• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction Study between DNA and Histone Proteins on Single-molecule Level using Atomic Force Microscopy

    2014-07-19 11:17:08YuyingLiuPengyeWngShuoxingDouHongfengLv
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Yu-ying Liu,Peng-ye Wng,Shuo-xing Dou,Hong-feng Lv

    a.College of Science,China Agricultural University,Beijing 100083,China

    b.Laboratory of Soft Matter Physics,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Interaction Study between DNA and Histone Proteins on Single-molecule Level using Atomic Force Microscopy

    Yu-ying Liua?,Peng-ye Wangb,Shuo-xing Doub,Hong-feng Lva

    a.College of Science,China Agricultural University,Beijing 100083,China

    b.Laboratory of Soft Matter Physics,Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    DNA and histone protein are important in the formation of nucleosomal arrays,which are the fi rst packaging level of DNA into a more compact chromatin structure.To characterize the interactions of DNA and histone proteins,we reconstitute nucleosomes using lambda DNA and whole histone proteins by dialysis and perform direct atomic force microscopy(AFM) imaging.Compared with non-speci fi c DNA and histone binding,nucleosomes are formed within the assembled“beads-on-a-string”nucleosomal array by dialysis.These observations facilitate the establishment of the molecular mechanisms of nucleosome and demonstrate the capability of AFM for protein-DNA interaction analysis.

    DNA,Histone,Atomic force microscopy,Single molecule,Dialysis

    I.INTRODUCTION

    DNA is packaged into the chromatin in the cell nucleus.The nucleosome,which is the repeating unit of chromatin,consists of an octamer of core histones(two each of H2A,H2B,H3,and H4)around which approximately two superhelical turns of DNA are wrapped[1]. A length of 146 double-stranded DNA base pairs(bp) wrap around this structure 1.65 times,which forms a relatively larger cylinder that is 11 nm in diameter and 5-6 nm in height.The formation of nucleosomes is the fi rst stage of DNA packing into chromatin,followed by the assembly of the“beads-on-a-string”nucleosomal array into compact chromatin fi bers[2].H1 histone is a key player in the formation of the 30 nm thick fi bers [3].In addition,adjacent core particles may interact by stacking together to form the higher-ordered chromatin structure.Assembled chromatin fi bers,approximately 30 nm in diameter,are further compacted in the cell into euchromatin and ultimately heterochromatin.The molecular mechanisms behind the formation of higherordered chromatin structures remain unclear.

    DNA and histone interactions are important in the formation of nucleosomal arrays.The genetic information also has to remain accessible for DNA binding factors involved in processes such as replication,transcription,repair,and recombination.Thus,the interaction of histones and DNA dynamically mediates these two apparent functions.

    Atomic force microscopy(AFM)has been applied to study the interactions between nucleosomes within the assembled beads-on-a-string nucleosomal array in the absence of H1 histone[4].The interaction between nucleosomes has been recently studied using fluorescence resonance energy transfer(FRET)microscopy[5]. Transiently formed dinucleosomes with 1 s lifetime are detected using the FRET technique.AFM has also been used to visualize the isolated mono-nucleosomes [6],chromatin f i bers,and isolated nucleosomes[7].The molecular dynamics of poly-nucleosomal arrays in solution has been analyzed using fast-scanning AFM at single-molecule level[8].DNA and protein molecules are stretched by spinning method for detection by fluorescence and AFM[9,10].The conformation of DNA molecules,ranging from hundreds of bp to thousands of bp can be observed using AFM[11].With morphological analysis[12],the length and conformation changes of DNA can be utilized to study their interactions with small molecules[13,14].

    Genomic DNA is a very long molecule,but the radius of gyration of the coil must fit into a very small space inside a cell or virus particle.For example,the fully extended 1.6×105bp of T4 phage DNA span 54μm. However,the T4 DNA molecule can be fitted into a virus capsid,which is approximately 100 nm in diameter,which is a 540-fold linear compression[15].Chromatin proteins and DNA are partners in controlling the genetic material within cells[16].The interaction of DNA and histone is the f i rst packaging level of DNA into a more compact chromatin structure.The interaction of DNA and histone has been studied using molecular combing method[17]and fluorescence assays[18].

    In this study,we use AFM to study the interactions between DNA and histone proteins on single-moleculelevel.AFM results show the non-specif i c binding of DNA and histone.Using dialysis,the nucleosomes are formed within the assembled beads-on-a-string nucleosomal array.

    II.EXPERIMENTS

    Histone,Tris base,EDTA,PMSF,and NaCl were purchased from Sigma-Aldrich(USA).DNA was obtained from the Sino-America Biotechnology Company (Shanghai,China).Solutions were obtained using 18.2 M? deionized water,which was purif i ed using the Milli-Q water purif i cation system(Millipore Corporation,France).

