• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    effect of Ar+,He+,and S+Irradiation on n-InP Single Crystal

    2014-07-19 11:17:08JingyuHuWaqasMahmoodQingZhao
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Jing-yu Hu,Waqas Mahmood,Qing Zhao

    School of Physics,Beijing Institute of Technology,Beijing 100081,China

    effect of Ar+,He+,and S+Irradiation on n-InP Single Crystal

    Jing-yu Hu,Waqas Mahmood,Qing Zhao?

    School of Physics,Beijing Institute of Technology,Beijing 100081,China

    The irradiation effects of Ar+,He+and S+with energy from 10 eV to 180 eV on n-InP(100) surface are analyzed by X-ray photoelectron spectroscopy and low energy electron diffraction. After irradiation on the n-InP surface,damage on the surface,displacement of the Fermi level and formation of sulfur species on S+exposed surface are found and studied.Successive annealing is done to suppress the surface states introduced by S+exposure.However,it is unsuccessful in removing the damage caused by noble ions.Besides,S+ions can efficiently repair the Ar+damaged surface,and f i nally form a f i ne 2×2 InP surface.

    Low energy ion bombardment,Annealing,Surface damage,Fermi level

    I.INTRODUCTION

    Since sulf i de passivation was f i rst introduced by Sandrof fet al.in 1987[1,2],in the dry etching and industrial processes,much attention has been paid to reducing native oxide layers and removing the ion irradiation damage from III-V semiconductors[3-6].It has also been reported that sulfur brings together atoms on the n-InP surface and the strong bond between S and In keeps bonding and the anti-bonding states away from the band gap[7,8].Several different methods have been employed for passivation of sulf i de,such as treatment with solutions[4-6,9-14]and gas phase[15-20].The process of dissolving III-V semiconductors using solutions is rather slow and terminates in forming a 1×1 surface[21].For the gas treatments,annealing is compulsory to retrieve the 1×1 surface[22].Sulf i de assists the formation of ordered structure,and experimental results also elucidated that polysulf i des render better passivation on III-V surfaces for both solution and gas treatments[21,23].This leads to an understanding that the surface might supply electrons to sulfur atoms that is partially supported by the high reactivity of n-type semiconductors as compared to p-type semiconductors [24].Thus,the surface can use additional available energy for passivation of sulfur.For p-InP surface,type inversion has also been reported[24,25].Recently,electron energy loss spectroscopy(EELS)has been used to investigate the interactions between the low energy Ar+(N+)ions and the InP compound[26].The InP surface is extremely sensitive to Ar+ions bombardment.If the surface is exposed in Ar+ions fluence for longer time, the chemical bond In-P will be breaken and the In metal will appear on the surface accompanied with the formation of structural physical defects.Usanmaz et al.[27]studied the changes in the electronic and structural properties appearing from S adsorption on the GaAs(001)surface by the ab initio calculations and observed that the Tsukamoto model is energetically most stable.

    High ions flux plasma with an average ion energy below 10 eV has been used[28].If we are able to properly understand the interaction mechanism and the extent of surface damage during ion irradiation of compound semiconductors,novel ion assisted processes can likely be developed to resolve some of the current problems related to surface damage of ion irradiation in device fabrication.To f i nd a method that fully controls the reaction products between ions and III-V semiconductors, in this work we irradiate a controlled low energy Ar+, He+,and S+ions beam onto a n-InP(100)surface,and study the interactions of ions with n-InP(100)surface in detail.We also compare different effects of inert and S+ions bombardment on InP surface.

    II.EXPERIMENTS

    Low energy ion beam system(LEIB)[29]has been used to expose ions on the samples.The ion beam system is directly connected to the ultra high vacuum (UHV)surface analysis apparatus.The sample travels through the vacuum chambers with the aid of transfer rods.The analysis equipment has two parts:the standard Kratos AXIS-HS XPS and the low energy electron diffraction(LEED)system.The center of the target retains ion current density of 0.1-1 A/cm2.The XPS system was equipped with a monochromatic X-ray source (Al Kα),and its energy calibration was referenced by Au4f7/2at 84.0 eV,Cu2p3/2at 932.7 eV,and Ag3d5/2at 368.3 eV peaks,respectively.The incident angle of X-ray source was 55?,and the angle between photoelectron detection and the sample surface was 90?.

    A single un-doped n-InP crystal is used in the experiment,and its observed bulk Fermi level position is at 1.26 eV.The surface of the sample is fi rst treated with UV/O3,then the process of removing oxides is completed in a less concentrated HF solution(1:30 HF:H2O).Further,it is dried using nitrogen,and quickly transported to the analysis chamber.This shipping is done in the surrounding of nitrogen atmosphere. Inside the UHV system,we perform several treatments and measurements on the sample.The sample is transferred to the LEIB system through the UHV passage for ion exposure.After receiving independent fl uence of Ar+,He+,and S+,it is returned to XPS chamber for further investigation.

