• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on Excited-State Photophysical Characteristics of Low Bandgap Polymer APFO3

    2014-07-19 11:17:08LiliQuYinghuiWngZhihuiKngYugungHnzhungZhng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Li-li Qu,Ying-hui Wng,?,Zhi-hui Kng,Yu-gung M,Hn-zhung Zhng?

    a.Femtosecond laser laboratory,College of Physics,Jilin University,Changchun 130012,China

    b.State Key Laboratory of Supramolecular Structure and Materials,Jilin University,Changchun 130012, China

    Investigation on Excited-State Photophysical Characteristics of Low Bandgap Polymer APFO3

    Li-li Qua,Ying-hui Wanga,b?,Zhi-hui Kanga,Yu-guang Mab,Han-zhuang Zhanga?

    a.Femtosecond laser laboratory,College of Physics,Jilin University,Changchun 130012,China

    b.State Key Laboratory of Supramolecular Structure and Materials,Jilin University,Changchun 130012, China

    The excited state photophysics of low bandgap polymer APFO3 has been investigated in detail.The chemical calculations conf i rm that the intrachain charge transfer(ICT)may occur after photo-excitation and is mainly responsible for the f i rst absorption band.The transient absorption results conf i rm that ICT indeed exists and competes with the vibrational relaxation at the same time,when APFO3 is in a monodisperse system.This ICT process would disappear due to the influence of interchain interaction when APFO3 is in the condensed phase,where the exciton decay would be dominant in the relaxation process after photoexcitation.The photoexcitation dynamics of APFO3 film blending with PC61BM are presented,which shows that the exciton may be dissociated completely as the percentage of PC61BM reaches~50%.Meanwhile,the photovoltaic performance based on blend heterojunction shows that the increase of photocurrent is little if the percentage of PC61BM exceeds~50%.Overall,the present study has covered several fundamental processes taking place in the APFO3 polymer.

    Conjugated polymer,Transient absorption,Intrachain charge transfer

    I.INTRODUCTION

    Semiconductor polymers have attracted much attention in the f i elds of commerce and science,because of their potential application in the optoelectronic f i elds, such as organic f i eld effect transistor[1],organic emitting light diode[2],and polymer solar cell[3].These organic materials own many advantages over conversional semiconductors,such as the good solution processability and the mechanical properties,and are able to allow access to generation of cheap and f l exible devices.Recently,the solar cells based on polymer have increased very much and reached~10%in 2012[4]. In order to further improve the performance of photovoltaic devices,it is necessary to synthesize the lowbandgap polymers,so as to broaden the harvesting region of photon and enhance the short circuit current of photovoltaic device[5].The alternating polyfluorene copolymer(poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-5,5-(40,70-di-2-thienyl-20,benzothiadiazole)])(APFO3), with structure shown in Fig.1,is one kind of πconjugated copolymers,which is composed of the electron-donor unit(fluorine group)and the electronacceptor units(benzothiadiazole and two thiophene units).Its absorption bandedge has reached~700 nm in the solution and its carrier mobility is also excellent, which makes it suitable for photovoltaic application[7]. In addition,APFO3 has also been used as a model polymer to investigate the charge transfer and geminate recombination processes occurring in the polymer blending heterojunction with PCB60M[8]and PCB70M[9]. Although the photophysics of heterojunction based on APFO3 have been investigated in detail,some questions still need to be interpreted,such as evolution of photophysical properties under different situations,the direct photo-generation of separated charges in the excited state,and the role and origin of possible interchain electronic species.In order to answer these questions, it is necessary to present a broad investigation on this conjugated polymer and compare the photoexcitation dynamics of conjugated polymer under different conditions.

    FIG.1 Molecular structure of APFO3.

    In this work,we performed a series of investigations on the photophysics of conjugated polymer APFO3 to understand its photoexcitation dynamics in a monodisperse system and a condensed phase.Through intro-ducing the PC61BM in the APFO3 film,we also detected the exciton dissociation dynamics and further prepared the photovoltaic devices.In addition,we could employ the density functional theory(DFT)to know the basic electronic transition mechanism after the photoexcitation.Finally,we provided the spectroscopic studies of APFO3 in detail.

    II.EXPERIMENTS

    A.Materials

    The chemicals used were all purchased from Lumtec Technology without further purif i cation.The polymerdissolvedinthechlorobenzene(CB)solvent with concentration of 100μg/mL.The APFO3 and APFO3:PC61BM thin films were prepared through spin coating the sample solution in the CB solution onto 2 mm thick fused silica glass substrates.