    For non-specif i c DNA and histone binding,histone was diluted with 18.2 M? deionized water.The molar ratio of DNA to histone was from 100:1 to 1:1.DNA (2 kb,4 ng/μL)and histone were incubated together in Tris-HCl buffer(10 mmol/L,pH=7.5)at total volume of 40μL for 1 h at 37?C.

    A.Nucleosomes reconstruction using dialysis

    Caps from 200μL PCR tubes were cut to obtain buttons.The cut length was slightly shorter than the cap extrusions,that is,1-1.5 mm length was cut from the body of the tube.The dialysis tubing was cut into 1 cm×1 cm to 1.5 cm×1.5 cm squares for button sealing.

    Then,one or two 5-cm long tubing(dialysis bag)were obtained for each dialysis.All tubings were placed into a clean cup,which was then fi lled with400-500 mL 2%NaHCO3and 1 mmol/L EDTA,and then boiled for 10 min.The solutions were then discarded,and the cups were rinsed with distilled water three times,and then fi lled with400-500 mL 1 mmol/L EDTA.The cups were then boiled again for 10 min,and then covered tightly with clean foil(to avoid air exchange)while the water was still hot.The covered cups were then stored at 4?C until use.This procedure was based on the method used in Ref.[19].

    B.Reaction set-up

    The lambda DNA and histone in the start buffer (2 mol/L NaCl,5 mmol/L Tris-HCl at pH=7.5, 0.5 mmol/L EDTA,and 0.5 mmol/L PMSF)in sterile clean tube were incubated.The mass of DNA was 350 ng to 3μg in 50μL reaction buffer.The mass ratio of lambda DNA to histone was 1:0.7.The mixture was then transferred into the caps,with each cap covered with a piece of square tubing using forceps,ensuring that no bubbles were formed between the solution and tubing surface.

    The caps,which were cut to make a button,were sealed.The buttons were then placed into 5 cm tubing, and~2 mL start buffer was injected into the 5 cm tubing,and then the tubing was sealed using clamps.The sealed tubing was then placed into the clean sterile cup, which was then filled with~200 mL pre-chilled dialysis buffer and 1 mL PMSF(100 mmol/L).The solution was mixed thoroughly,and the cup was then covered tightly with the foil.

    The samples were stored at 4?C for 4-6 h,and then fresh dialysis buffer with PMSF was replaced.The cup was stored in a cold room or at 4?C overnight.

    C.AFM imaging

    For conventional AFM imaging using digital instruments(multi-mode AFM),the DNA nucleosome solution was diluted with binding buffer(5 mmol/L HEPES, 10 mmol/L NaCl,and 1 mmol/L MgCl2)to an appropriate concentration.To enhance the binding efficiency of DNA-histone molecules on mica surface[20],we pretreated the mica surface with spermidine.The pretreatment procedure was as follows:20μL 10 mmol/L spermidine(SpdCl3)was added on newly cleaved mica surface,which was then incubated for 5 min,washed thrice with distilled water,and blown dry in a gentle stream of nitrogen gas[20].

    The sample was then dropped onto the spermidinepretreated mica surface.After 5 min,the mica surface was washed thrice with 100μL Milli-Q filtered water and blown dry in a gentle stream of nitrogen gas.

    The imaging was performed in air using a multimode AFM with nanoscopeIIIa controller(Digital Instruments,Santa Barbara,CA,USA)in the tappingmode.Silicon probe RTESP14 from Veeco(USA)was employed,with a resonance frequency of 315 kHz,an E scanner was used.The scan rate was 1 Hz per line,and the scan size was 2-4μm.DNA tracing and measurements were performed semi-automatically using Image J software.

    III.RESULTS AND DISCUSSION

    To obtain a deeper insight on the interactions of DNA and histone,we used AFM to study this interaction by employing two methods.We f i rst observed the nonspecif i c binding of DNA and histone using AFM,and then we used the dialysis method to reconstruct the nucleosomes.The DNA-nucleosome interactions were observed using AFM.

    A.effect of different concentrations of histones on the non-specif i c binding of DNA

    In our experiment,non-specif i c DNA and histone binding occurred when the molar ratio of DNA to histone ranged from 100:1 to 1:1.DNA(2 kb,4 ng/μL f i nal concentration in reaction solution)and histone were incubated in Tris-HCl buffer(pH=7.5)at total volume of40μL for 1 h at 37?C.Approximately 2μL of the reaction mixture was withdrawn and incubated in 18μL binding buffer(5 mmol/L HEPES,10 mmol/L NaCl, and 1 mmol/L MgCl2)at room temperature for 5 min, and then loaded onto spermidine-pretreated mica.The DNA concentration was 4 ng/μL in the reaction solution and 0.4 ng/μL during loading onto mica surface, which is shown in Fig.1(a)-(d).