    To investigate samples inside the spectrometer,we consider valence band(VB)edge of gold as a reference to locate other Fermi levels.The distance between the Fermi level of gold and the VB edge of semi-conductor fi nally locate the Fermi position of the samples.After determination of the Fermi level position,we apply the core levels of In3d5/2or P2p3/2as spectral references for locating the Fermi level shifts of other samples.In this work,In3d5/2of InP with high photoelectron emission is used to measure the surface band bending,and locate the Fermi level position.A sample with its Fermi level position at the VB maximum should have the In3d5/2at 444.9 eV for n-InP as our reference,and all Fermi level positions are referred to the VB edge of n-InP.

    III.RESULTS AND DISCUSSION

    A.effect of He+and Ar+

    The irradiation of He+and Ar+ions on n-InP(100) damages the sensitive surface,which is estimated by calculating the binding energy changes of In3d5/2.The result is similar to the case of InP(110)[30],where no additional chemical components are observed in the XPS spectra.Figure 1 displays the e ff ect of He+and Ar+ions irradiation on the n-InP(100)surface as a function of ion fl uence at variable energies.Considering Ar+ions as a reference,it is observed that for the same ion type,surface damage increases with increase of the fl uence.In addition,Ar+ions produce much heavier surface damage than He+ions when the same ion fl uence and energy are used.The 110 eV Ar+can lead the Fermi level to pin position with fulence of 1016ions/cm2while it needs higher dosage(around 3×1017ions/cm2) to reach the same level by 110 eV He+ions.

    Figure 1 clearly reveals the gradual defect formation induced by low energy ion bombardment for various inert ions and energies.The results illustrate that native defects themselves may also lead to band bending and Fermi level pinning,which is similar to several results in Refs.[19,20].

    FIG.1 Fermi level EFshifts of n-InP(100)induced by Ar+, and He+ion bombardments with different energies as a function of ion fluence.

    B.effect of S+

    The results of the surface electrical properties obtained from the irradiation of S+ions on n-InP surface are found to be extremely different from the bombardment of inert ions.In Fig.2,we display the binding energies of In3d5/2and Fermi level shifts,vs.ion fluence and annealing temperature respectively,obtained from the exposure of S+ions at energy values of 12,60, and 110 eV.The plot indicates that for the applied ion energies 12 and 110 eV,the band bending of n-InP increases,however it is slightly decreased at energy 60 eV. Interestingly,the least surface band bending on n-InP is observed not at 12 eV but at 60 eV,which is similar to the previous observation of p-InP[31].It can be inferred from the results that bombardment of ion beam follows two reaction paths:(i)the formation of In-S bonds,and(ii)resistance to physical damage.

    Experimentally,it is observed that even low dosage of S+ions(1016ions/cm2)results in the band bending of n-InP surface at both the energy values of 12 and 60 eV.However,with the increasing of S+ions, the surface band bending changes slightly for 60 eV, but it is found to be continuously increasing at 12 and 110 eV.The result at 60 eV conf i rms that S-In species resist physical damage to the surface,but for higher ion energy i.e.110 eV,S-In species can not effectively prevent the heavier damage.More damage at 12 eV than at 60 eV,may be due to the effect of high energy neutral species.When low ion energy 12 eV is used,the density of ion beam current is half less than that of 60 eV S+ions.In order to receive the same ion number as that at 60 eV,irradiation time of S+ions at 12 eV should be twice of that at 60 eV.This long exposure time increases the chances of neutral species to reach the surface.The chemical properties of n-InP and p-InP surfaces are the same,but their electronic properties are different.Sulfur is n-type doping as shown in Fig.3,and its diffusion in p-InP explains type inversion[31].

    FIG.2 Binding energy E of In3d5/2and Fermi level EFresponse of n-InP(100)induced by 12,60,and 110 eV S+as a function of(a)ion fluencies and(b)subsequent annealing temperatures,(c)S2p spectrum of n-InP induced by S+bombardment with 1.6×1016ions/cm2at 60 eV.

    However,for n-InP,to move the surface Fermi level near to the minimum of conduction band,donor states matching the initial dopant concentrations are specifically required when the surface Fermi level of n-InP has already been close to the minimum of conduction band.For this reason,only slight changes in the Fermi level have been seen after S+exposure on the n-InP surface.The S+irradiation of 8×1015ions/cm2modi fies the band bending of the n-InP surface slightly at ion energies 12 and 60 eV,but signi fi cant increase is observed at energy 110 eV.Raising ion fl uence up to 1.2×1016ions/cm2increases the band bending at 12 and 110 eV while it reduce the band bending at 60 eV.Irradiation at di ff erent ion energies forms In-S species,which limit physical surface damage,and exhibit a donor doping e ff ect for n-InP,therefore reduce the band bending.The band bending at 12 eV increased with the rising of ion fl uence since few In-S species have been created on the surfaces.On the other hand,at 110 eV,although strong In-S species have been created,and the surface band bending increases versus ion fl uence.In this case,higher ion energy causes greater physical damage,which cannot be preventable by In-S species.

