• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the High-Temperature Pˉ6 and Pˉ60Phases of Si3N4: A Tool to Aid in Ceramics Development

    2014-07-19 11:17:08BenhaiYuDongChen
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Ben-hai Yu,Dong Chen

    College of Physics and Electronic Engineering,Xinyang Normal University,Xinyang 464000,China

    Theoretical Study on the High-Temperature Pˉ6 and Pˉ60Phases of Si3N4: A Tool to Aid in Ceramics Development

    Ben-hai Yu,Dong Chen?

    College of Physics and Electronic Engineering,Xinyang Normal University,Xinyang 464000,China

    Atomistic modeling based on the density functional theory combined with the quasi-harmonic approximation is used to investigate the lattice parameters and elastic moduli of the Pˉ6 and Pˉ60phases of Si3N4.β-Si3N4is set as a benchmark system since accurate experiments are available.The calculated lattice constants and elastic constants of β-Si3N4are in good agreement with the experimental data.The crystal anisotropy,mechanical stability,and brittle behavior of Pˉ6-and Pˉ60-Si3N4are also discussed in the pressure range of 30-55 GPa. The results show that these two polymorphs are metallic compounds.The brittleness and elastic anisotropy increase with applied pressure increasing.Besides,the phase boundaries of the β→Pˉ60→δ transitions are also analysed.The β phase is predicted to undergo a phase transition to the Pˉ60phase at 40.0 GPa and 300 K.Upon further compression,the Pˉ60→δ transition can be observed at 53.2 GPa.The thermal and pressure effects on the heat capacity,cell volume and bulk modulus are also determined.Some interesting features are found at high temperatures.

    First-principles,Nitrides,Brittleness,Phase diagram

    I.INTRODUCTION

    Silicon nitride(Si3N4)belongs to the group-IV nitrides exhibiting unique physical properties.As an important ceramic,Si3N4can be used as gas turbines, cutting tools,etch masks,solar cells,and energy conversion materials[1,2].Its low density,high strength, tunable electrical conductivity and high decomposition temperature lead to numerous applications[1,3].There are several Si3N4polymorphs,namely α phase(space group:P31c)[4],β phase(space group:P63/m)[4], willemite-II phase(wII-Si3N4,space group:Iˉ43d)[5],γ phase(space group:Fdˉ3m)[6],δ phase(space group: P3)[7],and post-spinel phase(space group:BBMM) [8].In recent years,the α→β[9,10],β→wII[5],β→γ [7,11-13],α→γ[7],β→δ[7],and γ→post-spinel[8,14] phase transitions have been carefully investigated.

    Xu et al.found new Si3N4polymorphs(the hexagonal Pˉ6 and Pˉ60phases,space group:P3),and observed the high-pressure β→Pˉ60→δ phase transitions[7].Although many efforts have been made on Si3N4,the Pˉ6 and Pˉ60phases are far less studied than their counterparts α-,β-,wII-,δ-and γ-Si3N4.Due to the difficulties in the preparation of polycrystalline samples[7],theoretical calculations,especially f i rst-principles method, can help.Using f i rst-principles calculation,we provide predictions of the thermal quantities,elastic properties, phase stabilities,and phase transition characters of the β,Pˉ6,Pˉ60,and δ phases.

    II.BENCHMARK CALCULATION

    Present calculations are performed using the f i rstprinciples plane-wave method[15]in combination with ultrasoft pseudo-potentials(US-PP)[16]to calculate the total energy of Si3N4.The Perdew-Burke-Ernzerhof functional[17]is used for the exchange-correlation potential.In consideration of accuracy,the plane-wave cut of fenergies of 500 eV(β-Si3N4),450 eV(Pˉ6-Si3N4), 450 eV(Pˉ60-Si3N4),and 450 eV(δ-Si3N4)are used in our calculation.The k-point meshes,based on the Monkhorst-Pack scheme[18],are 4×4×12 for β-Si3N4, 5×5×12 for Pˉ6-Si3N4,5×5×12 for Pˉ60-Si3N4,and 6×6×15 for δ-Si3N4,respectively.The internal coordinates of different atoms have been fully relaxed. Reference configurations for the valence electrons are Si3s23p2and N2s22p3.The calculated total energies of Si3N4are converged to less than 1μeV/atom.Besides, the crystal structures and atomic coordinates of Pˉ6-and Pˉ60-Si3N4can be found in Ref.[7].

