described here.A laser beam of about 50 mW is coupled into a 1.4 m long ring-down cavity.The cavity mirrors have a ref l ectivity of 99.995%and one of them is mounted on a piezoelectric actuator.The piezoelectric actuator is driven with a triangle wave from a function generator to repeatedly match the longitudinal mode of the ring-down cavity to the laser wavelength.The Ti:sapphire laser is run in a step-scan mode.At each step,typically about 80 ring-down events are recorded.The decay time τ is retrieved from a fit of the exponential decay curve.The sample absorption coefficient can be determined from the equation

    TABLEI Line parameters of theO lines of ν2+3ν3near 0.79μm(in cm-1).Values in parentheses are 1σ standard deviations at the last quoted digit.

    TABLEI Line parameters of theO lines of ν2+3ν3near 0.79μm(in cm-1).Values in parentheses are 1σ standard deviations at the last quoted digit.

    aRotational assignment,given asbLine position from the HITRAN database[1].cLine position from Ref.[12].Signif i cant digits are omitted.dLine position derived from this work.eLine strength at 296 K,in 10-25/(cm molecule),from the HITRAN database[1].fCO2pressure-induced line shift coefficient,in cm-1atm-1.gCO2pressure-induced line width(HWHM)broadening coefficient,in cm-1atm-1.hRatio of the CO2-broadening coefficient to the air-broadening coefficient,γCO2/γair.

    LineaνHITRANbνcνdSeδCO2 f γCO2 g Γh 211←21212578.74010.739573(15)0.739523(62)9.52+0.00575(24)0.1893(16)1.97 202←10112609.07280.071607(20)0.071548(36)31.9+0.01895(16)0.2018(09)1.89 321←22012635.54560.544696(31)0.544797(42)5.00-0.00295(25)0.1546(10)1.78 414←31312637.65500.654340(23)0.654286(54)11.5-0.00159(24)0.1257(08)1.43 524←42312667.75140.750327(12)0.750356(42)17.7-0.01635(17)0.1148(09)1.37 523←42212687.06620.066076(22)0.066206(37)5.19-0.03078(21)0.1663(12)1.85

    where c is the speed of light,and τ0is the ring-down time of an empty cell.

    Precise frequency calibration is accomplished by using the longitudinal modes of a 10 cm long thermostabilized Fabry-P′erot interferometer(FPI)made of ultra-low-expansion(ULE)glass and installed in a vacuum chamber.The f i nesse of the ULE-FPI is about 2000 near 0.79μm.Using the precise atomic transitions of87Rb at 795 nm[19]and 780 nm[20],the absolute frequencies of the longitudinal modes of the ULE-FPI in the region of 780-795 nm have been determined with an accuracy better than 0.6 MHz(2×10-5cm-1)[18]. The spectrometer has been applied to measure the absolute line positions of H2[21],C2H2[22],and H2O[12] in this region with relative uncertainty of 10-9.

    III.RESULTS AND DISCUSSION

    Six well isolated H216O lines of the ν2+3ν3band are studied in this work.They are located in the 788-795 nm region and their strengths vary from 5×10-25cm/molecule to 3×10-24cm/molecule.The positions,strengths and rotational assignments from the HITRAN database[1]are given in Table I.For each line,the absorption profile was measured several times under different CO2pressures.The spectral profiles of the H216O line at 12687.066 cm-1measured at different CO2pressures are presented in Fig.1.Pressureinduced effects including frequency shift and broadening are clearly shown in Fig.1.

    FIG.1 The normalized profiles of the CO2-broadened H216O line at 12687.066 cm-1.

    Using a least-squares fit of the spectral profile,the line parameters,including the position,intensity,and width,can be derived from each spectrum.Figure 2 shows the spectrum and fitting residuals of the observed H216O line at 12635.546 cm-1.As shown in Fig.2(b) and(e),the conventional Voigt profile cannot fit the observed spectrum well.The“soft”collision model[23], which takes into account the collision effects,was applied in the line-by-line fitting of the recorded spectrum. The Gaussian width was f i xed at the calculated value of Doppler broadening width,while other parameters,including the position,intensity,Lorentzian width(half width at half maximum,HWHM)and Dick narrowing coefficient,were derived from the fit.As shown in Fig.2(c)and(f),the observed line profiles are reproduced with the fitting residuals being at the experi-mental noise level.