    B.Experimental details

    Steady-state absorption measurements were carried out using a UV-Vis spectrophotometer(Purkinje, TU-1810PC).Photoluminescence(PL)spectra were recorded by a f i ber optic spectrometer(Ocean Optics, USB4000)with excitation pulse at 400 nm.We employed a mode-lock Ti:Sapphire femtosecond laser system(Coherent),which offered 2.0 mJ,130 fs pulses at 800 nm with a repetition rate of 1 kHz.The setup of transient absorption(TA)measurement was reported in Ref.[10].Brief l y,the output of femtosecond laser beam was split into two parts.The major one was frequency-doubled by a 1 mm thick BBO crystal to generate 400 nm pulses,which will be used as the pump beam,while the minor one was focused into a 5 mm quartz cell filled with pure water to generate a white light continuum as the probe beam.The probe beam was also focused onto the sample to overlap with the pump beam.The transmittance change of probe pulse was detected by a photomultiplier tube (Zolix,PMTH-S1-CR131)connected to the lock-in Amplif i er(SR830,DSP).Photovoltaic devices were comprised of thin film with indium tin oxide(ITO)anode, PEDOT:PSS hole transport layer,active layer of spincoated PDPP-F/PC61BM blend,and capped with Al cathode.The J-V(current density-voltage)characteristics of photovoltaic device were tested under sun-like illumination.The light source was a Xenon lamp with an AM1.5G filter of which intensity was calibrated to 100 mW/cm2.All measurements were carried out at room temperature.

    C.Computational methods

    FIG.2Normalizedabsorptionandemissionspectra of(a)APFO3 in solution with different polarity and (b)APFO3 film(λexe=400 nm).The concentration of solution is 100μg/mL.

    The ground geometry of APFO3n(n=1-4 repeat unit)was optimized with DFT[11],B3LYP functional [12],and 6-31G(d)basis set.All calculations were performed by the Gaussian 09 program package[13].The influence of peripheral carbon chains was believed to be so small that such chains were replaced by H to avoid excessive computation demand.Electronic transition in the optical absorption of the APFO32oligomer with two repeat units was computed with time-dependent DFT (TD-DFT)[14],CAM-B3LYP functional[15],and 6-31G(d)basis.The corresponding electronic properties and geometries were calculated by assuming APFO3 oligomers to be isolated molecules in the vacuum.

    III.RESULTS AND DISCUSSION

    As is depicted in Fig.2(a),the absorption spectra of APFO3 in the solution with different polarity are all composed of two broad absorption bands,peaking at 389(P2peak)and 548 nm(P1peak),respectively,which exhibits that the absorption features of APFO3 are almost independent of the polarity of solvent.Their emission spectra have a broad unstructured emission band centered at 653 nm(CB),664 nm(THF), and 674 nm(CHCl3),and their corresponding bandwidth seems to be a little narrower in comparison with that of the P1band in the absorption spectra.The polarity-dependent emission spectra of APFO3 show an apparent solvatochromism behavior.The emission band red shifts as the polarity of solvent gradually enhances,implying the intrachain charge transfer(ICT) may occur in this π-conjugated polymer[16].Moreover, the emission spectra in different solvents show a good enantiomorphous feature.The bandgap could be estimated from the intersection point between the normal-ized absorption and emission spectra in Fig.2(b),which is~2.05 eV(CB),2.04 eV(THF)and 2.02 eV(CHCl3), respectively.The Stokes shift,given by the frequency di ff erence between the emission maximum and the fi rst absorption peak,is~2935 cm-1(CB),3188 cm-1(THF)and 3412 cm-1(CHCl3),respectively,and gradually increases with the increasing of solvent polarity. It is noted that the geometry of D-A type conjugated polymer in excited state could be sensitive to the solvent polarity.For the APFO3 in the condensed phase,the fi rst absorption band may broaden from~4083 cm-1(in the solution)to~5234 cm-1.Due to the interchain interaction,the P1and P2peaks in the absorption spectra red shift from~390 and~546.5 nm to~397 and~576 nm,respectively.Meanwhile,the emission peak also red shifts to 708 nm,the bandgap decreases to 1.89 eV,the Stokes shift changes to~3292 cm-1.

    FIG.3(a)Optimized geometry,HOMO and LUMO of APFO3 with two repeat units.(b)Calculated absorption spectrum of APFO3 oligomer with two repeat units.(c)The repeat unit-dependent HOMO-LUMO.

    The ground geometry of APFO32oligomer with two repeat units is optimized by B3LYP/6-31G(d).Herein, the donor unit(fluorine group)and the acceptor units (benzothiadiazole unit and two thiophene units)all own planarity(as seen in Fig.3(a)),but a twist appears between the donor and the acceptor units.The corresponding value is~23.9?,which may has a little influence on the ICT character.As is seen in Fig.3(a),the highest occupied molecular orbital(HOMO)is almost distributed over the whole oligomer backbone,while the lowest unoccupied molecular orbital(LUMO)is mainly localized in the acceptor units.After photoexcitation,the charge cloud in oligomers clearly redistributes through the ICT process,and eventually the charge almost distributes on the acceptor units.The simulated absorption spectrum of APFO32oligomer with DT-DFT/6-31G is presented in Fig.3(b),and the spectral shape with a“camel back”character is known to be a f i ngerprint of the donor-acceptor conjugated copolymer structure with an ICT state[17].Similarly to the experimental data,the simulated absorption spectrum of APFO3 is also composed of two absorption band, but both of them show a little blue shift in comparison with the experimental data.According to the repeat unit-dependent HOMO and LUMO shown in Fig.3(c),we f i nd that both of them gradually converge to an extremum and the bandgap gradually also decreases to a constant,indicating that the increase of repeat unit would lead to the red shift of the simulated absorption spectra and reduce the difference between the simulated absorption spectrum and experimental data.In addition,the calculated electronic transition is assumed to be in the vacuum,which may be also responsible for the difference between the theoretical and the experimental data.Using the calculated data for the oligomer with two repeating units,the contribution of the frontier molecular orbitals to the electronic transitions is analyzed.The low energy absorption(P1peak)band may be ascribed to S0→S1transition and is mainly composed of HOMO→LUMO transition,where the ICT transition is dominant in S0→S1transition.The high energy absorption(P2peak)band may be attributed to the π→π?transition and its component is so complex,and the detailed electronic transitions in APFO32oligomer are shown in Table I.