    The k-point mesh should be described in order to avoid the unclearness.In fact,the k-points are determined by the equation(1/a:1/b:1/c),where a,b,and c are the lattice constants.For β-Si3N4,the experimental values of the lattice constants are a=b=0.7607 nm and c=0.2907 nm(see Table I),thus 1/a:1/b:1/c≈1:1:2.62. The k-point mesh can be chosen as 3×3×8,4×4×12,5×5×14,etc.According to our convergence tests,the plane-wave cutof f500 eV and the k-points 4×4×12 can generate good results for β-Si3N4.For the hexagonal Pˉ6-and Pˉ60-Si3N4,we do not know the experimental lattice constants.The only known parameters are the internal coordinates of atoms[7].We have built the unit cell for Pˉ60-Si3N4using a=b=1.0 nm and c=0.5 nm. After geometry optimization and full relaxation of internal coordinates with very high cut-of fenergy and k-points,the equilibrium lattice constants can be obtained.According to the equation(1/a:1/b:1/c)and the convergence tests,the adequate parameters for Pˉ60-and Pˉ6-Si3N4are found to be cut-of fenergy of 450 eV and k-points 5×5×12.

    Then,we apply the quasi-harmonic approximation (QHA)scheme[19,20],in which the non-equilibrium Gibbs function G?(V;P,T)can be determined by

    where E(V)is the total energy,pV represents the hydrostatic pressure condition,Avibis the vibrational term,which can be written as[21]:

    where n,θD,T,and D(θD/T)are the number of atoms, the Debye temperature,the temperature and the Debye integral,respectively.Accordingly,G?(V;P,T)can be minimized by

    By solving Eq.(3),some thermal properties such as constant-volume heat capacity(CV),isobaric heat capacity(CP)and isothermal bulk modulus(BT)can be obtained by

    FIG.1 All-known polymorphs of Si3N4and the transition paths among these phases.The dashed lines denote the β→Pˉ6→δ transitions.

    TABLEI Lattice constants a,c,and cell volume V of the β,Pˉ60,Pˉ6,and δ phases.

    where V0is the equilibrium volume,kBthe Boltzmann’s constant,α the thermal expansion coefficient,B0the zero-pressure bulk modulus,γ the Gr¨uneisen parameter,pspthe spinodal pressure,L?the fitting parameter, and B00is the f i rst-order derivative of B0,respectively. A detailed expression of QHA can be found in Refs.[19, 20].

    III.RESULTS AND DISCUSSION

    The experimentally conf i rmed and theoretically hypothesized transition paths of the Si3N4polymorphs are illustrated in Fig.1.The β→Pˉ6→δ transitions(dashed line)have not been verif i ed by experiments or theoretical studies.In order to have a deep insight into the fundamental properties of Si3N4,we have calculated the pressure dependences of lattice constants,cell volumes, elastic constants,and elastic moduli.The results are shown in Tables I and II.

    Since the experimental data of β-Si3N4are available, we have calculated the fundamental properties of theβ phase.As shown in Table I,the predicted lattice constants and cell volumes are in excellent agreement with the experimental data and the theoretical results. The calculated elastic constants of β-Si3N4given in our previous work[10]were also in satisfactory agreement with the results in Refs.[7,22].For Pˉ6-and Pˉ60-Si3N4, a,c,and V decrease with the pressure increasing.The cell volume of the Pˉ6 phase is larger than that of the Pˉ60phase.Therefore,the channels in the Pˉ60phase are larger than those in Pˉ60-Si3N4.

    TABLE II Calculated elastic constants Cij(in GPa),bulk modulus BH(in GPa),shear modulus GH(in GPa),Young’s modulus YH(in GPa),Poisson ratio σ and anisotropy factor A of Pˉ6-and Pˉ60-Si3N4.

    It is well known that the elastic constants are calculated by means of Taylor expansion of the total energy, E(V,δ),for the system with respect to a small strain δ of the cell volume V.The energy of a strained system can be expressed as follows[28]:

    where,E(V0,T)is the energy of the unstrained system with equilibrium volume V0at different temperatures,τiis an element in the stress tensor,and ξiis a factor to consider Voigt index[28].The total energy E(V0,T)at a certain temperature T and the f i nite temperature lattice constant can be obtained by the vibrational Debye-like model.According to the Voigt-Reuss-Hill approximation,the bulk modulus BH,shear modulus GH,Young’s modulus YH,Poisson ratio σ and anisotropy factor A can be obtained by[29]

    where the subscripts V,R,and H are the Voigt index, the Reuss index,and the Hill index,respectively.These quantities are listed in Table II.

    For a hexagonal lattice,there are f i ve independent elastic constants C11,C12,C13,C33,and C44(2C66=C11-C12).As listed in Table II,the elastic constants Cij,elastic moduli BH,GH,and YHof Pˉ60-Si3N4increase monotonously with applied pressure,but the slopes are different.The pressure effect on Cijis signif i cant.The decrease of C44ref l ects the shear resistance decreases in the{010}or{100}plane in the h001i direction.The value of the Poisson ratio σ for covalent materials is quite small(about 0.1),whereas for metallic materials a typical σ is 0.33[30].The calculated σ is 0.320-0.336,showing moderate lateral expansion when compressed.The Pˉ60phase is a metallic compound in the whole pressure range of 30-55 GPa. The anisotropy factor A=1 represents completely elastic isotropy while any value smaller or larger than 1 indicates elastic anisotropy.A increases as the pressure increases f i rst,then the elastic anisotropy of Pˉ60-Si3N4is quite small at 40 GPa.When P>40 GPa,A will gradually strengthen with the pressure increasing.Besides,the BH/GHratio ref l ects the brittle and ductile behaviors of polycrystalline materials since solids behave in brittle manners if BH/GH>2[31].Pˉ60-Si3N4remains brittle in the pressure range of 30-55 GPa. The brittleness increases with the pressure increasing. More importantly,the chemical bonds in Pˉ60-Si3N4are ionic due to the fact that the typical B/G ratios for covalent and ionic solids are 0.91 and 1.67,respectively.