    C.Comparison of He+,Ar+,and S+

    Noble gas ions(He+or Ar+)irradiation only caused physical damage on InP(110)that resulted in a shift of surface Fermi level without any chemical change [30,32].For He+and Ar+,with incident energy of 5-180 eV and fluence of 1012-1017ions/cm2,surface Fermi levels of both n-and p-InP(100)surfaces move towards to their pinning position.This kind of damage is hard to overcome,even through subsequent annealing process[30].However,the chemical reaction in S+ions exposure forms sulfur species(S-In)on InP surfaces that prevent further physical damage,and bring surface ordering in subsequent thermal annealing.During the ion showering,a few sulfur ions possibly reach subsurface layers and produce donor states.The exposure of InP(100)surface to S+ions with 1.5×1016ions/cm2fl uence at energy values of 10,20,60,70,and 100 eV results in the changes of surface chemical composition (not shown here).Figure 2(c)shows the S2p spectra with fl uence of 1.6×1016ions/cm2at 60 eV S+ion bombardment.

    FIG.3 Charge balance and donor states.

    The spectral data at different ion energy treatment show the formation of one type of sulfur specie in S2p region.For energy above 60 eV,formation of sulfur species is more efficient.For the same number of ions at 12 eV as that at 60 eV,few sulfur species are found when S+ions are used.This makes obvious that higher energetic S+ions favor creation of In-S species on InP(100) surface as compared to 12 eV ions.At 110 eV,S+exposure results in the broader S2p3/2peak due to higher intensity of S-In formed on the InP surface.However, simultaneously the 110 eV S+also induces heavier disordered surface,which is different from the 60 eV case. Table I lists the atomic ratios of S and P to In at different S+energy values.

    Ion bombardment assists the chemical reaction and forms more stable sulfur species(In-S)[22,33,34].According to our previous results of He+and Ar+ion bombardment,there is no chemical interaction between inertial ions and InP surface[30,32].Physical damage is produced during inertial ions bombardment,and Fermi level does not return to the original position after subsequent annealing.However,in the case of annealing InP with UV/O3and HF at 500?C,LEED pattern was not observed[19],because annealing of InP without S+exposure results in higher As or P loss on the surface. The In-S species on the InP surface not only stabilize the surface against As or P desorption,but also assist re-ordering.

    TABLE IThe composition of S+treated n-InP(100) sampleswithdifferentionenergiesandfluenceof 2.0×1016ions/cm2

    D.Behavior of Fermi level of n-InP with annealing

    When ions expose on n-InP samples,the surface band bending is found to increase with temperature at all energies.At 300?C,the band bending of samples exposed at 60 eV is smaller than at 110 eV as shown in Fig.2(b).This behavior is seen for all samples and attributes to sulfur doping or meta-stable bond that might have formed on the surface at low temperature. With an increase in energy,implantation of sulfur becomes deeper into the surface.Subsequent heating from 300?C to 450?C reduces the bending of the surface band for entire ion energies.Subsequent annealing at 300?C causes slight bending of the surface band for 60 eV ion-treated n-InP samples.After annealing at 450?C,it even exceeds the original surface Fermi level as shown in Fig.2,which means that part of original surface states are removed from the surface due to the annealing process.However,at 110 eV,with S+ion bombardment,where the physical damage is substantial,annealing at 450?C could not bring the surface Fermi level back to the original position.

    E.effect of Ar+and S+ions on the Fermi level of n-InP

    In addition,we have experimentally investigated the role of S+irradiation in bringing order on InP surface. The n-InP(100)is f i rst exposed to 180 eV Ar+ions at an incidence angle of 45?,and after that,to subsequent 60 eV S+ions with different dosages,and f i nally they are annealed at 250,300,and 400?C.Figure 4 presents the binding energy of In3d5/2and Fermi level movement under aforementioned conditions.Irradiation of 180 eV Ar+ions shifts the Fermi level to 1.04 eV and then,subsequent 60 eV S+ions exposure further decrease the Fermi level to 0.90 eV.With this treatment, Ar+and S+ions create defects at the surface of the Fermi level,and introduce a monolayer equivalent of S simultaneouly.Repeated annealing at temperatures 300 and 400?C,almost returned Fermi level to its original location and lastly,we obtain a 2×2 LEED pattern as presented in Fig.5.The pattern conf i rms that the presence of sulfur supports surface ordering and recovers the physical damage by ions.

    FIG.4Binding energy and Fermi level variation of n-InP(100)with(a)180 eV Ar+ions shower at 45?incidence,(b)60 eV S+shower,and(c)subsequent annealing at 250,300,and 400?C.

    FIG.5 2×2 LEED pattern formed by processes of 180 eV Ar+shower with 45?incidence,60 eV S+ion-treated n-InP(100),and subsequent annealing at 400?C for 20 min.

    A surface model of In-terminated regions with hydrogen atoms filling the dangling bonds,P-terminated and disordered regions was proposed for the UV/O3and HF treated InP(100)surface[22].When S+with enough energy strikes InP surface,weak H-In bond is replaced by strong S-In bond.Few S atoms replace P atoms, create donor states,and end up forming S-In tetrahedral while few of them reside in the subsurface region as interstitial atoms.For S+ion energy less than 20 eV, the bond between sulf i de and surface is not efficient. A dominant number of S+ions are backscattered from the surface.When the S+energy is high enough such as 110 eV,it produces more physical damage that is not easy to eradicate by annealing though In-S species are created.Subsequent annealing at 300?C embeds more sulfur atoms,and forms the S-In tetrahedral that further increases the Fermi level.If we compare their stabilities,the sulfur bridge at the top surface layer is more stable than the sulfur tetrahedron that bonds four In atoms in the subsurface region of InP.