    TABLEI Calculated transition energies ETand oscillator strengths f for APFO32oligomer with two repeat units.

    FIG.4(a)Time-dependent TA spectra of APFO32in CB solution with concentration of 100μg/mL(λexe=400 nm). (b)Temporal evolution of TA signal at λprobe=440,560,620,and 860 nm,the solid lines are fitted results.(c)The photophysical process of APFO32in a monodisperse system.

    TABLE II Best-fit parameters of TA traces of APFO3 with multi-exponential functions.

    The time-dependent TA spectra of the APFO3 in the CB solution with concentration of 100μg/mL at different time are shown in Fig.4(a),and the aggregation between copolymer is expected to be insignif i cant in this concentration[18].The TA spectrum of APFO3 at 1.0 ps has four main spectral features.Two positive absorption bands at~390 and~550 nm are attributed to ground state photo-bleaching(GSPB)because of the close resemblance to the optical absorption spectrum,and the other two negative excited absorption bands at~450(EA1)and above 600 nm(EA2and EA3)may correspond to the excited state absorption.It is interestingly found the GSPB1gradually blue shifts from 570 nm to 550 nm with time,indicating that the simulated emission(SE)should be overlapped with the GSPB1in this spectral region.In order to understand the photophysical character of the excited APFO3,we exhibit the temporal evolution of EA1, GSPB1,EA2,and EA3bands at selected λprobe=440, 560,620,and 860 nm,and all of them are fitted by a multi-exponential function.The fitted results are shown in Fig.4(b)and summarized in Table II.Their different decay behaviors ref l ect that the transient species that we are monitoring come from different energy states. The temporal trace of EA3at 860 nm shows an initial decay with the lifetime of~2.0 ps,showing that some transient species directly relax from the high energy excited state.Simultaneously,the dynamics of EA1also exhibit a fast rising dynamic behavior with the lifetime of~2.5 ps and is a little longer than that of the fast dynamic component in EA3trace,suggesting that some transient species in high energy excited state may relax to the low energy excited state through vibrational thermal relaxation.In addition,the GSPB1trace offers an initial decay with time constant~1.9 ps,indicating that some transient species maybe directly come back from the high energy state to the ground state.The EA2signal at 620 nm is accordingly overlapped with a residual GSPB band and displays an instantaneous formation(<0.5 ps),beyond our temporal resolution,and a slow rising component with a long lifetime of~11 ps, indicating that a intermediate state is generated after photoexcitation.Considering the polarity-dependent emission(Fig.2(a))and the quantum chemical calculation(Fig.3(a)),we expect that this rising process should correspond to the inter-conversion from the initial high energy excited state to the ICT state.All the photophysical processes of APFO3 in a monodisperse system are summarized in Fig.4(c).The vibrational thermal relaxation(~2 ps),the relaxation to the ground state,and the ICT process with lifetime of~11 ps may occur at the same time,and then the last transient species would all gradually come back to the ground state.Herein,our analysis provides a systemic evidence of complex relaxation processes of APFO3 polymer in the monodisperse solution system.

    FIG.5(a)Transient absorption spectra of pristine APFO3 film(λexe=400 nm).(b)Wavelength-dependent TA curves of pristine APFO3 film at 590 and 860 nm.(c)The photophysical process of APFO3 in condensed system.

    FIG.6 (a)TA curves of pristine APFO3 and its blend films with different concentrations of PC61BM(λexe=400 nm). (b)Current-voltage curves measured for photovoltaic devices based on blend heterojunction(wAPFO3:wPC61BM=1:1 and 1:3).(c)The photophysical process of APFO3 blend film with PC61BM.

    And then,we offer the TA spectra of the pristine APFO3 film at different times(as seen in Fig.5(a))so as to understand the photophysical character of the excited APFO3 in the condensed phase.The TA spectrum at~1.0 ps has a little difference from that in the CB solution,and the component of SE disappears in the condensed phase.It contains f i ve main spectral features:three negative bands at~450,720,and 845 nm, and two positive bands at~410 and~575 nm.The positive absorption bands are also assigned to the GSPB, and three negative absorption bands are the EA part, which may correspond to the singlet-singlet(S1→Sn) photo-induced absorption.Due to the interchain interaction,the GSPB features both red shift,meanwhile all the spectral features in TA spectra decay with time, showing that no intermediate transient species appears after photoexcitation.Note that the GSPB2and EA3dynamics(as depicted in Fig.5(b)),at 590 and 860 nm, respectively,display the similar temporal decay behavior,because they are both related to transitions from the f i rst excited singlet state as depicted in Fig.5(c). At this time,the interchain exciton relaxation may be dominant in the relaxation process of excited APFO3 in the condensed phase.The dynamics of GSPB2and EA3are fitted by tri-exponential function and the fitted results are also summarized in Table II.There is a difference between the GSPB2dynamics(hτi≈486 ps)and EA3dynamics(hτi≈974 ps),which may be assigned to the superimposition of the excited state absorption and the ground state absorption.The complicated dynamic behavior of GSPB2and EA3indicates that there are rich dynamic processes occurring in the film at the same time,which maybe involves the excition-exction annihilation,the excition migration and the polaron relaxation.