    FIG.2(a)Gibbs free energy difference(GPˉ60-Gβ)as a function of pressure.(b)Critical pressure as a function of Gibbs free energy difference of the Pˉ60→δ transition at 300 K.(c)Relationships of the transition pressures of the β→Pˉ60→δ transitions with temperature.

    In Table II,we can see that the elastic moduli of Pˉ6-Si3N4do not follow the same trend.C12,C13,and BHincrease with the increasing pressure whereas GHand YHshow the opposite trends.C11,C33,and C44increase f i rst,and then decrease with the increasing pressure.The calculated σ is 0.347-0.399,which indicates that Pˉ6-Si3N4is a metallic compound.The variation of A with pressure(Pˉ6-Si3N4)is similar to that of Pˉ6-Si3N4.The anisotropy of Pˉ6-Si3N4is stronger than that of Pˉ60-Si3N4since|A(Pˉ60)-1|>|1-A(Pˉ6)|. According to the BH/GHratio,Pˉ6-Si3N4is more brittle than Pˉ60-Si3N4.For a hexagonal structure,the mechanical stability can be determined by the Born’s criteria[32]:C11-|C12|>0,C44>0,(C11+C12)C33-2C213>0. At 0 K,Pˉ6-and Pˉ60-Si3N4are stable in the pressure range of 30-55 GPa since all the elastic constants satisfy these criteria.Besides,the bulk moduli of the two phases are greater than the bulk moduli of α,β,and γ phases[33].

    The transition pressures among different phases of solids can be obtained by comparing the Gibbs free energy G of different phases.We have calculated the Gibbs free energy difference between β-Si3N4and Pˉ60-Si3N4,as shown in Fig.2(a).The thermodynamic requirement,for the equality of G,at the critical points, suggests that the transition pressures of the β→Pˉ60transition are 40.0,42.7,and 46.2 GPa at temperatures of 300,500,and 700 K,respectively.β-Si3N4has the lower free energy at low pressures,which indicates that this phase is the low-temperature phase of Si3N4.The Gibbs free energy difference obtained,Gδ-GPˉ60,as a function of pressure is given in Fig.2(b).It is clearly seen that the transition pressure between the Pˉ60phase and the δ phase is 53.2 GPa(at 300 K),at which the Pˉ60phase will automatically transform into δ-Si3N4.Pˉ60-Si3N4has the lower free energies when P<53.2 GPa. The δ phase has the lower free energies at higher pressure,i.e.δ-Si3N4would be favored at sufficiently high pressures.The δ phase boundaries of the β→Pˉ60→δ transitions are illustrated in Fig.2(c).

    As shown in Fig.2(c),the slopes of the β→Pˉ60and Pˉ60→δ transitions are both positive,which suggests that at higher temperatures it will require higher pressures to synthesize Pˉ60-Si3N4/δ-Si3N4.It is found that the transition pressure from the β phase to the Pˉ60phase is 40.0 GPa(at 300 K).The critical pressure of the β→Pˉ60transition is about 13 GPa higher than that of the Pˉ60→δ transition.According to the Clausius-Clapeyron relation[11],the slope of the phase boundary can be determined by?S/?V,where?S and?V are the entropy change and the volume variation,respectively.Therefore,the β→Pˉ60→δ transitions are accompanied by the shrinkage of volume,which is in agreement with the cell volumes listed in Table I(the calculated volume of δ-Si3N4at 55 GPa is 109.6?A3).

    One of the most important vibrational properties of solids is the temperature dependence of heat capacity. Figure 3(a)and(b)give the evolutions of the constantpressure heat capacity CPwith temperature for Pˉ6-and Pˉ60-Si3N4,respectively.As shown in Fig.3(a),CPis very small at low temperature.From 0 to 500 K,CPincreases exponentially with the temperature increasing.At high temperatures,CPfollows a linear increase, which is not similar to the constant-volume heat capacity CV(CVfollows the Dulong-Petit’s law,i.e.3R for monoatomic solids).Although CVgives direct information on the intrinsic anharmonic effects,it is CPthat is experimentally measured,and it contains both anharmonic effects and quasi-harmonic contributions.In Fig.3(b),it is clearly seen that CPincreases rapidly at low temperatures,and reaches a plateau region at high temperatures.The heat capacity of Pˉ6-Si3N4is larger than that of Pˉ60-Si3N4at the same temperature.