    In the process of annealing at 400?C,sulfur atomsreach the surface to form sulfur bridge,and excess of sulfur atoms are desorbed from the surface that results in one monolayer of sulfur residing on the InP surface, which f i nally leads to a clear LEED pattern as shown in Fig.5.Hence,removal of donor states from subsurface region results in the reduction of Fermi level of n-InP. The existence of sulfur bridges at the surface promotes ordering reconstruction of surface,and repairs the damage.

    IV.CONCLUSION

    The effects of low energy ions(Ar+,He+,and S+) irradiation on n-InP surface are analyzed thoroughly by examining the chemical and surface changes.It is observed that the irradiation of both He+and Ar+by using the aforementioned conditions shifts the Fermi levels of n-InP surfaces.For the same exposure energy, as expected,Ar+ions cause more damage than He+. For the identical ion type,the exposure induce a surface defect density increasing with both ion energy and fluence.It is obvious that sulfur supports surface ordering. The high energy of S+ions causes more damage and forms S-In species.The formed S-In species help preventing the damage produced by S+ions together with ordering the surfaces of InP during subsequent thermal annealing.Besides,the Ar+damaged n-InP surface is exposed to 60 eV S+ion beam.Later,further annealing at 400?C enables the Fermi level to almost return to its original location.The return of Fermi level to its previous location ensures that S+ions with subsequent annealing removes n-InP surface damage and leads to 2×2 LEED pattern formations.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.11275024)and the Ministry of Science and Technology of China (No.2013YQ03059503 and No.2011AA120101).The authors would like to thank Prof.R.W.M.Kwok from the Chinese University of Hong Kong.

    [1]C.J.Sandrof f,R.N.Nottenburg,J.C.Bischof f,and R.Bhat,Appl.Phys.Lett.51,33(1987).

    [2]E.Yablonovitch,C.J.Sandrof f,R.Bhat,and T.Gmitter,Appl.Phys.Lett.51,439(1987).

    [3]V.L.Berkovits and D.Paget,Appl.Surf.Sci.65,607 (1993).

    [4]N.G.Wright,C.M.Johnson,and A.G.O’Neill,Sol. Sta.Elec.42,437(1998).

    [5]Y.Dong,X.M.Ding,X.Y.Hou,Y.Li,and X.B.Li, Appl.Phys.Lett.77,3839(2000).

    [6]R.K.Gebhardt,A.B.Preobrajenski,and T.Chasse, Phys.Rev.B 61,9997(2000).

    [7]V.N.Bessolov,Y.V.Zhilyaev,E.V.Konenkova,and M.V.Lebedev,Tech.Phys.43,983(1998).

    [8]V.N.Bessolov,M.V.Lebedev,E.B.Novikov,and B. V.Tsarenkov,J.Vac.Sci.Technol.B 11,10(1993).

    [9]N.Yokoi,H.Andoh,and M.Takai,Appl.Phys.Lett. 64,2578(1994).

    [10]Z.H.Lu,D.Landheer,J.M.Baribeay,L.J.Hung,and W.M.Lau,Appl.Phys.Lett.64,1702(1994).

    [11]H.Oigawa,J.F.Fan,Y.Nannichi,H.Sugahara,and M.Odhima,Jpn.J.Appl.Phys.30,L322(1991).

    [12]M.V.Lebedev and M.Aono,J.Appl.Phys.87,289 (2000).

    [13]S Morikita,T Motegi,and H.Ikoma,Jpn.J.Appl. Phys.38,L1512(1999).

    [14]V.N.Bessolov,M.V.Lebedev,and D.R.T.Zahn, Semiconductors 33,416(1999)

    [15]M.Cakmak and G.P.Srivastava,Phys.Rev.B 57, 4486(1998).

    [16]Z.Zou,X.M.Wei,Q.P.Liu,H.H.Huang,W.S.Sim, G.Q.Xu,and C.H.A.Huan,Chem.Phys.Lett.312, 149(1999).

    [17]M.Cakmak and G.P.Srivastava,Appl.Surf.Sci.123, 52(1998).

    [18]M.Shimomura,N.Sanada,S.Ichikawa,Y.Fukuda, M.Nagoshi,and P.J.Moller,J.Appl.Phys.83,3071 (1998).

    [19]B.K.L.So,R.W.M.Kwok,G.Jin,G.Y.Cao,G.K. C.Hui,L.Huang,W.M.Lau,and S.P.Wong,J.Vac. Sci.Technol.A 14,935(1996).

    [20]A.Kapila,X.Si,and V.Malhotra,Appl.Phys.Lett. 62,2259(1993).

    [21]H.Hirayama,Y.Matsumoto,H.Oigawa,and Y.Nannichi,Appl.Phys.Lett.54,2565(1989).