    When the APFO3 fi lm is blended with PC61BM,the phase segregation and the heterogeneity occur in the fi lm morphologies.After photoexcitation,the exciton would di ff use in the polymer phase and dissociate on the interface between APFO3 and PC61BM phase.Figure 6(a)offer the normalized TA curves at 780 nm of the pristine APFO3 film and the blend films with different percentage of PC61BM.After the introduction of a little PC61BM(5%),the component of fast exciton relaxation process obviously weakens,as presented in Fig.6(c),indicating that a part of photo-generated exciton may dissociate and form charge-transfer state(CT-S)with long lifetime.As the percentage of PC61BM reaches~50%,the interface area between APFO3 and PC61BM increases.As seen in Fig.6(a),the fast exciton relaxation completely disappears,indicating that the photogenerated exciton has been completely dissociated after photoexcitation and the exciton dissociation yield almost reaches~100%.In addition,the dynamic process with long lifetime should be assigned to the recombination of separated carriers.The photovoltaic devices based on blend heterojunction have been performed and the weight proportion between APFO3 and PC61BM is 1:1 and 1:3,so as to ensure the high effective exciton dissociation.Their current density-voltage(J-V)curves under the illumination of AM1.5G,100 mW/cm2are shown in Fig.6(b).The measurement results show that Vocobviously increases from 0.38 V to 0.58 V and the Jscalso improves from 5.84 mA/cm2to 5.96 mA/cm2as the percentage of PC61BM increase from 50%to 75%.Their fill factors(FF)are invariable(~0.28).Finally, the PCE could increase from 0.61%to 1.01%.The enhancement of voltage is~200 mV,which may be responsible for the improvement of photovoltaic performance.The increasing of photocurrent is only 0.12 mA/cm2after the percentage of PC61BM further increases.This indicates that the increasing of PC61BM almost couldn’t influence the generation process of free charge after the percentage of PC61BM has exceeded~50%.

    IV.CONCLUSION

    We systemically study the excited state photophysical character of APFO3 in the monodisperse system, the condensed phase and the mixing phase.The chemical calculations and polarity-dependent emission spectra conf i rm that the ICT really occurs after photoexcitation,and is mainly responsible for the f i rst absorption band in the red region of absorption.The TA measurements conf i rm that ICT,as an intermediate state,really exists in a monodisperse system and competes with the vibrational thermal relaxation at the same time.Due to the influence of interchain interaction,the ICT process would disappear in the condensed phase.In addition,the photo-generated exciton could dissociate in the blended film with PC61BM, whose yield would reach~100%as the percentage of PC61BM increases to~50%.The photovoltaic parameters still exhibit that the increase of photocurrent is small after the percentage of PC61BM exceeds~50%. Several fundamental situations have been covered in the study of APFO3 in excited state which is benef i cial to further understand the conjugated polymers.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21103161 and No.11274142)and the China Postdoctoral Science Foundation(No.2011M500927).

    [1]H.Sirringhaus,P.J.Brown,R.H.Friend,M.M. Nielsen,K.Bechgaard,B.M.W.Langeveld-Voss,A. J.H.Spiering,R.A.J.Janssen,E.W.Meijer,P.Herwig,and D.M.de Leeuw,Nature 401,685(1999).

    [2]R.H.Friend,R.W.Gymer,A.B.Holmes,J.H. Burroughes,R.N.Marks,C.Taliani,D.D.C.Bradley, D.A.Dos Santos,J.L.Bredas,M.Logdlund,and W. R.Salaneck,Nature 397,121(1999).

    [3]S.E.Shaheen,C.J.Brabec,N.S.Sariciftci,F. Padinger,T.Fromherz,and J.C.Hummelen,Appl. Phys.Lett.78,841(2001).

    [4]Z.C.He,C.M.Zhong,S.J.Su,M.Xu,H.B.Wu,and Y.Cao,Nat.Photon.6,591(2012).

    [5]J.Peet,J.Y.Kim,N.E.Coates,W.L.Ma,D.Moses, A.J.Heeger,and G.C.Bazan,Nat.Mater.6,497 (2007).

    [6]C.M.Bjorstrom,A.Bernasik,J.Rysz,A.Budkowski, S.Nilsson,M.Svensson,M.R.Andersson,K.O.Magnusson,and E.Moons,J.Phys.:Conden.Mater.17, L529(2005).

    [7]A.Gadisa,F.L.Zhang,D.Sharma,M.Svensson,M. R.Andersson,and O.Inganas,Thin Solid Films 515, 3126(2007).