    In Fig.3(c),it is clearly seen that the volumes of Pˉ6-and Pˉ60-Si3N4decrease smoothly as pressure increases.The V/V0ratio of Pˉ6-Si3N4decreases faster than that of Pˉ60-Si3N4.At high pressures,the difference between the two curves can be clearly seen.This means that the Pˉ6 phase is more compressible than the Pˉ60phase.Figure 3(d)shows the evolutions of bulk moduli with pressure at 300 K.The bulk modulus increases with the increasing pressure but the rate of increase is moderate.The f i rst sticking feature is that the bulk modulus of Pˉ60-Si3N4is greater than that of Pˉ6-Si3N4.The second feature is that the slopes of the two curves are different.At 50 GPa and 300 K,the calculated bulk modulus and heat capacity are 391.4 GPa (343.2 GPa)and 44.8 J/(mol K)(77.2 J/(mol K))forPˉ60-Si3N4(Pˉ6-Si3N4),respectively.

    FIG.3 The constant-pressure heat capacity CP(at 50 GPa)for(a)Pˉ6-Si3N4,(b)Pˉ60-Si3N4,(c)the normalized cell volume V/V0(V0is the equilibrium cell volume at 40 GPa),and(d)bulk modulus of Si3N4at 300 K.

    IV.CONCLUSION

    First-principlescalculationsarecarriedouton Si3N4in the recently-discovered Pˉ60and Pˉ6 phases to investigate their stability and physical properties, which have not yet been established experimentally.As a benchmark system(β-Si3N4),the calculated lattice constants and elastic moduli are in agreement with the experimental data.The lattice parameters,cell volume,elastic constants,elastic moduli,anisotropy factor and Poisson ratio of Pˉ6-and Pˉ60-Si3N4are also predicted in the pressure range of 30-55 GPa. β-Si3N4is predicted to undergo a f i rst-order phase transition to the Pˉ60phase at 40.0 GPa and 300 K. Upon further compression,the Pˉ60→δ transformation can be observed at 53.2 GPa.The positive slopes of the β→Pˉ60→δ transitions mean that the two phase transformations are accompanied by the shrinkage of volume.The two polymorphs are brittle compounds with little metallic character,which is not similar to the β phase.The anisotropy of Pˉ60-Si3N4increases with the increasing pressure while the anisotropy of Pˉ6-Si3N4shows the opposite trend.The heat capacity increases rapidly at low pressures,and reaches a plateau at high pressures.Furthermore,the Pˉ6 phase is more compressible than the Pˉ60phase.

    V.ACKNOWLEDGMENTS

    This work was supported by the National NaturalScienceFoundationofChina(No.U1204501, No.11105115,and No.11304141),the Project of Basic and Advanced Technology of Henan Province of China (No.112300410021),and the Key Project of Henan Educational Committee(No.12A140010).The authors are grateful to Prof.M.A.Blanco from the Departamento de Qu′?mica F′?sicay Analitica,Faculatad de Qu′?mica, Universidad de Oviedo for the Gibbs code.

    [1]S.Y.Ren and W.Y.Ching,Phys.Rev.B 23,5454 (1981).

    [2]W.X.Wang,D.H.Li,Z.C.Liu,and S.H.Liu,Appl. Phys.Lett.62,321(1993).

    [3]Y.N.Xu and W.Y.Ching,Phys.Rev.B 51,17379 (1995).

    [4]S.D.Mo,L.Z.Ouyang,W.Y.Ching,I.Tanaka, Y.Koyam,and R.Riedel,Phys.Rev.Lett.83,5046 (1999).

    [5]P.Kroll,J.Solid State Chem.176,530(2003).

    [6]A.Zerr,G.Miehe,G.Serghiou,M.Schwarz,E.Kroke, R.Riedel,H.Fue?,P.Kroll,and R.Boehler,Nature (London)400,340(1999).

    [7]B.Xu,J.J.Dong,P.F.McMillan,O.Shebanova,and A.Salamat,Phys.Rev.B 84,014113(2011).

    [8]K.Tatsumi,I.Tanaka,and H.Adachi,J.Am.Ceram. Soc.85,7(2002).

    [9]N.V.Danilenko,G.S.Oleinik,V.D.Dobrovol’skii,V. F.Britun,and N.P.Semenenko,Sov.Powder Metal. Met.Ceram.31,1035(1992).

    [10]B.H.Yu and D.Chen,Chin.Phys.B 21,060508(2012).

    [11]A.Kuwabara,K.Matsunaga,and I.Tanaka,Phys.Rev. B 78,064104(2008).

    [12]A.Togo and P.Kroll,J.Comput.Chem.29,2255 (2008).

    [13]H.L.He,T.Sekine,T.Kobayashi,and H.Hirosaki, Phys.Rev.B 62,11412(2000).

    [14]P.Kroll and J.von Appen,Phys.Stat.Sol.B 226,R6 (2001).

    [15]P.Hohenberg and W.Kohn,Phys.Rev.136,B864 (1964).