    FIG.2 Fit of the profile of the H216O line at 12635.546 cm-1broadenedbyCO2.(a)Observedspectrumofthe 12635.546 cm-1line broadened by CO2of 50 Torr.(b)and (c)are the residuals of the fit of spectrum(a)using the Voigt and Galatry profiles,respectively.(d)Observed spectrum of the H216O line broadened by CO2of 300 Torr.(e)and(f) are the residuals of the fit of spectrum(d)using the Voigt and Galatry profiles,respectively.

    The H216O line positions derived from the fitting have a linear dependence on the CO2pressure.The results are illustrated in Fig.3.Linear fit of the line positions yields the water line center at zero CO2pressure and the collision-induced line shift coefficient.The results are collected in Table I.The obtained line shift coefficients vary considerably from-0.03 cm-1atm-1(523←422line at 12687.066 cm-1)to about+0.02 cm-1atm-1(202←101line at 12609.073 cm-1).The line positions obtained in this work agree well with our previous measurements using low-pressure pure water vapor [12].The differences are within the combined standard deviations of both studies,except for the line at 12687.066 cm-1.The position of this line determined in this work differs from our previous study by 1.3×10-4cm-1,which is about 3.5 times of the statistical deviation.It is probably a result of the considerably large CO2pressure-induced frequency shift coefficient of this line and the uncertainty of the CO2pressure: one Torr difference of the CO2pressure will induce a 4×10-5cm-1difference on the H2O line position.

    The CO2pressure-induced half widths,which are also derived from fit of the observed spectra,are shown in Fig.4.The CO2pressure-induced broadening coefficients of respective transitions can be derived from a linear fit of the half widths,and the results are listed in Table I.The uncertainty on the γCO2values obtained in this work is 0.7%in average.As an comparison, Sagawa et al.reported the CO2-broadening coefficients of water lines in the 18-102 cm-1region with an average uncertainty of 2.4%using a terahertz time-domain spectrometer[24],and Poddar et al.reported the γCO2values of 10 for water lines in the 819-833 nm region with an average uncertainty of 2%[25].

    FIG.3 CO2pressure-induced line shifts of six H216O lines of the ν2+3ν3band.

    FIG.4 CO2pressure-induced half widths of six H216O lines of the ν2+3ν3band.

    It is worth noting that owing to the high sensitivity of the cavity ring-down spectrometer applied in this work, we are able to obtain sufficient signal-to-noise ratio with relatively low water vapor pressures,which are typically 0.1-0.5 Torr in the present work.Such a low water vapor pressure reduces the interference of the broadening effects from self-collisions among the water molecules. According to the broadening coefficients given in HITRAN[1],the self-broadening coefficients γH2Oare typically one order of magnitude larger than the airbroadening coefficients γair.We have shown that the self-broadening effect can be detectable when the water vapor pressure is over 2 Torr[12].In Ref.[24],4 Torr of water vapor was used,and 20 Torr of water vapor was used in Ref.[25].The ratios of the CO2-broadening coefficients γCO2from this work to the air-broadening coefficients γairfrom HITRAN vary from 1.37 to 1.97.It coincides with that of the transitions with the same rotational quantum number J of the bands ν1,2ν2,ν3[26], and 2ν1+ν2+ν3[25].Further investigation is needed for a better understanding of the collisions between the water molecule and other perturbing gases.

    IV.CONCLUSION

    Six CO2-broadened H216O absorption lines in the 788-795 nm region are studied by a cavity ring-down spectrometer calibrated with precise atomic transitions. The line positions and the pressure-induced frequency shifts have been determined with an accuracy in the order of 10-5cm-1.The CO2pressure-induced broadening coefficients are determined with an relative uncertainty less than 1%.The measured CO2-broadening coefficients are found to be 1.37-1.97 times of the airbroadening coefficients.The determined γCO2coefficients of H2O transitions can be useful in the studies of the radiative transfer on Venus and Mars,and also in the modeling of combustion process.

    V.ACKNOWLEDGMENTS

    This work is supported by the National Natural Science Foundation(No.21225314 and No.20903085), theNationalBasicResearchProgramofChina (No.2013CB834602)and the Fundamental Research Funds for the Central Universities.