    Compared with our previous studies,it was demonstrated the binding of DNA and histone at much lower molar concentration of histone in the present study. The molar concentration of DNA was much higher than that of histone.In Fig.1(a),the molar ratio of DNA to histone was 100:1;in this case,almost no histone binding to DNA molecules was observed,and single DNA molecules were distributed on the mica surface with their natural configurations(Fig.1(a)).With the increase in histone,more histones bound to DNA molecules.The binding positions on the DNA molecules were usually at random.The histones seemed to bind on some positions of DNA at f i rst,whereas in other regions,almost no histone binding was found.Most of the DNA regions also showed natural stretched configuration(Fig.1(b)).However,when the molar ratios of DNA to histone were 3:1 and 1:1,histone condensed the DNA.More histones were found to bind to single DNA molecules and induced DNA aggregation(Fig.1 (c)and(d)).The DNA-histone complexes could not be stretched because they were tightly entangled with each other.

    In our previous study[21],the DNA-histone complexes were stretched and aligned using molecular combing method.At higher molar concentration ratio of histone to DNA(100:1),the DNA-histone complexes were tightly condensed into numerous spheres,as observed using fluorescence microscopy,and could not be stretched using molecular combing method.From the results of fluorescence microscopy and AFM,we deduced that the efficiency of non-specif i c binding DNA and histone was very high.In the case of fewer histones, histones bound to some positions of DNA.With the increase in histone,histones bound to other positions on the DNA.The binding of histone and DNA was sensitive to their molar concentration ratio.Histones contain a few lysine(K)residues at the N terminus.Under normal cellular conditions,the R group of lysine is positively charged,which can interact with the negatively charged phosphates in DNA.In high quantity of histone,DNA aggregation was easily induced.

    In a reaction,in which purif i ed histones and DNA are simply mixed together under physiological solution conditions,at sufficiently high concentration of DNA and histone octamer so that nucleosome formation is favored at equilibrium,some nucleosomes will form as well as numerous non-nucleosomal histone-DNA complexes and aggregates.Therefore,in our second method,we used dialysis to reconstitute nucleosomes using lambda DNA and whole histone proteins.

    B.Dialysis methods to reconstitute nucleosomes using lambda DNA and whole histone proteins

    At high salt concentrations,the affinity of histone octamer for DNA is signif i cantly reduced.We used gradual dialysis,which was achieved using a double-dialysis technique that relies on a micro-dialysis button inside a dialysis bag.This method ensures a reversible nucleosome assembly process.

    In 2 mol/L NaCl,in which histones and DNA have negligible affinity for each other,free equilibration of the histones is achieved between different DNAs. Subsequent decreases in concentration of NaCl reversibly allow nucleosome reconstitution,which then ultimately traps and freezes-in stable nucleosomes at a sub-physiological salt concentration.As concentration of NaCl drops from 2 mol/L to 1.5-1 mol/L,tetramers develop an increasing affinity for DNA,whereas heterodimers develop signif i cant affinity only when concentration of NaCl reaches 1-0.75 mol/L[19].

    We fabricated a micro-dialysis button inside a dialysis bag and performed the standard dialysis procedure according to Ref.[19].In our dialysis reaction,we used lambda DNA and purif i ed histones.In the present study,the mass ratio of lambda DNA to histone was 1:0.7(the molar ratio of histone to lambda DNA was approximately 300).The results showed that the histone binding to lambda DNA molecules was very different from their non-specif i c binding(Fig.2).DNA and histone octamer(nucleosomes)were formed using dialysis method.Numerous single histones octamer were bound on single lambda DNA molecule(Fig.2).We also measured the size of these nucleosomes,which were between 12 and 21 nm.DNA and histones formed the“beadson-a-string”nucleosomal array using dialysis.Compared with other studies[22,23],nucleosomes were often formed with short DNA fragments,which typically ranged from 146 bp to 207 bp,with a high-affinity nucleosome positioning sequence[23].In the present study, although we used the longer lambda DNA without highaffinity nucleosome positioning sequence,nucleosomes were also formed.We directly observed using AFM that nucleosome could be formed on lambda DNA.Nucleosomes were well resolved along with the linear lambda DNA.When the stretched force on DNA molecules was small,the strands of DNA molecule tended to bend and aggregated on the mica surface.In the aggregation regions(Fig.2),histone and DNA showed much larger spots(black arrow)than single nucleosomes(red arrow).The aggregations suggested that attractive interactions between the nucleosomes existed,thereby leading to array compaction.

    FIG.1 Non-specif i c binding DNA and histone.The molar ratio of DNA to histone ranged from(a)100:1,(b)10:1,(c)3:1, to(d)1:1.The scale bar is 400 nm in(a)-(d).(e)Montage of AFM images of typical DNA-histone complex of different modes are shown in the black-line box.Scale bar is 200 nm.

    FIG.2 Nucleosomal array reconstituted from lambda DNA and core histones using salt dialysis on the mica surface in air.The sizes of nucleosomes(red arrow)in these images are from 12 nm to 21 nm.The single histone on the mica surface is indicated by the green arrow.Scale bar is 400 nm. Enlarged images of the region enclosed in black rectangles are shown in the lower panel.

