• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spontaneous Cracking of Graphite Oxide Sheet on Oxygen Def i cient ZnO Film

    2014-07-19 11:17:04JinyngLiuHonginCiHunyiDingKunZhngNnPnXiopingWng
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Jin-yng Liu,Hong-in Ci,Hun-yi Ding,Kun Zhng,Nn Pn,Xio-ping Wng,?

    a.Department of Physics,University of Science and Technology of China,Hefei 230026,China

    b.Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    Spontaneous Cracking of Graphite Oxide Sheet on Oxygen Def i cient ZnO Film

    Jin-yang Liua,Hong-bin Caib,Huan-yi Dinga,Kun Zhangb,Nan Panb,Xiao-ping Wanga,b?

    a.Department of Physics,University of Science and Technology of China,Hefei 230026,China

    b.Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    Graphite oxide(GO)is an important material of wide applications.Owing to its good mechanical property,the GO sheet is always expected to be stable and remains f l at on various substrates.Here we demonstrate for the f i rst time an unexpected behavior of the GO sheet on oxygen def i cient ZnO film,namely the spontaneous cracking of the entire GO sheet into many small pieces.This unusual behavior has been carefully investigated by a series of control experiments and SEM,XPS and PL measurements.It is anticipated that the oxygen vacancies in the oxygen def i cient ZnO film can annihilate epoxy groups of the GO sheet,resulting in the unzipping of the aligned epoxy groups on GO sheet.A prototype of the white light detector made from the cracked GO sheet is fabricated and the device demonstrates high stability and good reproducibility.

    Graphite oxide,Epoxy group,ZnO film,Oxygen vacancy,Photoresponse

    I.INTRODUCTION

    The graphite oxide(GO),exfoliated chemically from natural f l ake graphite,has become a high efficient,low cost,and massive productive material for producing graphene,and has attracted a lot of attentions in chemistry and material science[1-4].GO is usually synthesized through the oxidation of graphite using oxidants including concentrated sulfuric acid,nitric acid and potassium permanganate with Hummers method, and there are often a variety of oxygen groups(such as epoxide,carbonyl(=CO),hydroxyl(-OH)and phenol groups)on its surface[5].Due to its unique structure, GO can be either readily dispersed into various solvents or further functionalized[6].To date,GO has been found potential applications for drug delivery,transparent conductive films[7,8],polymer composites,lithium ion batteries[9],supercapacitors[10],and photodetectors[11,12].Moreover,GO can further be considered as a building block for the electrical nanodevices.For example,Wei et al.obtained graphene nanoelectronics by thermochemical nanolithography with a heated atomic force microscope tip to reduce the GO sheets [13].Recently,Zhang et al.achieved the direct writing of electronic devices on graphene oxide by catalytic scanning probe lithography[14].

    It is intuitively believed that GO is very stable when it is dispersed on the substrate for the applications such as transparent conductive film and electronic device.To our best knowledge,there has hardly been any report available on the stability of GO on different substrates. In this work,we have systematically examined this important issue.It is found experimentally that GO does remain stable on a variety of substrates,including Si, SiO2,Au film,ITO,and even LaCaMnO(LCMO)film. However,to our surprise,we have observed that the GO sheets are unstable,even spontaneously cracked into small pieces on the oxygen def i cient ZnO films.The unusual phenomenon has been carefully investigated by SEM,PL,and XPS,and a possible interpretation is proposed.A prototype photodetector based on the cracked GO(c-GO)sheet has also been constructed,and its photo-response is demonstrated.

    II.EXPERIMENTS

    The ZnO fi lms(100 nm thick)were prepared by radical assistance sputtering system(RAS-1100C,Shincron Co.,Ltd.,Japan)[15,16].The annealed ZnO fi lms were obtained through annealing the as-prepared ZnO fi lms at 450?C for 90 min in the tube furnace.The GO sheets were prepared by chemical exfoliation of the natural fl ake graphite by a modi fied Hummers’method [17,18].The GO was uniformly dispersed in the deionized water(Milli-Q)with the help of the untrasonic (AS10200A untrasonic cleaner auto science Ltd)and centrifuged(Mikro 200R.Hettich.Germany).Then, 4μL of 0.1 mg/mL GO solution was drop-coated on di ff erent substrates and was dried naturally.

    X-ray photoelectron spectroscopy(XPS,ESCALAB250.Thermo-VG Scientif i c)was exploited to examine the chemical states of the ZnO film before and after annealing.Photoluminescense of ZnO films was characterized with excitation source of He-Cd pump laser (325 nm,LABRAM-HR)at room temperature.Scanning electron microscope(SEM)(Raith,e-LiNE lithography system,Germany)was used to observe the morphologies of GO sheets.The Keithley-4200 semiconductor characterization system was used to characterize the photoresponse of the device under the white light illumination with the power of 100 mW/cm2(Oriel instruments,Newport Corporation.USA).