    [8]S.De,T.Pascher,M.Maiti,K.G.Jespersen,T.Kesti, P.Zhang,O.Ingan¨as,A.Yartsev,and V.Sundstr¨om, J.Am.Chem.Soc.129,8466(2007).

    [9]S.K.Pal,T.Kesti,M.Maiti,F.Zhang,O.Ingan¨as,S. Hellstr¨om,M.R.Andersson,F.Oswald,F.Langa,T. ¨Osterman,T.Pascher,A.Yartsev,and V.Sundrstr¨om, J.Am.Chem.Soc.132,12440(2010).

    [10]Y.H.Wang,J.Q.Hou,Z.H.Kang,L.J.Gong,T.H. Huang,L.L.Qu,Y.G.Ma,R.Lu,and H.Z.Zhang, Chem.Phys.Lett.566,17(2013).

    [11]P.Hohenberg and W.Kohn,Phys.Rev.136,B864 (1964).

    [12]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [13]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E. Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani, V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M. Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa, M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Jr.Montgomery,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A02, Wallingford CT:Gaussian,Inc.,(2009).

    [14]E.K.U.Gross and W.Kohn,Phys.Rev.Lett.55,2850 (1985).

    [15]T.Yanai,D.Tew,and N.Handy,Chem.Phys.Lett. 393,51(2004).

    [16]S.A.Jenekhe,L.Lu,and M.M.Alam,Macromolecules 34,7315(2001).

    [17]K.G.Jespersen,W.J.D.Beenken,Y.Zaushitsyn, A.Yartsev,M.Andersson,T.Pullerits,and V.Sundrstr¨om,J.Chem.Phys.121,12613(2004).

    [18]N.Banerji,S.Cowan,M.Leclerc,E.Vauthey,and A. J.Heeger,J.Am.Chem.Soc.132,17459(2010).

    ceived on June 25,2013;Accepted on August 7,2013)

    ?Authors to whom correspondence should be addressed.E-mail:yinghui-wang@jlu.edu.cn,zhanghz@jlu.edu.cn