    [1]L.Rothman,I.Gordon,A.Barbe,D.C.Benner,P. Bernath,M.Birk,V.Boudon,L.Brown,A.Campargue,J.Champion,K.Chance,L.Coudert,V.Dana, V.Devi,S.Fally,J.M.Flaud,R.Gamache,A.Goldman,D.Jacquemart,I.Kleiner,N.Lacome,W.Laerty, J.Y.Mandin,S.Massie,S.Mikhailenko,C.Miller, N.Moazzen-Ahmadi,O.Naumenko,A.Nikitin,J.Orphal,V.Perevalov,A.Perrin,A.Predoi-Cross,C.Rinsland,M.Rotger,M.?Simeˇckov′a,M.Smith,K.Sung, S.Tashkun,J.Tennyson,R.Toth,A.Vandaele,and V.Auwera,J.Quant.Spectrosc.Radiat.Transfer 110, 533(2009).

    [2]N.Jacquinet-Husson,L.Crepeau,R.Armante,C. Boutammine,A.Chedin,N.A.Scott,C.Crevoisier, V.Capelle,C.Boone,N.Poulet-Crovisier,A.Barbe, A.Campargue,D.C.Benner,Y.Benilan,B.Bezard, V.Boudon,L.R.Brown,L.H.Coudert,A.Coustenis, V.Dana,V.M.Devi,S.Fally,A.Fayt,J.M.Flaud, A.Goldman,M.Herman,G.J.Harris,D.Jacquemart, A.Jolly,I.Kleiner,A.Kleinboehl,F.Kwabia-Tchana, N.Lavrentieva,N.Lacome,L.H.Xu,O.M.Lyulin, J.Y.Mandin,A.Maki,S.Mikhailenko,C.E.Miller, T.Mishina,N.Moazzen-Ahmadi,H.S.P.Mueller,A. Nikitin,J.Orphal,V.Perevalov,A.Perrin,D.T.Petkie, A.Predoi-Cross,C.P.Rinsland,J.J.Remedios,M. Rotger,M.A.H.Smith,K.Sung,S.Tashkun,J.Tennyson,R.A.Toth,A.C.Vandaele,and J.V.Auwera, J.Quant.Spectrosc.Radiat.Transfer 112,2395(2011).

    [3]L.S.Rothman,I.E.Gordon,R.J.Barber,H.Dothe, R.R.Gamache,A.Goldman,V.I.Perevalov,S.A. Tashkun,and J.Tennyson,J.Quant.Spectrosc.Radiat. Transfer 111,2139(2010).

    [4]R.A.Toth,J.Mol.Spectrosc.166,176(1994).

    [5]J.M.Flaud,C.Camy-Peyret,A.Bykov,O.Naumenko, T.Petrova,A.Scherbakov,and L.Sinitsa,J.Mol.Spectrosc.183,300(1997).

    [6]R.Schermaul,R.C.M.Learner,D.A.Newnham,R. G.Williams,J.Ballard,N.F.Zobov,D.Belmiloud, and J.Tennyson,J.Mol.Spectrosc.208,32(2001).

    [7]M.F.M′erienne,A.Jenouvrier,C.Hermans,A.C.Vandaele,M.Carleer,C.Clerbaux,P.F.Coheur,R.Colin, S.Fally,and M.Bach,J.Quant.Spectrosc.Radiat. Transfer 82,99(2003).

    [8]B.Kalmar and J.J.O’Brien,J.Mol.Spectrosc.192, 386(1998).

    [9]F.Mazzotti,O.V.Naumenko,S.Kassi,A.D.Bykov, and A.Campargue,J.Mol.Spectrosc.239,174(2006).

    [10]A.Campargue,S.Mikhailenko,and A.W.Liu,J. Quant.Spectrosc.Radiat.Transfer 109,2832(2008).

    [11]S.Kassi,P.Macko,O.Naumenko,and A.Campargue, Phys.Chem.Chem.Phys.7,2460(2005).

    [12]Y.Lu,X.F.Li,J.Wang,A.W.Liu,and S.M.Hu,J. Quant.Spectrosc.Radiat.Transfer 118,96(2013).