    [22]R.W.M.Kwok,G.Jin,B.K.L.So,K.C.Hui,L. Huang,W.M.Lau,C.C.Hsu,and D.Landheer,J. Vac.Sci.Technol.A 13,652(1995).

    [23]R.W.M.Kwok,L.J.Huang,W.M.Lau,M.Kasrai, X.Feng,K.Tan,S.Ingrey,and D.Landheer,J.Vac. Sci.Technol.A 12,2701(1994).

    [24]R.W.M.Kwok and W.M.Lau,J.Vac.Sci.Technol. A 10,2515(1992).

    [25]W.M.Lau,S.Jin,X.W.Wu,and S.Ingrey,J.Vac. Sci.Technol.A 9,994(1991).

    [26]N.Berrouachedi,M.Bouslama,A.Abdellaoui,M. Ghaffour,C.Jardin,K.Hamaida,Y.Monteil,Z.Lounis,and A.Ouerdane,Appl.Surf.Sci.256,21(2009).

    [27]D.Usanmaz,G.P.Srivastava,and M.Cakmak,J.Appl. Phys.108,063713(2010).

    [28]E.D.Lu,F.P.Zhang,S.H.Xu,X.J.Yu,P.S.Xu,Z. F.Han,F.Q.Xu,and X.Y.Zhang,Appl.Phys.Lett. 69,2282(1996).

    [29]W.M.Lau,X.Feng,S.Sant,I.Bello,K.K.Foo,and R. P.W.Lawson,Nucl.Instrum.Meth.B 59,316(1991).

    [30]Q.Zhao,Z.W.Deng,R.W.M.Kwok,and W.M.Lau, J.Vac.Sci.Technol.A 18,2271(2000).

    [31]Q.Zhao,G.J.Zhai,and R.W.M.Kwok,Appl.Surf. Sci.253,1356(2006).

    [32]Z.W.Deng,R.W.M.Kwok,W.M.Lau,and L.L. Cao,J.Appl.Phys.86,3676(1999).

    [33]G.W.Anderson,M.C.Hanf,P.R.Norton,Z.H.Lu, and M.J.Graham,Appl.Phys.Lett.65,171(1994).

    [34]M.Shimomura,K.Naka,N.Sanda,Y.Suzuki,Y. Fukuda,and P.J.Moller,J.Appl.Phys.79,4193 (1996).

    ceived on April 14,2013;Accepted on September 24,2013)