    After we optimized the condition for DNA-histone binding on the mica surface,nucleosomes became well resolved along with the stretched DNA.Nucleosomal arrays were reconstituted from lambda DNA and core histones by salt dialysis and observed using AFM on mica in air(Fig.3).In addition,nucleosomes with relatively large sizes were also observed in the same sample.Some nucleosomes are approximately 28 nm to 47 nm(an example is indicated by an arrow in Fig.3). Given that H1 fraction of histone was present in the sample,higher-order chromatin was probably formed. AFM analysis of the sizes of nucleosomes observed in our experiments is shown in Fig.4.

    FIG.3 AFM images of nucleosome reconstitution using dialysis method.The size of some nucleosomes in this image is~28 nm to 47 nm.Scale bar is 400 nm.Enlarged images of the region enclosed in black rectangles are shown in the lower panel.

    Compared with dialysis,we also performed an experiment in which purif i ed histones and DNA were simply mixed together under physiological solution conditions.However,the molar ratio of histone to DNA was 200.Histones condensed DNAs into short linear f i bers, which self-assemble into numerous mesh networks on the mica surface.Many beads were also found on the DNA f i bers(Fig.5).DNA and histone combined with each other very easily because of their opposite charge polarities.After many repetitions of the experiment, the results showed that lambda DNA-histone complexes self-assembled into network structures on mica surface.The morphologies of DNA-histone complexes were related to various factors such as the force of nitrogen f l ow on the surface.

    FIG.4 AFM analysis of nucleosomes reconstituted by dialysis method.(a)Nucleosomes with typical sizes in our study were formed randomly on lambda DNA due to H1 fraction in histone samples.(b)Line profile across the nucleosomes showing the vertical sizes measured by AFM.(c)AFM image of(a)with three dimensional views.(d)Histogram representing distribution of horizontal sizes of nucleosomes(n=155).

    FIG.5 AFM images of lambda DNA-histone complexes. The molar ratio of histone to DNA is 200.(a)Unique mesh networks,which were formed by lambda DNA and histone, are shown(red arrow).(b)The enlarged images show junctions(green arrow)of DNA fragment linked by histone complexes in the black-line box.

    IV.CONCLUSION

    To obtain more detailed information on the interaction of DNA and histone proteins,we used lambda DNA and whole histone proteins to reconstitute nucleosomes using dialysis.The nucleosomes were observed using AFM.We also compared the non-specif i c binding of DNA and histone to the reconstituted nucleosomes. AFM can detect single biomacromolecules with a high signal-to-noise ratio on atomically f l at biocompatible support surfaces,such as mica.AFM can also provide valuable information on the interaction of certain proteins with DNA and signif i cant changes in the topological form of DNA.Formation of nucleosomes in the lambda DNA was easily detected.The following conclusions can be drawn:(i)Compared with other studies, in which short DNA molecules with high-affinity nucleosome positioning sequence were used,we used long lambda DNA molecules without high-affinity nucleosome positioning sequences to form nucleosomes.Nucleosomes were formed within the assembled beads-ona-string nucleosomal array using dialysis.(ii)The nonspecif i c binding of DNA and histone was also studied using AFM.The binding of histone and DNA was sensitive to their molar concentration ratio.DNA-histone complexes aggregated together and self-assembled into network structures on mica surface at high molar concentration of histone.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11274374),the NationalBasic Research Program of China(No.2009CB930704), and the Basic Scientif i c Research Foundation of China Agricultural University(No.2012QJ026).

    [1]K.E.VanHolde,Chromatin,Berlin:Springer-Verlag KG,219(1988).

    [2]J.C.Hansen,Annu.Rev.Biophys.Biomol.Struct.31, 361(2002).

    [3]F.Thoma,T.Koller,and A.Klug,J.Chem.Biol.83, 403(1979).

    [4]F.Montel,H.Menoni,M.Castelnovo,J.Bednar,S. Dimitrov,D.Angelov,and C.Faivre-Moskalenko,Biophys.J.97,544(2009).

    [5]J.Y.Lee,S.J.Wei,and T.H.Lee,J.Biol.Chem.286, 11099(2011).

    [6]G.Binnig,C.F.Quate,and C.Gerber,Phys.Rev.Lett. 56,930(1986).

    [7]J.Zlatanova and S.H.Leuba,J.Mol.Biol.331,1 (2003).

    [8]Y.Suzuki,Y.Higuchi,K.Hizume,M.Yokokawa,S. Yoshimura,K.Yoshikawa,and K.Takeyasu,Ultramicroscopy 110,682(2010).

    [9]H.Yokota,J.Sunwoo,M.Sarikaya,G.Engh,and R. Aebersold,Anal.Chem.71,4418(1999).

    [10]M.L.Bennink,D.N.Nikova,K.O.Werf,and J.Greve, Analytica.Chimica.Acta 479,3(2003).