    欧美日韩视频高清一区二区三区二| 99热网站在线观看| 国产精品不卡视频一区二区| 日韩中文字幕欧美一区二区 | 国产亚洲一区二区精品| 免费观看性生交大片5| 日韩精品有码人妻一区| 叶爱在线成人免费视频播放| 日日啪夜夜爽| 2021少妇久久久久久久久久久| 亚洲精品乱久久久久久| 久久99精品国语久久久| 国产熟女欧美一区二区| 人妻 亚洲 视频| 在线观看人妻少妇| 一二三四在线观看免费中文在| 菩萨蛮人人尽说江南好唐韦庄| 日韩欧美一区视频在线观看| 一区二区三区激情视频| 老司机亚洲免费影院| 少妇被粗大猛烈的视频| 国产女主播在线喷水免费视频网站| 香蕉丝袜av| 肉色欧美久久久久久久蜜桃| 午夜影院在线不卡| 久久99热这里只频精品6学生| 老汉色av国产亚洲站长工具| 免费黄色在线免费观看| 午夜日韩欧美国产| 久久99精品国语久久久| 国产精品av久久久久免费| 亚洲伊人色综图| 最近2019中文字幕mv第一页| 黑人欧美特级aaaaaa片| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 两性夫妻黄色片| 国产 一区精品| 日日啪夜夜爽| 日本爱情动作片www.在线观看| 国产亚洲欧美精品永久| 制服诱惑二区| 国产女主播在线喷水免费视频网站| www.av在线官网国产| a 毛片基地| 美女xxoo啪啪120秒动态图| 自拍欧美九色日韩亚洲蝌蚪91| 丝瓜视频免费看黄片| 亚洲美女黄色视频免费看| 久久久久国产网址| 久久婷婷青草| 自线自在国产av| 777久久人妻少妇嫩草av网站| 一级毛片我不卡| 欧美国产精品一级二级三级| 永久免费av网站大全| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美色中文字幕在线| 国产 精品1| 亚洲成人手机| 久久久久人妻精品一区果冻| 97在线视频观看| 99久久中文字幕三级久久日本| av在线观看视频网站免费| 国产极品天堂在线| 日韩av不卡免费在线播放| 国产免费福利视频在线观看| 久久久欧美国产精品| 欧美成人午夜免费资源| 曰老女人黄片| 亚洲精品国产av成人精品| 日韩免费高清中文字幕av| 国产成人免费无遮挡视频| 大片电影免费在线观看免费| 欧美人与性动交α欧美精品济南到 | 午夜免费鲁丝| 在线观看美女被高潮喷水网站| av网站在线播放免费| 街头女战士在线观看网站| 国产男女超爽视频在线观看| 在线天堂中文资源库| 999精品在线视频| 一级毛片我不卡| 在线观看美女被高潮喷水网站| 97在线视频观看| 免费不卡的大黄色大毛片视频在线观看| av免费观看日本| 超色免费av| 久久久国产精品麻豆| 捣出白浆h1v1| 乱人伦中国视频| 亚洲成人一二三区av| 亚洲综合精品二区| 国产成人免费无遮挡视频| 国产日韩一区二区三区精品不卡| 亚洲av福利一区| 日韩av在线免费看完整版不卡| 国产男女超爽视频在线观看| 大话2 男鬼变身卡| 亚洲精品aⅴ在线观看| 18禁国产床啪视频网站| 伊人久久国产一区二区| 热re99久久精品国产66热6| 国产精品蜜桃在线观看| 女人高潮潮喷娇喘18禁视频| av在线老鸭窝| 亚洲av在线观看美女高潮| 老熟女久久久| 国产色婷婷99| 秋霞伦理黄片| 欧美精品高潮呻吟av久久| 一二三四在线观看免费中文在| 嫩草影院入口| 欧美少妇被猛烈插入视频| 午夜激情久久久久久久| 男女高潮啪啪啪动态图| 熟女少妇亚洲综合色aaa.| 成人国产麻豆网| 亚洲国产av新网站| 欧美日韩精品成人综合77777| 91aial.com中文字幕在线观看| 看非洲黑人一级黄片| av免费在线看不卡| 成年女人毛片免费观看观看9 | 婷婷色综合www| 国产亚洲最大av| 国产精品 欧美亚洲| 日韩av免费高清视频| 大码成人一级视频| 国产精品 欧美亚洲| 免费久久久久久久精品成人欧美视频| 国产97色在线日韩免费| 啦啦啦在线观看免费高清www| 精品一区二区免费观看| 国产无遮挡羞羞视频在线观看| 亚洲成人一二三区av| 亚洲精品日本国产第一区| 亚洲欧美一区二区三区久久| 91精品国产国语对白视频| 最近中文字幕高清免费大全6| 欧美日韩视频高清一区二区三区二| 国产视频首页在线观看| 久久久精品94久久精品| 欧美另类一区| 黑人猛操日本美女一级片| 大片电影免费在线观看免费| 国产男人的电影天堂91| 亚洲国产欧美在线一区| 欧美少妇被猛烈插入视频| av免费在线看不卡| 久久久国产一区二区| 欧美精品av麻豆av| 久久热在线av| 爱豆传媒免费全集在线观看| 免费播放大片免费观看视频在线观看| 欧美日韩精品成人综合77777| 亚洲欧洲国产日韩| 国产片内射在线| 啦啦啦在线免费观看视频4| 国产成人a∨麻豆精品| 日韩免费高清中文字幕av| 少妇熟女欧美另类| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 十八禁网站网址无遮挡| 午夜福利一区二区在线看| av在线app专区| videos熟女内射| 久热这里只有精品99| 高清视频免费观看一区二区| 亚洲av电影在线进入| 亚洲av电影在线进入| 亚洲人成77777在线视频| 久久女婷五月综合色啪小说| 午夜福利在线免费观看网站| 最近中文字幕2019免费版| av.在线天堂| 欧美人与性动交α欧美精品济南到 | 两个人免费观看高清视频| 亚洲三级黄色毛片| 亚洲精华国产精华液的使用体验| 香蕉丝袜av| 女性生殖器流出的白浆| 国产高清不卡午夜福利| 亚洲一码二码三码区别大吗| 国产精品国产三级专区第一集| 美女主播在线视频| 国产一区二区在线观看av| 久久精品久久久久久噜噜老黄| 国产欧美日韩综合在线一区二区| 精品一区二区三区四区五区乱码 | 夫妻午夜视频| 青春草亚洲视频在线观看| 久久久久久久精品精品| 嫩草影院入口| 久久久久精品性色| 最近的中文字幕免费完整| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 日韩视频在线欧美| 国产精品久久久久久久久免| 国产成人欧美| 麻豆乱淫一区二区| 一级爰片在线观看| www.av在线官网国产| 亚洲一区二区三区欧美精品| 一区二区三区精品91| 精品国产一区二区久久| 97在线视频观看| 午夜福利影视在线免费观看| 妹子高潮喷水视频| 国产在线一区二区三区精| 在线观看免费视频网站a站| 蜜桃在线观看..