    ?Author to whom correspondence should be addressed.E-mail:qzhaoyuping@bit.edu.cn

    一个人免费在线观看的高清视频| 国产精品一区二区免费欧美| 曰老女人黄片| 日韩 欧美 亚洲 中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 成人永久免费在线观看视频| 午夜免费成人在线视频| 国产欧美日韩一区二区三| 少妇裸体淫交视频免费看高清 | 国产精品一区二区精品视频观看| 国产高清激情床上av| 淫秽高清视频在线观看| 欧美成狂野欧美在线观看| 久久久国产一区二区| 国产成+人综合+亚洲专区| 18禁观看日本| 亚洲精品粉嫩美女一区| 青草久久国产| 熟女少妇亚洲综合色aaa.| 无限看片的www在线观看| 18禁观看日本| 大陆偷拍与自拍| 日韩有码中文字幕| 久久久久久久久免费视频了| 999精品在线视频| 国产91精品成人一区二区三区| 亚洲情色 制服丝袜| www日本在线高清视频| 久久久久亚洲av毛片大全| 国产黄a三级三级三级人| 国产精品成人在线| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 国产不卡一卡二| 国产伦人伦偷精品视频| 亚洲欧美激情综合另类| 丁香六月欧美| 99国产极品粉嫩在线观看| 国产三级黄色录像| 久久九九热精品免费| 男女高潮啪啪啪动态图| 手机成人av网站| 国产又爽黄色视频| 精品国产乱码久久久久久男人| 国产麻豆69| 日日爽夜夜爽网站| 在线观看www视频免费| 他把我摸到了高潮在线观看| 成人手机av| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 欧美日韩视频精品一区| 国产日韩一区二区三区精品不卡| 欧美亚洲日本最大视频资源| 久久精品人人爽人人爽视色| 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| 亚洲精品在线观看二区| 成人亚洲精品一区在线观看| 久久久久久亚洲精品国产蜜桃av| 无限看片的www在线观看| 亚洲成人精品中文字幕电影 | 精品一区二区三区av网在线观看| ponron亚洲| 亚洲熟妇熟女久久| 欧美乱妇无乱码| 欧美大码av| 黄网站色视频无遮挡免费观看| 欧美老熟妇乱子伦牲交| 在线观看午夜福利视频| 国产片内射在线| 又紧又爽又黄一区二区| 久热这里只有精品99| 大型av网站在线播放| 成年女人毛片免费观看观看9| av电影中文网址| 亚洲少妇的诱惑av| 免费高清在线观看日韩| 美女 人体艺术 gogo| 日日爽夜夜爽网站| 伊人久久大香线蕉亚洲五| 亚洲精品国产精品久久久不卡| 别揉我奶头~嗯~啊~动态视频| 精品国内亚洲2022精品成人| 精品人妻1区二区| 免费高清在线观看日韩| 国产97色在线日韩免费| 精品久久久精品久久久| 亚洲美女黄片视频| 性色av乱码一区二区三区2| 少妇的丰满在线观看| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| 日本a在线网址| 久久久国产一区二区| 国产精品一区二区精品视频观看| 亚洲精品美女久久av网站| 99在线视频只有这里精品首页| 久久热在线av| 99久久人妻综合| 亚洲av电影在线进入| 69av精品久久久久久| 亚洲第一欧美日韩一区二区三区| 亚洲欧美日韩另类电影网站| 国产黄a三级三级三级人| 三级毛片av免费| 欧美日韩国产mv在线观看视频| 男女午夜视频在线观看| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 丝袜在线中文字幕| 国产精品九九99| x7x7x7水蜜桃| 国产精品98久久久久久宅男小说| 国产成年人精品一区二区 | 精品久久久久久,| 国产成人精品无人区| 亚洲精品国产色婷婷电影| 国产99白浆流出| 国产三级黄色录像| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| av在线播放免费不卡| 久久精品成人免费网站| 91老司机精品| 国产av在哪里看| а√天堂www在线а√下载| 免费久久久久久久精品成人欧美视频| 每晚都被弄得嗷嗷叫到高潮| 久久99一区二区三区| 午夜久久久在线观看| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 日韩一卡2卡3卡4卡2021年| 高清欧美精品videossex| 男女下面进入的视频免费午夜 | 午夜免费观看网址| 欧美乱妇无乱码| 中文字幕高清在线视频| 91成人精品电影| 久久久久久久久久久久大奶| 亚洲精品av麻豆狂野| 国产av在哪里看| 人成视频在线观看免费观看| 久久青草综合色| 精品人妻1区二区| cao死你这个sao货| 欧美大码av| 精品电影一区二区在线| 国产成人精品在线电影| 精品欧美一区二区三区在线| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 搡老乐熟女国产| 女人被躁到高潮嗷嗷叫费观| 精品福利永久在线观看| 成人18禁高潮啪啪吃奶动态图| 精品电影一区二区在线| 黄频高清免费视频| 亚洲精品国产色婷婷电影| 成人av一区二区三区在线看| 日韩欧美免费精品| 国内久久婷婷六月综合欲色啪| 老司机靠b影院| 国产成人精品在线电影| 久久久国产一区二区| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 欧美另类亚洲清纯唯美| 亚洲精品国产区一区二| av在线天堂中文字幕 | 亚洲自拍偷在线| 1024视频免费在线观看| 精品国内亚洲2022精品成人| 久久精品国产亚洲av香蕉五月| 成人手机av| 香蕉久久夜色| 欧美午夜高清在线| 免费搜索国产男女视频| 人人妻人人澡人人看| 精品久久久精品久久久| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 免费在线观看亚洲国产| 99国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 狠狠狠狠99中文字幕| 两个人看的免费小视频| www.