    [11]L.Sui,K.Zhao,M.N.Ni,J.Y.Guo,F.Q.Kong,C. M.Hui,X.Q.Lu,and P.Zhou,Chin.Phys.Lett.22, 1010(2005).

    [12]H.B.Wang,X.F.Zhou,H.J.An,Y.C.Guo,J.L. Sun,Y.Zhang,and J.Hu,Chin.Phys.Lett.24,644 (2007).

    [13]X.M.Hou,X.H.Zhang,K.J.Wei,J.Chao,S.X.Dou, W.C.Wang,and P.Y.Wang,Nucleic.Acids Res.37, 1400(2009).

    [14]Z.G.Liu,S.N.Tan,Y.G.Zu,Y.J.Fu,R.H.Meng, and Z.M.Xing,Micron.41,833(2010).

    [15]V.A.Bloomf i eld,Biopolymers 44,269(1997).

    [16]G.Felsenfeld and M.Groudine,Nature 421,448(2003).

    [17]Y.Y.Liu,S.X.Dou,P.Y.Wang,P.Xie,and W.C. Wang,Acta.Phys.Sin.54,622(2005).

    [18]Y.Y.Liu,P.Y.Wang,S.X.Dou,W.W.Zhang,X.J. Wang,and H.Y.Sang,Chin.Sci.Bull.56,1080(2011).

    [19]A.Thastrom,P.T.Lowary,and J.Widom,Methods 33,33(2004).

    [20]G.R.Schnitzler,C.L.Cheung,J.H.Hafner,A.J. Saurin,R.E.Kingston,and C.M.Lieber,Mol.Cel. Biol.21,8504(2001).

    [21]Y.Y.Liu,P.Y.Wang,S.X.Dou,P.Xie,W.C.Wang, and H.W.Yin,Chin.Sci.Bull.50,731(2005).

    [22]J.Zlatanova and S.H.Leuba,J.Muscle.Res.Cell. Motil.23,377(2002).

    [23]N.A.Filenko,D.B.Palets,and Y.L.Lyubchenko,J. Amino.Acids.650840(2012).

    ceived on July 30,2013;Accepted on December 26,2013)

    ?Author to whom correspondence should be addressed.E-mail:liuyuying@cau.edu.cn,Tel.:+86-10-62736711