    [13]R.Tolchenov and J.Tennyson,J.Quant.Spectrosc. Radiat.Transfer 109,559(2008).

    [14]G.L.Hashimoto and Y.Abe,J.Geophys.Res.106, 14675(2001).

    [15]W.Adams and J.T.Dunham,Publ.Astron.Soc.Pacif i c.44,5(1932).

    [16]A.Adel and V.M.Slipher,Phys.Rev.46,240(1934).

    [17]B.Gao,W.Jiang,A.W.Liu,Y.Lu,C.F.Cheng,G. S.Cheng,and S.M.Hu,Rev.Sci.Instrum.81,043105 (2010).

    [18]C.F.Cheng,Y.R.Sun,H.Pan,Y.Lu,X.F.Li,J. Wang,A.W.Liu,and S.M.Hu,Opt.Express 20, 9956(2012).

    [19]M.Maric,J.J.McFerran,and A.N.Luiten,Phys.Rev. A 77,032502(2008).

    [20]J.Ye,S.Swartz,P.Jungner,and J.L.Hall,Opt.Lett. 21,1280(1996).

    [21]C.F.Cheng,Y.R.Sun,H.Pan,J.Wang,A.W.Liu, A.Campargue,and S.M.Hu,Phys.Rev.A 85,024501 (2012).

    [22]A.W.Liu,X.F.Li,J.Wang,Y.Lu,C.F.Cheng,Y.R. Sun,and S.M.Hu,J.Chem.Phys.138,014312(2013).

    [23]L.Galatry,Phys.Rev.122,1218(1961).

    [24]H.Sagawa,J.Mendrok,T.Seta,H.Hoshina,P.Baron, K.Suzuki,I.Hosako,C.Otani,P.Harogh,and Y.Kasai,J.Quant.Spectrosc.Radiat.Transfer 110,2027 (2009).

    [25]P.Poddar,A.Bandyopadhyay,D.Biswas,B.Ray,and P.N.Ghosh,Chem.Phys.Lett.469,52(2009).

    [26]R.Gamache,S.Neshyba,J.Plateaux,A.Barbe,L. Regalia,and J.Pollack,J.Mol.Spectrosc.170,131 (1995).

    ceived on May 20,2013;Accepted on May 27,2013)