自偷自拍.com| 一个人观看的视频www高清免费观看 | 一进一出抽搐动态| 国产精品乱码一区二三区的特点 | 男人的好看免费观看在线视频 | 亚洲一码二码三码区别大吗| 一级毛片精品| 久久精品国产亚洲av香蕉五月| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 日本黄色日本黄色录像| 久久草成人影院| 亚洲人成网站在线播放欧美日韩| 国产精品自产拍在线观看55亚洲| xxx96com| 久久亚洲精品不卡| 午夜精品久久久久久毛片777| 中文字幕精品免费在线观看视频| 成年人免费黄色播放视频| 少妇的丰满在线观看| 在线观看www视频免费| 欧美日韩国产mv在线观看视频| 亚洲第一av免费看| 青草久久国产| 国产精品98久久久久久宅男小说| 国产精品av久久久久免费| 国产aⅴ精品一区二区三区波| 日韩欧美国产一区二区入口| 香蕉国产在线看| 一本大道久久a久久精品| 亚洲第一青青草原| 国产97色在线日韩免费| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 啦啦啦免费观看视频1| 真人一进一出gif抽搐免费| 国产免费男女视频| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 激情视频va一区二区三区| 国产有黄有色有爽视频| 9色porny在线观看| 91成人精品电影| 91国产中文字幕| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 99国产极品粉嫩在线观看| 99riav亚洲国产免费| 在线观看舔阴道视频| 亚洲成人国产一区在线观看| 久久久国产成人精品二区 | 精品无人区乱码1区二区| 亚洲五月色婷婷综合| 国产一区二区三区在线臀色熟女 | 成人亚洲精品一区在线观看| 夜夜躁狠狠躁天天躁| 国产又爽黄色视频| 99热国产这里只有精品6| 水蜜桃什么品种好| 黑丝袜美女国产一区| av天堂久久9| 色在线成人网| 精品一区二区三区四区五区乱码| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 午夜福利一区二区在线看| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕一二三四区| 99精品在免费线老司机午夜| 亚洲男人天堂网一区| 91麻豆av在线| 午夜影院日韩av| 久久精品成人免费网站| 国产精品久久久久成人av| 亚洲av成人av| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 悠悠久久av| 1024视频免费在线观看| 又黄又粗又硬又大视频| 女生性感内裤真人,穿戴方法视频| 高清在线国产一区| 亚洲欧美日韩无卡精品| 操出白浆在线播放| 欧美成人午夜精品| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 午夜免费观看网址| 中出人妻视频一区二区| 波多野结衣高清无吗| 午夜精品在线福利| 黄色成人免费大全| 亚洲九九香蕉| 在线观看舔阴道视频| 91精品三级在线观看| 黑人猛操日本美女一级片| 精品久久久久久,| 国产精品美女特级片免费视频播放器 | 精品国产亚洲在线| 交换朋友夫妻互换小说| 99国产精品99久久久久| 亚洲久久久国产精品| 久久伊人香网站| 自线自在国产av| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| 欧美午夜高清在线| 熟女少妇亚洲综合色aaa.| 国产野战对白在线观看| 国产国语露脸激情在线看| 亚洲三区欧美一区| 中亚洲国语对白在线视频| 老司机深夜福利视频在线观看| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 日本欧美视频一区| 极品人妻少妇av视频| 一进一出抽搐gif免费好疼 | 巨乳人妻的诱惑在线观看| aaaaa片日本免费| 黄色 视频免费看| 久久久久九九精品影院| 老司机在亚洲福利影院| 天堂中文最新版在线下载| 黑人操中国人逼视频| 99在线人妻在线中文字幕| 丰满迷人的少妇在线观看| 男女做爰动态图高潮gif福利片 | 久久青草综合色| 精品乱码久久久久久99久播| 亚洲精品国产色婷婷电影| avwww免费| 国产成人欧美在线观看| 新久久久久国产一级毛片| av福利片在线| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看 | 亚洲熟女毛片儿| 老鸭窝网址在线观看| 亚洲自偷自拍图片 自拍| 99精国产麻豆久久婷婷| 亚洲中文日韩欧美视频| 日本黄色日本黄色录像| 精品国产乱子伦一区二区三区| 1024香蕉在线观看| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 一级a爱片免费观看的视频| 国产亚洲欧美98| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 老司机靠b影院| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲一级av第二区| 久久性视频一级片| 久久精品91蜜桃| 嫁个100分男人电影在线观看| 一级黄色大片毛片| 午夜福利在线观看吧| 欧美日韩精品网址| 老鸭窝网址在线观看| 精品福利观看| 在线观看午夜福利视频| 又紧又爽又黄一区二区| 久久久久国内视频| 女同久久另类99精品国产91| 国产成人影院久久av| 久久国产精品影院| 国产精品久久视频播放| 久久国产精品影院| 99riav亚洲国产免费| 国产亚洲av高清不卡| 1024视频免费在线观看| 亚洲精品成人av观看孕妇| 在线观看午夜福利视频| 精品少妇一区二区三区视频日本电影| 日韩大码丰满熟妇| 中文亚洲av片在线观看爽| 久久久久九九精品影院| 久久精品91蜜桃| 久久九九热精品免费| 妹子高潮喷水视频| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 久久久精品国产亚洲av高清涩受| 91成人精品电影| 国产单亲对白刺激| 天天影视国产精品| 亚洲精品国产一区二区精华液| 亚洲国产看品久久| 多毛熟女@视频| av视频免费观看在线观看| 久久伊人香网站| 精品国产美女av久久久久小说| 国产片内射在线| 欧美老熟妇乱子伦牲交| 淫妇啪啪啪对白视频| 天堂动漫精品| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 久久精品国产综合久久久| 亚洲九九香蕉| 手机成人av网站| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲一级av第二区| tocl精华| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| 