    [16]D.Vanderbilt,Phys.Rev.B 41,7892(1990).

    [17]J.P.Perdew,K.Burke,and M.Ernzerhof,Phys.Rev. Lett.77,3865(1996).

    [18]H.J.Monkhorst and J.D.Pack,Phys.Rev.B 13,5188 (1976).

    [19]M.A.Blanco,E.Francisco,and V.Lua′na,Comput. Phys.Commun.158,57(2004).

    [20]A.Otero-de-la-Roza and V.Lua′na,Comput.Phys. Commun.182,1708(2011).

    [21]M.Fl′orez,J.M.Recio,E.Francisco,M.A.Blanco,and A.Martin Pend′as,Phys.Rev.B 66,144112(2002).

    [22]C.M.Marian,M.Gastreich,and J.D.Gale,Phys.Rev. B 62,3117(2000).

    [23]W.Y.Ching,L.Z.Ouyang,and J.D.Gale,Phys.Rev. B 61,8696(2000).

    [24]M.Yashima,Y.Ando,and Y.Tabira,J.Phys.Chem. B 111,3609(2007).

    [25]H.F.Priest,F.C.Burns,G.L.Priest,and E.C.Skaar, J.Am.Ceram.Soc.56,395(1973).

    [26]N.Hirosaki,S.Ogata,C.Kocer,H.Kitagawa,and Y. Nakamura,Phys.Rev.B 65,134110(2002).

    [27]W.Y.Ching,Y.N.Xu,J.L.D.Gale,and M.R¨uhle, J.Am.Ceram.Soc.81,3189(1998).

    [28]L.Fast,J.M.Wills,B.Johansson,and O.Eriksson, Phys.Rev.B 51,17431(1995).

    [29]M.B.Kanoun,S.Goumri-Said,A.H.Reshak,and A. E.Merad,Solid State Sci.12,887(2010).

    [30]J.Haines,J.M.Leger,and G.Bocquillon,Annu.Rev. Mater.Res.31,1(2001).

    [31]S.F.Pugh,Philos.Mag.Ser.45,823(1954).

    [32]M.Born and K.Huang,Dynamical Theory of Crystal Lattics,Oxford:Clarendon,(1956).

    [33]C.Zhang,J.X.Sun,R.G.Tian,and S.Y.Zou,Acta Phys.Sin.56,5969(2007).

    ceived on August 15,2013;Accepted on October 14,2013)

    ?Author to whom correspondence should be addressed.E-mail:chchendong2010@163.com,Tel.:+86-376-6391731,FAX:+86-376-6391731