    人妻丰满熟妇av一区二区三区| 久久人人精品亚洲av| 亚洲av熟女| 亚洲精品456在线播放app | 国产一区二区激情短视频| 国产精品久久久人人做人人爽| 免费看a级黄色片| 久久人人精品亚洲av| www日本黄色视频网| 无遮挡黄片免费观看| 男人舔女人的私密视频| 日韩精品青青久久久久久| 亚洲美女黄片视频| 亚洲国产看品久久| 精品乱码久久久久久99久播| 亚洲精品粉嫩美女一区| 日日干狠狠操夜夜爽| 久9热在线精品视频| 中出人妻视频一区二区| av片东京热男人的天堂| 黑人巨大精品欧美一区二区mp4| 精品国产超薄肉色丝袜足j| 久久久久久九九精品二区国产| 日韩成人在线观看一区二区三区| 色吧在线观看| 黄片小视频在线播放| 国产伦人伦偷精品视频| 欧美成狂野欧美在线观看| 又爽又黄无遮挡网站| 国产探花在线观看一区二区| 成人欧美大片| 99久久99久久久精品蜜桃| 小说图片视频综合网站| 亚洲国产高清在线一区二区三| 亚洲中文av在线| 亚洲激情在线av| 88av欧美| 久久香蕉国产精品| 99国产综合亚洲精品| 嫩草影院入口| 18禁黄网站禁片午夜丰满| 欧美一级毛片孕妇| 国产高清videossex| 夜夜躁狠狠躁天天躁| 亚洲午夜理论影院| 一个人看视频在线观看www免费 | 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| 亚洲精品一卡2卡三卡4卡5卡| 不卡一级毛片| 亚洲成人中文字幕在线播放| 欧美黑人欧美精品刺激| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 国产高清视频在线播放一区| 琪琪午夜伦伦电影理论片6080| 亚洲人成电影免费在线| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 国产精品女同一区二区软件 | 97碰自拍视频| 一个人免费在线观看的高清视频| www国产在线视频色| 欧美乱码精品一区二区三区| av国产免费在线观看| 欧美激情在线99| 两人在一起打扑克的视频| netflix在线观看网站| 久久欧美精品欧美久久欧美| 精品免费久久久久久久清纯| 法律面前人人平等表现在哪些方面| 亚洲av五月六月丁香网| 久久久久久久久久黄片| 国产淫片久久久久久久久 | 嫩草影院精品99| 女警被强在线播放| 中文资源天堂在线| 午夜福利欧美成人| a级毛片在线看网站| 在线播放国产精品三级| 久久久久久人人人人人| 黄色视频,在线免费观看| e午夜精品久久久久久久| 香蕉久久夜色| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看 | av在线天堂中文字幕| 成人av在线播放网站| 两个人看的免费小视频| 在线观看66精品国产| 久久欧美精品欧美久久欧美| 18禁美女被吸乳视频| 久久久久九九精品影院| 欧美一级a爱片免费观看看| 国内精品美女久久久久久| 19禁男女啪啪无遮挡网站| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 91麻豆精品激情在线观看国产| 美女cb高潮喷水在线观看 | 少妇裸体淫交视频免费看高清| 久久草成人影院| 又黄又爽又免费观看的视频| 在线永久观看黄色视频| 欧美色视频一区免费| 麻豆一二三区av精品| 亚洲真实伦在线观看| 我要搜黄色片| 中文字幕最新亚洲高清| 日韩精品青青久久久久久| 制服丝袜大香蕉在线| 色av中文字幕| 国产午夜福利久久久久久| 国产精品九九99| 夜夜夜夜夜久久久久| 久久精品aⅴ一区二区三区四区| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式 | 日本三级黄在线观看| 亚洲av片天天在线观看| 欧美日韩黄片免| 精品国产三级普通话版| а√天堂www在线а√下载| 亚洲七黄色美女视频| 精品熟女少妇八av免费久了| 久久热在线av| 久久国产精品影院| 久久精品夜夜夜夜夜久久蜜豆| 欧美黑人欧美精品刺激| а√天堂www在线а√下载| 成人性生交大片免费视频hd| 夜夜夜夜夜久久久久| 亚洲 欧美一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久人人人人人| 97超视频在线观看视频| 久久久久国内视频| 精品久久蜜臀av无| 中文字幕高清在线视频| 三级男女做爰猛烈吃奶摸视频| 人人妻,人人澡人人爽秒播| 男女床上黄色一级片免费看| 啪啪无遮挡十八禁网站| 欧美中文日本在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三| 成人无遮挡网站| 首页视频小说图片口味搜索| 欧美绝顶高潮抽搐喷水| 男女床上黄色一级片免费看| 成年女人毛片免费观看观看9| 国产精品98久久久久久宅男小说| 久久精品影院6| 美女高潮的动态| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 婷婷丁香在线五月| 亚洲精品在线美女| 亚洲aⅴ乱码一区二区在线播放| 欧美大码av| 又粗又爽又猛毛片免费看| 日韩欧美免费精品| 99热精品在线国产| 国产精品av视频在线免费观看| 香蕉国产在线看| netflix在线观看网站| 久久亚洲精品不卡| 无人区码免费观看不卡| 夜夜看夜夜爽夜夜摸| 成人特级av手机在线观看| 午夜福利成人在线免费观看| 日韩人妻高清精品专区| 在线观看午夜福利视频| 91九色精品人成在线观看| 久久这里只有精品中国| 黄色片一级片一级黄色片| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 国产成人一区二区三区免费视频网站| 激情在线观看视频在线高清| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区精品小视频在线| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 国产成人aa在线观看| 国产伦在线观看视频一区| 午夜免费观看网址| 亚洲欧美精品综合久久99| 欧美三级亚洲精品| 色播亚洲综合网| 高潮久久久久久久久久久不卡| 在线视频色国产色| 国产真实乱freesex| 欧美绝顶高潮抽搐喷水| 视频区欧美日本亚洲| www.