校园春色视频在线观看| 国产精品久久久人人做人人爽| 黄色丝袜av网址大全| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 少妇裸体淫交视频免费看高清 | 嫩草影院精品99| 国产成+人综合+亚洲专区| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 18美女黄网站色大片免费观看| 亚洲三区欧美一区| 午夜精品久久久久久毛片777| 成人国产一区最新在线观看| 女人被狂操c到高潮| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 亚洲激情在线av| 久久久久久久久免费视频了| 久久久国产精品麻豆| 国产熟女xx| 日日干狠狠操夜夜爽| 老司机在亚洲福利影院| 一区二区三区精品91| 国产高清视频在线播放一区| 精品一区二区三区四区五区乱码| 欧美在线黄色| 国产精品一区二区在线不卡| 国产三级黄色录像| 亚洲专区字幕在线| av超薄肉色丝袜交足视频| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 自线自在国产av| 女人被狂操c到高潮| 亚洲精品久久成人aⅴ小说| 国产日韩一区二区三区精品不卡| 视频区欧美日本亚洲| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 亚洲激情在线av| 国产在线精品亚洲第一网站| 视频区欧美日本亚洲| 人人妻人人添人人爽欧美一区卜| 免费高清在线观看日韩| 欧美日韩av久久| 国产精品成人在线| 成人国产一区最新在线观看| 成熟少妇高潮喷水视频| 美女高潮喷水抽搐中文字幕| 麻豆一二三区av精品| 中文字幕人妻丝袜制服| 少妇 在线观看| 国产熟女午夜一区二区三区| 无遮挡黄片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品亚洲av| 色播在线永久视频| 免费人成视频x8x8入口观看| 亚洲精品中文字幕在线视频| 久久久久久亚洲精品国产蜜桃av| 少妇被粗大的猛进出69影院| 一级毛片精品| 亚洲国产精品一区二区三区在线| 日本黄色视频三级网站网址| 国产精品秋霞免费鲁丝片| 美女大奶头视频| 久久久久精品国产欧美久久久| 亚洲av成人av| 国产精品久久久久成人av| 在线观看午夜福利视频| 男人舔女人的私密视频| 欧美成人免费av一区二区三区| 欧美激情 高清一区二区三区| 久久 成人 亚洲| а√天堂www在线а√下载| 欧美成人午夜精品| x7x7x7水蜜桃| 两个人免费观看高清视频| 黄色a级毛片大全视频| 亚洲性夜色夜夜综合| 美女国产高潮福利片在线看| 制服诱惑二区| 大型黄色视频在线免费观看| 人妻久久中文字幕网| 国产成年人精品一区二区 | 国产精品久久视频播放| 亚洲专区中文字幕在线| 熟女少妇亚洲综合色aaa.| 亚洲熟妇中文字幕五十中出 | 正在播放国产对白刺激| av有码第一页| 国产精品国产高清国产av| 欧美乱妇无乱码| 午夜影院日韩av| 亚洲精品国产色婷婷电影| 五月开心婷婷网| 国产精品国产高清国产av| 欧美日韩视频精品一区| 波多野结衣av一区二区av| 国产精品一区二区在线不卡| 国产精品自产拍在线观看55亚洲| 少妇 在线观看| 视频区图区小说| 男人舔女人下体高潮全视频| 窝窝影院91人妻| 性色av乱码一区二区三区2| 成人特级黄色片久久久久久久| 日本wwww免费看| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 99国产综合亚洲精品| 在线观看免费视频日本深夜| aaaaa片日本免费| 日韩欧美一区二区三区在线观看| 一区二区三区国产精品乱码| a级毛片在线看网站| 精品一区二区三区视频在线观看免费 | 久久久久久久久中文| 夜夜爽天天搞| 亚洲精品在线美女| 可以免费在线观看a视频的电影网站| 亚洲成人国产一区在线观看| 国产熟女xx| 高清毛片免费观看视频网站 | 欧美人与性动交α欧美精品济南到| 美女大奶头视频| 50天的宝宝边吃奶边哭怎么回事| 18禁美女被吸乳视频| 身体一侧抽搐| 人妻久久中文字幕网| 99在线人妻在线中文字幕| 女性被躁到高潮视频| 69精品国产乱码久久久| 日韩精品免费视频一区二区三区| 日日爽夜夜爽网站| 亚洲国产欧美一区二区综合| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品在线电影| 国产精品亚洲一级av第二区| 久久久久久亚洲精品国产蜜桃av| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 操出白浆在线播放| 两个人免费观看高清视频| 亚洲av片天天在线观看| 午夜免费激情av| 国产三级在线视频| 亚洲情色 制服丝袜| 性色av乱码一区二区三区2| 老汉色∧v一级毛片| 成人三级做爰电影| 成年人免费黄色播放视频| 亚洲色图av天堂| 99久久国产精品久久久| 久久天堂一区二区三区四区| av电影中文网址| 如日韩欧美国产精品一区二区三区| 国产又爽黄色视频| 国产精品野战在线观看 | 亚洲专区中文字幕在线| www.熟女人妻精品国产| 国内毛片毛片毛片毛片毛片| 亚洲一区二区三区色噜噜 | 最好的美女福利视频网| 制服人妻中文乱码| 一夜夜www| 女人被躁到高潮嗷嗷叫费观| 久久伊人香网站| 99国产综合亚洲精品| 国产一区二区三区视频了| 国产亚洲欧美精品永久| 国产三级黄色录像| 亚洲欧美日韩另类电影网站| 欧美黄色淫秽网站| 成年人免费黄色播放视频| 黄色成人免费大全| 夜夜夜夜夜久久久久| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看 | 亚洲精品久久成人aⅴ小说| 国产亚洲精品综合一区在线观看 | 亚洲精品在线观看二区| 久久久久久久久免费视频了| 国产成人精品无人区| 波多野结衣高清无吗| 国产在线精品亚洲第一网站| 久久久久久久精品吃奶| 亚洲av成人不卡在线观看播放网| 久久人妻av系列| 满18在线观看网站| 欧美+亚洲+日韩+国产| 丰满迷人的少妇在线观看| 久久99一区二区三区| 亚洲 国产 在线| 久久热在线av| 免费人成视频x8x8入口观看| av中文乱码字幕在线| 看免费av毛片| 视频在线观看一区二区三区| 成人三级黄色视频| 国产1区2区3区精品| 亚洲五月婷婷丁香| 欧美在线黄色|