    日本免费在线观看一区| 一级毛片电影观看| 国产视频内射| 黄色日韩在线| 麻豆国产97在线/欧美| 国产91av在线免费观看| 寂寞人妻少妇视频99o| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| av播播在线观看一区| 久久韩国三级中文字幕| 国产成人福利小说| 99热这里只有精品一区| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 欧美一级a爱片免费观看看| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| 三级经典国产精品| 最近视频中文字幕2019在线8| 国产91av在线免费观看| 人人妻人人澡欧美一区二区| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 老司机影院毛片| 超碰av人人做人人爽久久| 丝瓜视频免费看黄片| av播播在线观看一区| 好男人在线观看高清免费视频| 岛国毛片在线播放| 少妇丰满av| 成人无遮挡网站| 欧美激情国产日韩精品一区| 又爽又黄a免费视频| 久久久久久久大尺度免费视频| 久久6这里有精品| 日本免费a在线| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 亚洲精品国产av成人精品| 熟女电影av网| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 亚洲精品aⅴ在线观看| 女人十人毛片免费观看3o分钟| 最近最新中文字幕大全电影3| 亚洲欧美中文字幕日韩二区| 青春草亚洲视频在线观看| 欧美激情久久久久久爽电影| 人妻系列 视频| 日韩成人av中文字幕在线观看| 国产成人午夜福利电影在线观看| 九九久久精品国产亚洲av麻豆| 精品99又大又爽又粗少妇毛片| 神马国产精品三级电影在线观看| 水蜜桃什么品种好| 老女人水多毛片| 国产精品无大码| 精品久久久精品久久久| 国产 一区精品| 中文字幕av在线有码专区| 亚洲欧美中文字幕日韩二区| 精品久久国产蜜桃| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 欧美三级亚洲精品| 三级国产精品片| 自拍偷自拍亚洲精品老妇| 美女高潮的动态| 亚洲精品自拍成人| 久久久久性生活片| 亚洲成色77777| 卡戴珊不雅视频在线播放| 久久鲁丝午夜福利片| 国产精品女同一区二区软件| 天堂网av新在线| 高清av免费在线| 国产在视频线在精品| 亚州av有码| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片| 久久久久久久久久久丰满| 美女主播在线视频| 如何舔出高潮| 纵有疾风起免费观看全集完整版 | 亚洲精品成人av观看孕妇| www.av在线官网国产| 久久6这里有精品| 麻豆成人av视频| av免费在线看不卡| 色尼玛亚洲综合影院| 最近最新中文字幕免费大全7| 真实男女啪啪啪动态图| 午夜激情久久久久久久| 婷婷色综合www| 国产老妇女一区| 高清欧美精品videossex| 久久久亚洲精品成人影院| 韩国av在线不卡| 国产 一区精品| 99热全是精品| 五月伊人婷婷丁香| 九九爱精品视频在线观看| 七月丁香在线播放| 成人综合一区亚洲| 搡老乐熟女国产| 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 成人亚洲欧美一区二区av| 国内精品一区二区在线观看| 亚洲av二区三区四区| 精品少妇黑人巨大在线播放| 欧美区成人在线视频| 2022亚洲国产成人精品| freevideosex欧美| 美女黄网站色视频| 不卡视频在线观看欧美| 黄色一级大片看看| 久久国内精品自在自线图片| 人人妻人人澡人人爽人人夜夜 | 国产一区二区亚洲精品在线观看| 欧美性感艳星| 久99久视频精品免费| 少妇的逼好多水| 夜夜看夜夜爽夜夜摸| 欧美成人午夜免费资源| 国产黄色小视频在线观看| 国产黄色免费在线视频| 欧美97在线视频| 精品久久久久久久末码| 国产精品综合久久久久久久免费| 一级av片app| 免费电影在线观看免费观看| 18+在线观看网站| 舔av片在线| 亚洲最大成人中文| 国产亚洲精品久久久com| 男女边摸边吃奶| 欧美极品一区二区三区四区| 中文欧美无线码| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品久久久com| 久久国内精品自在自线图片| 床上黄色一级片| 日韩av在线免费看完整版不卡| 一个人看的www免费观看视频| 国产精品99久久久久久久久| 天堂av国产一区二区熟女人妻| 人妻少妇偷人精品九色| 搡女人真爽免费视频火全软件| 亚洲人成网站在线观看播放| 美女内射精品一级片tv| 午夜日本视频在线| 最近最新中文字幕大全电影3| 亚洲美女搞黄在线观看| 黑人高潮一二区| www.av在线官网国产| 日韩 亚洲 欧美在线| 国产精品熟女久久久久浪| 一级毛片久久久久久久久女| 91久久精品国产一区二区三区| 天美传媒精品一区二区| 校园人妻丝袜中文字幕| 午夜激情福利司机影院| 色视频www国产| 国产色爽女视频免费观看| 人人妻人人看人人澡| 精品熟女少妇av免费看| 久久精品国产自在天天线| 国产高清国产精品国产三级 | 天堂俺去俺来也www色官网 | 亚洲国产成人一精品久久久| 成年女人在线观看亚洲视频 | 国产亚洲av嫩草精品影院| 欧美3d第一页| 精品午夜福利在线看| 噜噜噜噜噜久久久久久91| 亚洲婷婷狠狠爱综合网| 精品人妻熟女av久视频| 在线观看人妻少妇| 特级一级黄色大片| 十八禁国产超污无遮挡网站| 韩国av在线不卡| 丝瓜视频免费看黄片| 成人综合一区亚洲| 岛国毛片在线播放| 日韩欧美三级三区| 国产精品久久久久久av不卡| 亚洲国产精品国产精品| 国产有黄有色有爽视频| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 国产综合懂色| 久久久久久久久久久免费av| av国产免费在线观看| 精品久久国产蜜桃| 精品人妻熟女av久视频| 免费黄网站久久成人精品| 水蜜桃什么品种好| 高清欧美精品videossex| 国产高清三级在线| 色网站视频免费| 免费观看a级毛片全部| 免费观看性生交大片5| 蜜桃久久精品国产亚洲av| 欧美激情久久久久久爽电影| 少妇被粗大猛烈的视频| av卡一久久| 成人亚洲精品av一区二区| 91狼人影院| 男的添女的下面高潮视频| 神马国产精品三级电影在线观看| 欧美激情在线99| 国产在视频线在精品| av天堂中文字幕网| 亚洲国产高清在线一区二区三| 一边亲一边摸免费视频| 又爽又黄无遮挡网站| 少妇高潮的动态图| 亚洲欧美日韩无卡精品| 毛片一级片免费看久久久久| 国产91av在线免费观看| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 禁无遮挡网站| 日韩欧美一区视频在线观看 | 久久精品久久久久久噜噜老黄| 男女边吃奶边做爰视频| 最近的中文字幕免费完整| 日韩国内少妇激情av| 亚洲av男天堂| 午夜激情欧美在线| 国产精品1区2区在线观看.