精华液| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 国内精品久久久久精免费| 亚洲美女黄片视频| 国产美女午夜福利| 成人特级黄色片久久久久久久| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 久久精品aⅴ一区二区三区四区| 国产美女午夜福利| 亚洲精品在线美女| 亚洲五月天丁香| 亚洲av片天天在线观看| 国产精品免费一区二区三区在线| x7x7x7水蜜桃| 老汉色∧v一级毛片| 亚洲精品中文字幕一二三四区| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 热99re8久久精品国产| 国产黄片美女视频| 中文字幕熟女人妻在线| 脱女人内裤的视频| 日本 av在线| 可以在线观看的亚洲视频| 国产乱人伦免费视频| 亚洲无线在线观看| 国产av一区在线观看免费| 国产精品久久久久久亚洲av鲁大| 国产成人影院久久av| 香蕉久久夜色| 成人特级av手机在线观看| 高清在线国产一区| 一a级毛片在线观看| 女警被强在线播放| 三级国产精品欧美在线观看 | 熟女电影av网| av视频在线观看入口| 成人一区二区视频在线观看| 国产精品,欧美在线| av片东京热男人的天堂| 日韩人妻高清精品专区| 午夜精品在线福利| 日本成人三级电影网站| 两个人视频免费观看高清| 国产1区2区3区精品| 国产精品av视频在线免费观看| 免费在线观看成人毛片| 两个人的视频大全免费| 高清毛片免费观看视频网站| h日本视频在线播放| 亚洲性夜色夜夜综合| 亚洲av成人精品一区久久| 国产一区二区在线观看日韩 | 亚洲男人的天堂狠狠| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 两性午夜刺激爽爽歪歪视频在线观看| 床上黄色一级片| 法律面前人人平等表现在哪些方面| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 岛国在线观看网站| 一二三四社区在线视频社区8| 别揉我奶头~嗯~啊~动态视频| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 国产亚洲精品综合一区在线观看| 久久久久亚洲av毛片大全| 一个人免费在线观看的高清视频| 中文字幕精品亚洲无线码一区| 在线观看舔阴道视频| 18禁黄网站禁片免费观看直播| 久久亚洲真实| 九色国产91popny在线| 欧美三级亚洲精品| 亚洲无线在线观看| 狂野欧美激情性xxxx| 国产精品1区2区在线观看.| 国产成年人精品一区二区| av女优亚洲男人天堂 | 久久精品综合一区二区三区| 熟女人妻精品中文字幕| 我的老师免费观看完整版| 18美女黄网站色大片免费观看| 免费在线观看视频国产中文字幕亚洲| 90打野战视频偷拍视频| 日日夜夜操网爽| 18禁国产床啪视频网站| 成人18禁在线播放| 国产主播在线观看一区二区| 国产成人欧美在线观看| 日韩欧美精品v在线| 三级毛片av免费| 日韩中文字幕欧美一区二区| 久久久久国内视频| 女同久久另类99精品国产91| 嫩草影院入口| 国产精品98久久久久久宅男小说| 一夜夜www| 欧美日本视频| 欧美性猛交╳xxx乱大交人| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 午夜久久久久精精品| 老司机福利观看| 亚洲专区中文字幕在线| 国产亚洲av嫩草精品影院| av福利片在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人中文| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 51午夜福利影视在线观看| 一级毛片高清免费大全| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久精免费| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 亚洲国产看品久久| 99热这里只有精品一区 | 三级毛片av免费| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 亚洲电影在线观看av| 成人无遮挡网站| 国产黄片美女视频| 麻豆av在线久日| 国语自产精品视频在线第100页| 国产黄色小视频在线观看| 午夜日韩欧美国产| 国产精品九九99| 精品国内亚洲2022精品成人| 国产高清视频在线观看网站| 怎么达到女性高潮| 国产成年人精品一区二区| 国产综合懂色| 美女高潮喷水抽搐中文字幕| 怎么达到女性高潮| 久久香蕉国产精品| 中文字幕高清在线视频| 亚洲性夜色夜夜综合| 亚洲av片天天在线观看| 叶爱在线成人免费视频播放| 香蕉久久夜色| 亚洲精品中文字幕一二三四区| 欧美乱色亚洲激情| 黄频高清免费视频| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 色老头精品视频在线观看| 51午夜福利影视在线观看| 一本综合久久免费| 日日干狠狠操夜夜爽| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩乱码在线| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 9191精品国产免费久久| 观看美女的网站| 亚洲一区二区三区不卡视频| 俄罗斯特黄特色一大片| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 亚洲无线观看免费| 国产高清有码在线观看视频| 精品福利观看| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 午夜精品久久久久久毛片777| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 无人区码免费观看不卡| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 色噜噜av男人的天堂激情| 熟女少妇亚洲综合色aaa.