    ?Author to whom correspondence should be addressed.E-mail:awliu@ustc.edu.cn

    日日爽夜夜爽网站| 99精品欧美一区二区三区四区| av福利片在线| 美女高潮喷水抽搐中文字幕| 国产野战对白在线观看| 欧美日韩黄片免| 女人爽到高潮嗷嗷叫在线视频| 午夜免费鲁丝| 欧美成狂野欧美在线观看| 女人久久www免费人成看片| 国产av一区二区精品久久| 乱人伦中国视频| 好男人电影高清在线观看| 一级黄色大片毛片| 99久久99久久久精品蜜桃| 亚洲情色 制服丝袜| 亚洲国产中文字幕在线视频| 国产人伦9x9x在线观看| 首页视频小说图片口味搜索| 日本vs欧美在线观看视频| 国产成人影院久久av| 国产精品 国内视频| 欧美日韩亚洲综合一区二区三区_| 精品少妇黑人巨大在线播放| 久久狼人影院| 国产亚洲精品第一综合不卡| 日韩一区二区三区影片| 女同久久另类99精品国产91| 黑人欧美特级aaaaaa片| 亚洲国产av新网站| 丝袜喷水一区| 精品少妇一区二区三区视频日本电影| 久久ye,这里只有精品| 亚洲伊人久久精品综合| 国产黄频视频在线观看| 亚洲精华国产精华精| 国产男女超爽视频在线观看| 捣出白浆h1v1| 欧美日本中文国产一区发布| 捣出白浆h1v1| 日韩三级视频一区二区三区| 国产av一区二区精品久久| 一个人免费看片子| 亚洲avbb在线观看| av又黄又爽大尺度在线免费看| 成人国语在线视频| 国产麻豆69| 成年人黄色毛片网站| 天天操日日干夜夜撸| 性高湖久久久久久久久免费观看| 捣出白浆h1v1| 国产主播在线观看一区二区| 久久久国产欧美日韩av| 色老头精品视频在线观看| 一区二区三区国产精品乱码| 久久人人爽av亚洲精品天堂| √禁漫天堂资源中文www| 欧美成人免费av一区二区三区 | 亚洲男人天堂网一区| 国产精品免费一区二区三区在线 | 久久午夜综合久久蜜桃| 午夜成年电影在线免费观看| 国产精品免费大片| 国产一区二区 视频在线| 精品午夜福利视频在线观看一区 | 一区二区日韩欧美中文字幕| 亚洲伊人色综图| 国产在线一区二区三区精| 女人被躁到高潮嗷嗷叫费观| 蜜桃国产av成人99| 水蜜桃什么品种好| 亚洲一区中文字幕在线| 曰老女人黄片| 亚洲五月色婷婷综合| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区激情| 精品国产乱码久久久久久男人| 69精品国产乱码久久久| 50天的宝宝边吃奶边哭怎么回事| 侵犯人妻中文字幕一二三四区| 亚洲欧美色中文字幕在线| 日韩三级视频一区二区三区| 中文字幕人妻熟女乱码| 成人18禁在线播放| 五月天丁香电影| 在线亚洲精品国产二区图片欧美| 在线观看人妻少妇| 欧美av亚洲av综合av国产av| 免费黄频网站在线观看国产| 国产在线观看jvid| 久久国产精品男人的天堂亚洲| 国产高清激情床上av| 国产主播在线观看一区二区| 久久国产精品男人的天堂亚洲| 搡老岳熟女国产| 在线观看一区二区三区激情| 丁香六月天网| 日本欧美视频一区| 精品国产亚洲在线| 国产精品免费视频内射| 国产精品免费视频内射| 黑人巨大精品欧美一区二区mp4| 色婷婷久久久亚洲欧美| 五月天丁香电影| 在线观看人妻少妇| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 欧美久久黑人一区二区| 国产精品一区二区精品视频观看| 亚洲成人国产一区在线观看| 欧美黄色片欧美黄色片| 一夜夜www| 99riav亚洲国产免费| 精品熟女少妇八av免费久了| 看免费av毛片| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| cao死你这个sao货| 桃花免费在线播放| 色播在线永久视频| 涩涩av久久男人的天堂| 69av精品久久久久久 | 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 性高湖久久久久久久久免费观看| 国产97色在线日韩免费| 在线 av 中文字幕| 午夜福利一区二区在线看| 男女免费视频国产| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 美女扒开内裤让男人捅视频| 下体分泌物呈黄色| 蜜桃在线观看..