| 精品国产三级普通话版| 午夜福利视频1000在线观看| 日本一本二区三区精品| 欧美精品一区二区大全| 色综合站精品国产| 啦啦啦啦在线视频资源| 看十八女毛片水多多多| 亚洲熟妇中文字幕五十中出| 麻豆精品久久久久久蜜桃| 欧美激情久久久久久爽电影| 亚洲熟妇中文字幕五十中出| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| av播播在线观看一区| 卡戴珊不雅视频在线播放| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 精品久久久精品久久久| 国产淫语在线视频| 街头女战士在线观看网站| 毛片一级片免费看久久久久| 中文字幕久久专区| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 亚洲美女搞黄在线观看| av福利片在线观看| 亚洲成人中文字幕在线播放| 欧美一区二区亚洲| 观看美女的网站| 中文在线观看免费www的网站| av在线蜜桃| 亚洲国产欧美在线一区| 少妇猛男粗大的猛烈进出视频 | 天堂影院成人在线观看| 国产男女超爽视频在线观看| 26uuu在线亚洲综合色| 嫩草影院入口| 国产一区有黄有色的免费视频 | 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 精品99又大又爽又粗少妇毛片| 国产av码专区亚洲av| 亚洲熟妇中文字幕五十中出| 国产美女午夜福利| 麻豆成人av视频| 菩萨蛮人人尽说江南好唐韦庄| 免费观看的影片在线观看| 国产午夜精品一二区理论片| 中文欧美无线码| 日韩av在线大香蕉| 亚洲美女搞黄在线观看| 最近中文字幕2019免费版| 国产国拍精品亚洲av在线观看| av卡一久久| 成人美女网站在线观看视频| 22中文网久久字幕| 乱人视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲国产高清在线一区二区三| 97在线视频观看| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 精品久久国产蜜桃| 国产视频内射| 看十八女毛片水多多多| 黑人高潮一二区| 免费黄色在线免费观看| 尾随美女入室| 久久久成人免费电影| 成人性生交大片免费视频hd| 国产午夜精品论理片| 日韩制服骚丝袜av| 在线免费十八禁| 看黄色毛片网站| 欧美日韩在线观看h| 丰满少妇做爰视频| 午夜免费观看性视频| 免费观看a级毛片全部| 婷婷色综合www| 国产精品不卡视频一区二区| 26uuu在线亚洲综合色| 精品一区二区三区视频在线| av在线亚洲专区| 精品国产三级普通话版| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 国产在线男女| 色综合亚洲欧美另类图片| 三级毛片av免费| 人人妻人人澡人人爽人人夜夜 | 久久国内精品自在自线图片| 肉色欧美久久久久久久蜜桃 | 老女人水多毛片| 国产伦精品一区二区三区视频9| 超碰97精品在线观看| 免费看a级黄色片| 在线免费观看不下载黄p国产| av网站免费在线观看视频 | 欧美最新免费一区二区三区| 女人十人毛片免费观看3o分钟| 精品少妇黑人巨大在线播放| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 中国国产av一级| 18+在线观看网站| 精品一区在线观看国产| 日韩在线高清观看一区二区三区| 18禁在线播放成人免费| 91狼人影院| 18禁在线播放成人免费| 久久亚洲国产成人精品v| 国产视频首页在线观看| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 91久久精品国产一区二区三区| 久久久精品免费免费高清| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 久久久久久久午夜电影| 中国美白少妇内射xxxbb| 国产精品爽爽va在线观看网站| 日韩一区二区视频免费看| 床上黄色一级片| 国产免费又黄又爽又色| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 一级毛片电影观看| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 内射极品少妇av片p| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月| 久久鲁丝午夜福利片| 观看美女的网站| 伊人久久精品亚洲午夜| av卡一久久| .国产精品久久| 亚洲国产最新在线播放| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 精品一区二区三区人妻视频| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| a级毛色黄片| 国产黄频视频在线观看| 欧美极品一区二区三区四区| 亚洲国产精品专区欧美| 国产高清三级在线| 国国产精品蜜臀av免费| 尾随美女入室| 国产免费视频播放在线视频 | 国产成人aa在线观看| 亚洲精品自拍成人| 亚洲精品456在线播放app| 精华霜和精华液先用哪个| 亚洲精品国产av蜜桃| 日本wwww免费看| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 国产成人精品一,二区| 日韩av免费高清视频| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 搞女人的毛片| 一区二区三区免费毛片| 永久网站在线| 99热6这里只有精品| 国产精品国产三级专区第一集| 韩国高清视频一区二区三区| 久久久久精品久久久久真实原创| 老女人水多毛片| 亚洲av成人av| 午夜免费男女啪啪视频观看| 久久99热这里只频精品6学生| 国产精品.