| 久久久国产精品麻豆| 永久免费av网站大全| 看非洲黑人一级黄片| 久久午夜综合久久蜜桃| 美女福利国产在线| 又黄又粗又硬又大视频| 精品少妇一区二区三区视频日本电影 | 精品一区二区三卡| 久久久久国产网址| 电影成人av| 国产 一区精品| 国产av精品麻豆| 国产成人精品福利久久| 电影成人av| 黑丝袜美女国产一区| 免费人妻精品一区二区三区视频| 日本wwww免费看| 国产成人精品婷婷| 国产成人av激情在线播放| 亚洲三级黄色毛片| 亚洲国产成人一精品久久久| 国产又爽黄色视频| 国产午夜精品一二区理论片| 五月开心婷婷网| 国产女主播在线喷水免费视频网站| 99热国产这里只有精品6| 国产片内射在线| 天天躁日日躁夜夜躁夜夜| 国产乱来视频区| 免费黄频网站在线观看国产| 欧美97在线视频| 91精品三级在线观看| 精品国产露脸久久av麻豆| 久久久久久久久久久久大奶| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| 伦理电影免费视频| 卡戴珊不雅视频在线播放| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频| 午夜福利视频在线观看免费| 午夜免费男女啪啪视频观看| 国产精品.久久久| 欧美精品一区二区大全| 亚洲色图 男人天堂 中文字幕| 一级毛片 在线播放| 国产亚洲最大av| 9191精品国产免费久久| a 毛片基地| 日韩制服丝袜自拍偷拍| 国产av一区二区精品久久| 性高湖久久久久久久久免费观看| 亚洲精品aⅴ在线观看| 久久精品国产自在天天线| 国产视频首页在线观看| 亚洲国产色片| 国产成人精品一,二区| 国产精品香港三级国产av潘金莲 | 久久精品久久久久久噜噜老黄| 成人影院久久| 欧美日韩av久久| 91成人精品电影| 精品人妻熟女毛片av久久网站| 亚洲av日韩在线播放| 国产黄频视频在线观看| 中国国产av一级| 97精品久久久久久久久久精品| 免费少妇av软件| 人人妻人人澡人人爽人人夜夜| 街头女战士在线观看网站| 日韩制服骚丝袜av| 91久久精品国产一区二区三区| 精品久久久精品久久久| 免费黄网站久久成人精品| www.av在线官网国产| 日韩不卡一区二区三区视频在线| 在线观看国产h片| 午夜91福利影院| 热re99久久精品国产66热6| 考比视频在线观看| 亚洲人成77777在线视频| 91午夜精品亚洲一区二区三区| 国产97色在线日韩免费| 久久精品国产综合久久久| 亚洲国产成人一精品久久久| 一区二区日韩欧美中文字幕| 国产成人一区二区在线| 国产高清不卡午夜福利| 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 青青草视频在线视频观看| 老司机亚洲免费影院| 亚洲精品中文字幕在线视频| 欧美变态另类bdsm刘玥| 老司机影院毛片| 欧美日韩精品成人综合77777| 丰满迷人的少妇在线观看| 婷婷色综合www| 久久久久久免费高清国产稀缺| 国产精品不卡视频一区二区| 免费女性裸体啪啪无遮挡网站| 日产精品乱码卡一卡2卡三| av片东京热男人的天堂| 美女xxoo啪啪120秒动态图| a 毛片基地| 亚洲国产毛片av蜜桃av| 女人久久www免费人成看片| 亚洲精品,欧美精品| 国产男女内射视频| 欧美日韩国产mv在线观看视频| 国产一级毛片在线| 1024香蕉在线观看| 成人毛片60女人毛片免费| 精品久久久久久电影网| 天堂8中文在线网| 日韩 亚洲 欧美在线| 十八禁高潮呻吟视频| 亚洲精品久久成人aⅴ小说| 亚洲成色77777| 美女国产视频在线观看| 日韩成人av中文字幕在线观看| 亚洲综合精品二区| 妹子高潮喷水视频| 精品人妻在线不人妻| 夫妻性生交免费视频一级片| 精品一区二区三区四区五区乱码 | 欧美 日韩 精品 国产| 亚洲精品在线美女| 看十八女毛片水多多多| 黄频高清免费视频| 精品久久久久久电影网| 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| 久久久久久久久免费视频了| 麻豆乱淫一区二区| 久久av网站| 纵有疾风起免费观看全集完整版| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 99热全是精品| 80岁老熟妇乱子伦牲交| 成人手机av| 免费观看无遮挡的男女| 欧美精品高潮呻吟av久久| 老鸭窝网址在线观看| 精品一区在线观看国产| 不卡av一区二区三区| 国产又爽黄色视频| 亚洲精品日韩在线中文字幕| 国产成人精品婷婷| 国产精品久久久久久精品电影小说| h视频一区二区三区| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 欧美日韩亚洲高清精品| 精品酒店卫生间| 免费播放大片免费观看视频在线观看| 国精品久久久久久国模美| 久久久久久人人人人人| 精品酒店卫生间| 久久久精品国产亚洲av高清涩受| 国产在视频线精品| 日韩制服丝袜自拍偷拍| av有码第一页| 亚洲国产av影院在线观看| 一区二区三区乱码不卡18| 一个人免费看片子| 精品福利永久在线观看| 伦理电影免费视频| 麻豆乱淫一区二区| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 免费观看无遮挡的男女| 国产精品久久久av美女十八| 最近最新中文字幕大全免费视频 | 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 91午夜精品亚洲一区二区三区| 男女高潮啪啪啪动态图| 少妇熟女欧美另类| 免费在线观看完整版高清| 最新的欧美精品一区二区| 久久热在线av| 黄色 视频免费看| av有码第一页| 性少妇av在线| 热99国产精品久久久久久7| 青春草视频在线免费观看| av网站免费在线观看视频| 国产视频首页在线观看| 人妻系列 视频| 精品人妻熟女毛片av久久网站| 搡女人真爽免费视频火全软件| 欧美国产精品va在线观看不卡| 日韩欧美一区视频在线观看| 制服诱惑二区| 亚洲综合精品二区| 丝袜喷水一区| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| 久久精品国产自在天天线| 免费在线观看视频国产中文字幕亚洲 | 黄片播放在线免费| 成年av动漫网址| 中文天堂在线官网| 亚洲精品av麻豆狂野| 日韩视频在线欧美| av在线观看视频网站免费| 欧美日韩视频高清一区二区三区二| 女的被弄到高潮叫床怎么办| 