| 日韩欧美精品v在线| www国产在线视频色| 91av网一区二区| 老司机福利观看| 一区福利在线观看| 黄色丝袜av网址大全| 宅男免费午夜| 国产成人av激情在线播放| 亚洲精品美女久久久久99蜜臀| 免费观看精品视频网站| 国产三级黄色录像| 在线观看舔阴道视频| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 午夜福利视频1000在线观看| 国产爱豆传媒在线观看| 日本黄色片子视频| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 一进一出好大好爽视频| 欧美一级a爱片免费观看看| 哪里可以看免费的av片| 少妇的逼水好多| a级毛片a级免费在线| 亚洲无线观看免费| 免费人成视频x8x8入口观看| 黑人巨大精品欧美一区二区mp4| 美女cb高潮喷水在线观看 | 又爽又黄无遮挡网站| 99re在线观看精品视频| 亚洲欧洲精品一区二区精品久久久| 丰满的人妻完整版| 免费观看精品视频网站| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩东京热| 母亲3免费完整高清在线观看| 国产精品亚洲一级av第二区| 精品一区二区三区视频在线 | 久久中文字幕人妻熟女| 亚洲av五月六月丁香网| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 日本黄色片子视频| 国产高清激情床上av| 午夜久久久久精精品| 十八禁网站免费在线| 波多野结衣巨乳人妻| 99国产综合亚洲精品| 又黄又爽又免费观看的视频| 日本一二三区视频观看| 91字幕亚洲| 在线国产一区二区在线| 欧美一区二区国产精品久久精品| 91在线观看av| 99久久无色码亚洲精品果冻| 成年女人看的毛片在线观看| 久久这里只有精品19| 午夜福利18| 国产精品久久电影中文字幕| 91麻豆精品激情在线观看国产| 免费在线观看日本一区| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 久久久久九九精品影院| 亚洲成人久久性| 国产视频内射| 国产高清激情床上av| 淫妇啪啪啪对白视频| 亚洲中文av在线| 一本综合久久免费| 夜夜爽天天搞| 悠悠久久av| 精品无人区乱码1区二区| av国产免费在线观看| 美女扒开内裤让男人捅视频| 亚洲真实伦在线观看| 啪啪无遮挡十八禁网站| 可以在线观看的亚洲视频| 国产精品久久视频播放| 亚洲精品456在线播放app | 精品国产亚洲在线| 久久久国产精品麻豆| 男女那种视频在线观看| 亚洲激情在线av| 真实男女啪啪啪动态图| 18禁国产床啪视频网站| 免费电影在线观看免费观看| 精品久久蜜臀av无| 日韩免费av在线播放| 99精品久久久久人妻精品| 国产99白浆流出| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 免费看美女性在线毛片视频| 成人精品一区二区免费| 久久久成人免费电影| 久久伊人香网站| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 国产69精品久久久久777片 | 国产精品九九99| 真人做人爱边吃奶动态| 一二三四社区在线视频社区8| 99热这里只有是精品50| 黄片小视频在线播放| 日本在线视频免费播放| 国产精品av视频在线免费观看| 成人亚洲精品av一区二区| 亚洲欧美日韩无卡精品| 国产精品亚洲av一区麻豆| 国产野战对白在线观看| 桃色一区二区三区在线观看| 国产男靠女视频免费网站| xxxwww97欧美| 久久久久亚洲av毛片大全| 在线看三级毛片| 日韩欧美国产一区二区入口| 久久这里只有精品19| av中文乱码字幕在线| 亚洲成a人片在线一区二区| 男女午夜视频在线观看| 熟女人妻精品中文字幕| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 老汉色∧v一级毛片| 国产淫片久久久久久久久 | 麻豆av在线久日| 变态另类成人亚洲欧美熟女| 免费人成视频x8x8入口观看| 成年版毛片免费区| 色播亚洲综合网| www日本在线高清视频| 俄罗斯特黄特色一大片| 亚洲国产欧美网| 亚洲国产欧美人成| 99热精品在线国产| 美女高潮喷水抽搐中文字幕| 天堂影院成人在线观看| 国产三级在线视频| 国产精品亚洲av一区麻豆| 日本与韩国留学比较| 在线看三级毛片| 欧美又色又爽又黄视频| 熟女人妻精品中文字幕| 动漫黄色视频在线观看| 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 十八禁人妻一区二区| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 成人高潮视频无遮挡免费网站| 亚洲黑人精品在线| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 午夜福利高清视频| 精品无人区乱码1区二区| 国产av在哪里看| 性欧美人与动物交配| 97人妻精品一区二区三区麻豆| 色av中文字幕| 中文字幕人成人乱码亚洲影| 一卡2卡三卡四卡精品乱码亚洲| 五月伊人婷婷丁香| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 日本黄色片子视频| 天天躁狠狠躁夜夜躁狠狠躁| 女人被狂操c到高潮| 美女大奶头视频| 国产精品美女特级片免费视频播放器 | 在线观看66精品国产| 中文字幕熟女人妻在线| 丁香六月欧美| 国产亚洲欧美在线一区二区| 国产欧美日韩精品一区二区| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 宅男免费午夜| 亚洲av成人精品一区久久| 欧美黑人欧美精品刺激| 亚洲av中文字字幕乱码综合| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 悠悠久久av| 两人在一起打扑克的视频| 国产精品香港三级国产av潘金莲| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 亚洲一区二区三区不卡视频| 亚洲色图 男人天堂 中文字幕| 午夜福利18| 99热精品在线国产| 最近最新免费中文字幕在线| 国产三级在线视频| 免费在线观看日本一区| 男女视频在线观看网站免费| 免费看a级黄色片| 精品国产乱子伦一区二区三区| 亚洲av熟女| 97碰自拍视频| 国产精品一区二区免费欧美| 久久久久久久精品吃奶| 免费在线观看影片大全网站| 精品99又大又爽又粗少妇毛片 | 欧美精品啪啪一区二区三区| 一进一出抽搐动态| 久久99热这里只有精品18| 欧美日韩国产亚洲二区| 99在线视频只有这里精品首页| 国产高清激情床上av| 久久久久免费精品人妻一区二区| 男人和女人高潮做爰伦理| 精品国产三级普通话版| 亚洲无线观看免费| 亚洲国产色片| 久久婷婷人人爽人人干人人爱| 欧美日韩国产亚洲二区| 别揉我奶头~嗯~啊~动态视频| 丰满的人妻完整版| 两性午夜刺激爽爽歪歪视频在线观看| 可以在线观看的亚洲视频| 国产精品,欧美在线| 久久久久国产精品人妻aⅴ院| x7x7x7水蜜桃| 国产欧美日韩精品亚洲av| 国产精品98久久久久久宅男小说| 欧美丝袜亚洲另类 |