| 丝袜喷水一区| 老鸭窝网址在线观看| 老司机福利观看| 国产亚洲精品一区二区www | 首页视频小说图片口味搜索| 香蕉久久夜色| 久久久久久免费高清国产稀缺| 国产一卡二卡三卡精品| 91国产中文字幕| 亚洲国产中文字幕在线视频| 一边摸一边做爽爽视频免费| 日韩欧美一区二区三区在线观看 | 国产不卡av网站在线观看| 国产成人影院久久av| 色尼玛亚洲综合影院| 五月天丁香电影| 建设人人有责人人尽责人人享有的| kizo精华| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| 成人手机av| 日本a在线网址| 久久狼人影院| 亚洲av片天天在线观看| 午夜91福利影院| 国产成人精品久久二区二区免费| 香蕉久久夜色| 丝袜美足系列| 中文字幕最新亚洲高清| 多毛熟女@视频| 亚洲精品国产色婷婷电影| 国产人伦9x9x在线观看| 久久99热这里只频精品6学生| 亚洲精品av麻豆狂野| 亚洲自偷自拍图片 自拍| 一本综合久久免费| 女人爽到高潮嗷嗷叫在线视频| 欧美国产精品va在线观看不卡| 国产成+人综合+亚洲专区| 窝窝影院91人妻| 亚洲国产av影院在线观看| 91麻豆av在线| 可以免费在线观看a视频的电影网站| av国产精品久久久久影院| 国产一区二区三区视频了| 久久精品aⅴ一区二区三区四区| 亚洲精品一二三| netflix在线观看网站| 日韩免费高清中文字幕av| 999精品在线视频| 亚洲全国av大片| 亚洲少妇的诱惑av| 午夜福利乱码中文字幕| 欧美av亚洲av综合av国产av| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久久久99蜜臀| 美女高潮喷水抽搐中文字幕| 成年动漫av网址| 91麻豆精品激情在线观看国产 | 国产成人av教育| 亚洲人成伊人成综合网2020| 欧美成人免费av一区二区三区 | 久久av网站| 欧美黑人欧美精品刺激| 亚洲精品美女久久av网站| 久久中文字幕人妻熟女| 亚洲av日韩在线播放| 国产成人精品在线电影| 午夜激情久久久久久久| 国产精品1区2区在线观看. | 丝袜美足系列| 精品视频人人做人人爽| 香蕉国产在线看| 一级毛片女人18水好多| 国产深夜福利视频在线观看| 国产精品自产拍在线观看55亚洲 | 国产人伦9x9x在线观看| 黄网站色视频无遮挡免费观看| 精品国产一区二区久久| a级毛片黄视频| 国产不卡一卡二| 国产黄色免费在线视频| 国产精品一区二区在线不卡| 成年版毛片免费区| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 又黄又粗又硬又大视频| 国产精品久久久人人做人人爽| 最近最新免费中文字幕在线| 国产亚洲午夜精品一区二区久久| 麻豆成人av在线观看| 精品少妇黑人巨大在线播放| 一本—道久久a久久精品蜜桃钙片| 日韩免费高清中文字幕av| 久久久久久久国产电影| 777久久人妻少妇嫩草av网站| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 精品国产国语对白av| 亚洲,欧美精品.| 老司机午夜福利在线观看视频 | 男女之事视频高清在线观看| 国产1区2区3区精品| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 少妇粗大呻吟视频| 成在线人永久免费视频| 成人三级做爰电影| 久久久精品94久久精品| 丁香六月欧美| 纯流量卡能插随身wifi吗| 国产精品影院久久| 午夜福利一区二区在线看| 大香蕉久久网| 黄频高清免费视频| 黑丝袜美女国产一区| 丝袜人妻中文字幕| 欧美激情高清一区二区三区| 女人久久www免费人成看片| 亚洲精品一二三| 精品乱码久久久久久99久播| 日韩三级视频一区二区三区| 亚洲性夜色夜夜综合| 免费人妻精品一区二区三区视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 婷婷成人精品国产| 1024香蕉在线观看| a级片在线免费高清观看视频| 天堂中文最新版在线下载| 啪啪无遮挡十八禁网站| 久久久久久久久久久久大奶| 国产av又大| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| 国产成人免费无遮挡视频| 欧美精品啪啪一区二区三区| 免费在线观看视频国产中文字幕亚洲| 在线观看免费高清a一片| 两性午夜刺激爽爽歪歪视频在线观看 | 999精品在线视频| 女人久久www免费人成看片| 成年女人毛片免费观看观看9 | 久久ye,这里只有精品| 飞空精品影院首页| 天天添夜夜摸| 久久久久精品国产欧美久久久| 久久久久久久大尺度免费视频| 黄频高清免费视频| 久久人妻av系列| 18禁观看日本| 99国产精品一区二区蜜桃av | 国产成人系列免费观看| 51午夜福利影视在线观看| 国产精品久久电影中文字幕 | 一区二区三区乱码不卡18| 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 大片免费播放器 马上看| 黄色 视频免费看| 国产午夜精品久久久久久| 欧美一级毛片孕妇| 97人妻天天添夜夜摸| 亚洲熟妇熟女久久| 国产亚洲欧美精品永久| 超碰97精品在线观看| 国产有黄有色有爽视频| 久久国产精品人妻蜜桃| 