久久久| 午夜福利在线观看吧| av.在线天堂| 成人性生交大片免费视频hd| 日本与韩国留学比较| 晚上一个人看的免费电影| 久久这里只有精品中国| 国产成人精品一,二区| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放| 欧美xxxx黑人xx丫x性爽| 99热这里只有是精品在线观看| 神马国产精品三级电影在线观看| 欧美 日韩 精品 国产| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 亚州av有码| 国产淫语在线视频| 深爱激情五月婷婷| 99久久九九国产精品国产免费| 成人无遮挡网站| 我的老师免费观看完整版| 亚洲成人久久爱视频| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 国产精品无大码| 欧美成人午夜免费资源| 色吧在线观看| 美女被艹到高潮喷水动态| 狂野欧美激情性xxxx在线观看| 日韩国内少妇激情av| 好男人视频免费观看在线| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 内射极品少妇av片p| 亚洲最大成人中文| 免费大片18禁| 波多野结衣巨乳人妻| 国产黄a三级三级三级人| 日日啪夜夜爽| 黄片无遮挡物在线观看| 五月天丁香电影| 精品国产露脸久久av麻豆 | 欧美成人午夜免费资源| 亚洲熟女精品中文字幕| 99热6这里只有精品| 成人毛片a级毛片在线播放| 插阴视频在线观看视频| 亚洲成色77777| 69av精品久久久久久| 不卡视频在线观看欧美| 日韩强制内射视频| 国产综合懂色| 99热网站在线观看| 蜜桃久久精品国产亚洲av| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 国产在视频线精品| 老司机影院毛片| 两个人视频免费观看高清| 人妻制服诱惑在线中文字幕| 免费观看性生交大片5| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 在线播放无遮挡| 18禁在线播放成人免费| 色网站视频免费| 国产精品美女特级片免费视频播放器| 五月伊人婷婷丁香| 亚洲国产精品国产精品| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 亚洲最大成人手机在线| 街头女战士在线观看网站| 国产乱人偷精品视频| 亚洲欧洲日产国产| 国产精品一区二区三区四区免费观看| 毛片女人毛片| 亚洲真实伦在线观看| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 91精品一卡2卡3卡4卡| 亚洲高清免费不卡视频| 日韩av不卡免费在线播放| 亚洲成人一二三区av| 婷婷六月久久综合丁香| a级一级毛片免费在线观看| 两个人视频免费观看高清| 国产午夜福利久久久久久| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 免费人成在线观看视频色| 国产黄片视频在线免费观看| 午夜福利在线观看免费完整高清在| 麻豆精品久久久久久蜜桃| 久久这里只有精品中国| 精品久久久久久久人妻蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 三级国产精品欧美在线观看| 男人和女人高潮做爰伦理| 成人毛片a级毛片在线播放| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 亚洲精品第二区| 国产精品国产三级专区第一集| 建设人人有责人人尽责人人享有的 | 国产激情偷乱视频一区二区| 久久久国产一区二区| 波多野结衣巨乳人妻| 亚洲av一区综合| 久久久久国产网址| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 一区二区三区四区激情视频| 三级经典国产精品| 亚洲精品影视一区二区三区av| 久久鲁丝午夜福利片| 美女内射精品一级片tv| 熟女电影av网| 亚洲精品日本国产第一区| av网站免费在线观看视频 | 亚洲国产日韩欧美精品在线观看| 超碰av人人做人人爽久久| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 少妇高潮的动态图| 一本久久精品| 在线天堂最新版资源| 在线 av 中文字幕| 22中文网久久字幕| 麻豆av噜噜一区二区三区| 黄片wwwwww| 亚洲精品一区蜜桃| 国产亚洲91精品色在线| 少妇的逼好多水| 亚洲精华国产精华液的使用体验| 午夜亚洲福利在线播放| 色综合色国产| 大片免费播放器 马上看| 成年版毛片免费区| 大香蕉97超碰在线| 男的添女的下面高潮视频| 男人狂女人下面高潮的视频| 国产精品av视频在线免费观看| 黄色欧美视频在线观看| 深爱激情五月婷婷| 久久久久久久久久人人人人人人| 五月天丁香电影| 国产精品无大码| 午夜久久久久精精品| 激情五月婷婷亚洲| 精品少妇黑人巨大在线播放| 午夜老司机福利剧场| 亚洲精品视频女| 中文字幕亚洲精品专区| 我的女老师完整版在线观看| 久久这里有精品视频免费| 日本爱情动作片www.在线观看| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 国产av在哪里看| 欧美高清性xxxxhd video| 欧美精品国产亚洲| 人人妻人人看人人澡| 一区二区三区四区激情视频| 免费观看av网站的网址| 日韩一区二区三区影片| 婷婷六月久久综合丁香| 国产伦精品一区二区三区四那| 日本av手机在线免费观看| 插逼视频在线观看| 狂野欧美白嫩少妇大欣赏| 久久国产乱子免费精品| 高清在线视频一区二区三区| 高清av免费在线| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频 | 青春草国产在线视频| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| 精品久久久久久久末码| 纵有疾风起免费观看全集完整版 | 女人久久www免费人成看片| 99久久精品国产国产毛片| 国产黄色免费在线视频| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 99热这里只有精品一区| 国产精品国产三级国产av玫瑰| 中国美白少妇内射xxxbb| 听说在线观看完整版免费高清| 男人和女人高潮做爰伦理| 亚洲精品乱码久久久久久按摩| 久久久久久久大尺度免费视频|