成年人免费黄色播放视频| 可以免费在线观看a视频的电影网站 | 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 黄色配什么色好看| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品电影小说| 国产精品二区激情视频| 女人精品久久久久毛片| 久久久久网色| 99re6热这里在线精品视频| av片东京热男人的天堂| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 丰满乱子伦码专区| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站| 国产成人精品久久二区二区91 | 女人久久www免费人成看片| 2018国产大陆天天弄谢| 欧美成人午夜精品| 黄色配什么色好看| 亚洲精品乱久久久久久| 一级黄片播放器| 国产欧美亚洲国产| 久久久久精品久久久久真实原创| 99九九在线精品视频| 成年女人在线观看亚洲视频| 黄片无遮挡物在线观看| 精品国产国语对白av| 日韩一区二区视频免费看| 欧美日韩视频精品一区| 春色校园在线视频观看| 国产成人午夜福利电影在线观看| 亚洲天堂av无毛| 热99国产精品久久久久久7| 亚洲,欧美,日韩| 99热网站在线观看| 韩国av在线不卡| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 亚洲第一av免费看| 最黄视频免费看| 最近2019中文字幕mv第一页| 看免费成人av毛片| 精品国产一区二区久久| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区| 各种免费的搞黄视频| 欧美亚洲日本最大视频资源| 午夜福利网站1000一区二区三区| 国产1区2区3区精品| 18+在线观看网站| 久久久久视频综合| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 午夜久久久在线观看| 亚洲伊人色综图| 午夜av观看不卡| 国产成人aa在线观看| 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡| 97在线人人人人妻| 视频在线观看一区二区三区| 国产免费一区二区三区四区乱码| 乱人伦中国视频| 日韩人妻精品一区2区三区| 国产人伦9x9x在线观看 | 亚洲精品视频女| 美女福利国产在线| 国产伦理片在线播放av一区| 日韩大片免费观看网站| 激情视频va一区二区三区| 香蕉丝袜av| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 黄色一级大片看看| 搡老乐熟女国产| 天天影视国产精品| 亚洲欧美成人综合另类久久久| 少妇人妻精品综合一区二区| 久久久久精品人妻al黑| 日韩大片免费观看网站| 另类精品久久| 最近最新中文字幕大全免费视频 | 亚洲中文av在线| 亚洲av.av天堂| 亚洲成人一二三区av| 亚洲一码二码三码区别大吗| videossex国产| 十八禁网站网址无遮挡| 激情五月婷婷亚洲| 一个人免费看片子| 免费播放大片免费观看视频在线观看| 少妇熟女欧美另类| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 日本91视频免费播放| 久久精品国产自在天天线| 一边摸一边做爽爽视频免费| 亚洲一码二码三码区别大吗| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 亚洲av成人精品一二三区| 黄网站色视频无遮挡免费观看| 男女免费视频国产| 精品国产国语对白av| 国产探花极品一区二区| 国产激情久久老熟女| 国产深夜福利视频在线观看| a级毛片在线看网站| 9191精品国产免费久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 丰满乱子伦码专区| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 麻豆精品久久久久久蜜桃| 日本-黄色视频高清免费观看| 一二三四中文在线观看免费高清| 两个人免费观看高清视频| 高清av免费在线| 国产淫语在线视频| 亚洲综合色网址| 国产又爽黄色视频| 中国三级夫妇交换| 丝瓜视频免费看黄片| 如日韩欧美国产精品一区二区三区| 亚洲四区av| 国产有黄有色有爽视频| 亚洲欧美一区二区三区久久| 国产成人精品福利久久| xxxhd国产人妻xxx| 十八禁网站网址无遮挡| 国产人伦9x9x在线观看 | 美女主播在线视频| 国产成人aa在线观看| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 久久久a久久爽久久v久久| 七月丁香在线播放| 涩涩av久久男人的天堂| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 日韩av在线免费看完整版不卡| 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 国产有黄有色有爽视频| 国产精品久久久久久av不卡| 日本黄色日本黄色录像| 在线观看美女被高潮喷水网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日爽夜夜爽网站| 女人久久www免费人成看片| xxxhd国产人妻xxx| 欧美人与善性xxx| 久久久久久久久免费视频了| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 男女国产视频网站| 国产av一区二区精品久久| 伦理电影免费视频| 亚洲男人天堂网一区| 久久热在线av| 久久av网站| 亚洲 欧美一区二区三区| 国产欧美亚洲国产| 国产免费视频播放在线视频| 久久久久久久久久久免费av| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 亚洲国产最新在线播放| 女性生殖器流出的白浆| 免费观看无遮挡的男女| 国产一区二区激情短视频 | 国产成人精品福利久久| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 国产成人精品一,二区| 日韩中文字幕视频在线看片| 国产精品久久久久久精品古装| 丝袜美腿诱惑在线|