午夜福利视频在线观看免费| 黄片大片在线免费观看| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 99热网站在线观看| 97人妻天天添夜夜摸| 另类亚洲欧美激情| 99riav亚洲国产免费| 咕卡用的链子| 一区二区日韩欧美中文字幕| 日本vs欧美在线观看视频| 国产精品免费视频内射| 天天添夜夜摸| 久久热在线av| av线在线观看网站| 中亚洲国语对白在线视频| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 不卡一级毛片| 亚洲一码二码三码区别大吗| 怎么达到女性高潮| 久久精品国产亚洲av香蕉五月 | 一区福利在线观看| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 在线观看免费视频网站a站| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 新久久久久国产一级毛片| 亚洲一码二码三码区别大吗| 国产亚洲午夜精品一区二区久久| 9191精品国产免费久久| av欧美777| 成人手机av| 欧美性长视频在线观看| 美女高潮到喷水免费观看| 一级毛片电影观看| 国产男靠女视频免费网站| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久| 伊人久久大香线蕉亚洲五| 满18在线观看网站| 免费一级毛片在线播放高清视频 | 极品教师在线免费播放| 最近最新中文字幕大全电影3 | 国产不卡av网站在线观看| 桃花免费在线播放| 日韩一区二区三区影片| 精品国产一区二区三区久久久樱花| 性少妇av在线| 丝袜在线中文字幕| 中国美女看黄片| 亚洲专区字幕在线| 99在线人妻在线中文字幕 | av网站免费在线观看视频| 免费在线观看黄色视频的| 少妇 在线观看| 亚洲成av片中文字幕在线观看| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 国产精品 国内视频| 国产成人免费无遮挡视频| 热99久久久久精品小说推荐| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久精品古装| 亚洲七黄色美女视频| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 国产区一区二久久| 中文亚洲av片在线观看爽 | 一夜夜www| 免费不卡黄色视频| 不卡一级毛片| 亚洲黑人精品在线| 免费在线观看视频国产中文字幕亚洲| 久久人妻熟女aⅴ| 美女福利国产在线| 亚洲欧美色中文字幕在线| 精品国产一区二区久久| av不卡在线播放| 亚洲精品粉嫩美女一区| 精品国产乱码久久久久久小说| 国产精品1区2区在线观看. | 国产主播在线观看一区二区| 国产精品 国内视频| 真人做人爱边吃奶动态| 97在线人人人人妻| 国产成人精品无人区| 淫妇啪啪啪对白视频| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 脱女人内裤的视频| 老司机影院毛片| 午夜福利影视在线免费观看| 国产精品一区二区免费欧美| 丁香欧美五月| 国产精品 欧美亚洲| 国产成人系列免费观看| 国产精品 欧美亚洲| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 国产欧美亚洲国产| 91九色精品人成在线观看| 黄频高清免费视频| 黄色成人免费大全| 亚洲色图 男人天堂 中文字幕| 中文字幕制服av| 菩萨蛮人人尽说江南好唐韦庄| 91成人精品电影| 老司机福利观看| av视频免费观看在线观看| 国产片内射在线| 久久中文看片网| 淫妇啪啪啪对白视频| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 精品国产一区二区三区久久久樱花| 国产精品久久久久成人av| 亚洲av欧美aⅴ国产| 亚洲欧美激情在线| 麻豆国产av国片精品| 日韩免费av在线播放| 99热网站在线观看| 久久国产精品男人的天堂亚洲| 亚洲欧洲日产国产| 免费在线观看完整版高清| 国产av国产精品国产| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 中文字幕人妻丝袜制服| 大陆偷拍与自拍| 免费一级毛片在线播放高清视频 | 亚洲欧美一区二区三区久久| cao死你这个sao货| 妹子高潮喷水视频| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 人妻久久中文字幕网| 在线观看免费视频网站a站| 国产aⅴ精品一区二区三区波| 久久久水蜜桃国产精品网| 午夜福利视频精品| 亚洲av日韩在线播放| 女同久久另类99精品国产91| 99热国产这里只有精品6| 久久精品国产a三级三级三级| 99热网站在线观看| 午夜福利一区二区在线看| 午夜免费鲁丝| 久久人妻福利社区极品人妻图片| 国产精品久久久久久精品电影小说| 高清毛片免费观看视频网站 | 大片免费播放器 马上看| 精品免费久久久久久久清纯 | 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 国产成人精品无人区| 亚洲熟女毛片儿| 18禁黄网站禁片午夜丰满| 国产精品麻豆人妻色哟哟久久| 色尼玛亚洲综合影院| 国产在线视频一区二区| 咕卡用的链子| 麻豆av在线久日| 老熟妇仑乱视频hdxx| 亚洲成国产人片在线观看| 久久毛片免费看一区二区三区| 国产精品电影一区二区三区 | 在线十欧美十亚洲十日本专区| 国产黄色免费在线视频| 嫩草影视91久久| av网站在线播放免费| 国产主播在线观看一区二区| 黄色怎么调成土黄色| 极品教师在线免费播放| 麻豆成人av在线观看| 精品熟女少妇八av免费久了| 久久国产精品男人的天堂亚洲| 最近最新中文字幕大全电影3 | 1024视频免费在线观看| 999精品在线视频| 国产97色在线日韩免费| 国产91精品成人一区二区三区 | 母亲3免费完整高清在线观看| 在线观看www视频免费| 日本撒尿小便嘘嘘汇集6| 欧美黑人精品巨大| 国产高清国产精品国产三级| 亚洲中文av在线| 久久久久网色| 久久香蕉激情| 国产在线观看jvid| 黄色a级毛片大全视频| www.999成人在线观看| 日韩免费高清中文字幕av| 又大又爽又粗| 午夜免费成人在线视频| 国产精品欧美亚洲77777| 国产午夜精品久久久久久| 老司机亚洲免费影院| 成年人黄色毛片网站| 亚洲美女黄片视频| 成人18禁高潮啪啪吃奶动态图| 老司机影院毛片| 在线观看66精品国产| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 高潮久久久久久久久久久不卡| 国产亚洲精品久久久久5区| 欧美成人午夜精品| av片东京热男人的天堂| a级片在线免费高清观看视频| netflix在线观看网站| 亚洲一区二区三区欧美精品| 乱人伦中国视频| 在线播放国产精品三级| videosex国产| 少妇 在线观看| 精品国产一区二区久久| 国产精品久久久人人做人人爽| 精品少妇内射三级| 中国美女看黄片| 亚洲精品在线观看二区| 欧美大码av| 亚洲精品粉嫩美女一区| 成年版毛片免费区| 黄色片一级片一级黄色片| 日韩欧美一区视频在线观看| 丁香六月欧美| 久久免费观看电影| 亚洲精品在线观看二区| 最新美女视频免费是黄的| 久久中文字幕一级| 另类精品久久| 色综合欧美亚洲国产小说| 99在线人妻在线中文字幕 | 国产av一区二区精品久久| 精品少妇内射三级| 丝袜人妻中文字幕| 在线观看人妻少妇| 午夜免费鲁丝| 99国产精品一区二区蜜桃av | 国产男女超爽视频在线观看| 又黄又粗又硬又大视频| 亚洲天堂av无毛| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看 | 9191精品国产免费久久| 欧美日韩成人在线一区二区| tube8黄色片| 看免费av毛片| 电影成人av| 精品亚洲乱码少妇综合久久| 国产一区二区 视频在线| 男女之事视频高清在线观看| 欧美 日韩 精品 国产| 国产激情久久老熟女| 岛国毛片在线播放| 9热在线视频观看99| 波多野结衣一区麻豆| 日韩精品免费视频一区二区三区| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 999久久久精品免费观看国产| 成人三级做爰电影| 女性生殖器流出的白浆| 女性被躁到高潮视频| 人人妻人人澡人人看| 国产91精品成人一区二区三区 | 国产精品成人在线| 国产真人三级小视频在线观看| 脱女人内裤的视频| 亚洲精华国产精华精| 国产野战对白在线观看| 一级毛片女人18水好多| 日韩人妻精品一区2区三区| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 天天操日日干夜夜撸| 乱人伦中国视频| 天堂8中文在线网| 精品福利永久在线观看| 精品亚洲乱码少妇综合久久| 青青草视频在线视频观看| 欧美在线一区亚洲| 成人国产一区最新在线观看| 亚洲欧洲精品一区二区精品久久久| 久久中文字幕人妻熟女| 飞空精品影院首页| www.熟女人妻精品国产| 丝袜美腿诱惑在线| 国产高清视频在线播放一区| 国产精品 欧美亚洲| 91av网站免费观看| 国产欧美日韩一区二区三区在线| 中文字幕最新亚洲高清| 亚洲国产精品一区二区三区在线| 丝瓜视频免费看黄片| 无人区码免费观看不卡 | 国产成人一区二区三区免费视频网站| 国产一卡二卡三卡精品| 免费日韩欧美在线观看| tocl精华| 久久毛片免费看一区二区三区| 老司机深夜福利视频在线观看|