    FIG.1 SEM images of GO coated on the as-prepared(a,b) and annealed(c,d)ZnO film after drying in atmosphere for 3 h(a,c)and 10 h(b,d).The scale bar is 4μm.

    III.RESULTS AND DISCUSSION

    GO sheets are laid on the substrates using dropcoated method.Figure 1 shows the SEM images of the GO sheets on both as-prepared and annealed ZnO fi lms after drying naturally for 3 and 10 h,respectively. As seen from Fig.1(a)and(b),even after drying for 10 h,single layer GO sheet keeps stable and fl at on the as-prepared ZnO fi lm except some wrinkles occurred, which was induced by the deposition process.The results can be well understood because GO possesses a exotic good mechanical property[19].However,an behavior,the spontaneous cracking of the GO sheet on namely the annealed ZnO fi lm,can be observed.As shown in Fig.1(c)and(d),a lot of faint gaps in the GO sheets occur after drying 3 h(Fig.1(c))and the gaps increase with the increasing of drying time.As shown in Fig.1(d),the width of the gaps is about tens of nanometers and their distribution is quite uniform. The average size of the cracked GO(c-GO)pieces is estimated to be about 1-2μm,while the shape of c-GO is diverse.

    FIG.2 SEM images of GO sheets on(a)Si,(b)300 nm SiO2,(c)5 nm Au,(d)100 nm ITO,(e)LCMO film,and (f)the transferred c-GO on SiO2substrate.The scale bar is 4μm.

    It should be pointed out that the spontaneous cracking behavior is unique and reproducible for the annealed ZnO fi lm.Figure 2(a)-(e)show the SEM images of GO laid on di ff erent substrates including Si,SiO2,Au,ITO, and LCMO.As seen,the GO demonstrates the similar morphologies to that shown in Fig.1(a),indicating the GO sheet is stable on these substrates.Figure 2(f) shows the result of the c-GO transferred from the annealed ZnO fi lm onto a SiO2substrate.Clearly,one can fi nd that some pieces of c-GO have been lost during the transfer process.This further implies that the spontaneous cracking behavior has really taken place in the GO sheet when it is put on the surface of the annealed ZnO fi lm.

    In order to understand the reason for the di ff erent stability of GO sheets on the as-prepared and annealed ZnO fi lm,we fi rst performed XPS measurements of ZnO fi lms and the results are shown in Fig.3(a)and(b).It can be found that O1s signals have wide and asymmetric shapes for both ZnO fi lms.According to our previous reports[20,21],the O1s can be deconvoluted into three Gaussian spectral components,centered at 530.3, 531.6,and 532.5 eV,respectively.Generally,the peak at 530.3 eV is attributed to the Zn-O bonds,and the peak at 532.5 eV is usually attributed to chemisorbed or dissociated oxygen or OH species on the surface of the ZnO thin fi lm,such as-CO3,adsorbed H2O or adsorbed O2.The component peaked at 531.6 eV is associated with O2-ions,which is correspondent to the oxygende fi cient regions within the ZnO matrix.The intensi-ties of the peak at 531.6 and 532.5 eV of the annealed ZnO fi lm are much stronger than those of as-prepared ZnO fi lm,implying that the annealed ZnO fi lm contains more oxygen vacancy defects and oxygen-de fi cient regions.The above conclusion can further be supported by the photoluminescense(PL)measurements of ZnO fi lms.As seen from Fig.3(c),the annealed ZnO fi lm has a strong green and orange light emission compared to as-prepared ZnO fi lm,while both fi lms have similar near band UV emission.Because the green light emission is generally attributed to the oxygen-de fi cient states,especially oxygen vacancies in ZnO,while the orange luminescence bands result from ioned oxygen vacancies in ZnO[22-25],we can conclude that the annealed sample is an oxygen de fi cient ZnO fi lm as compared to the as-prepared sample.

    FIG.3 XPS of O1s(a)the as-prepared and(b)the annealed ZnO films.(c)The corresponding PL results of two ZnO films.

    FIG.4(a)-(c)The schematic illustration of cracking process of GO sheets through unzipping along the aligned linear epoxy groups and formed three cracking small GO pieces.(d)Statistical results of the angular vertex of adjacent pieces of Fig.1(d).

    On the other hand,it is well known that there are lots of oxygen-based(such as epoxide,carbonyl and hydroxyl)groups on the GO surface[18]and these groups incline to aggregate or be aligned to decrease the surface energy of GO.For example,from the theoretical calculation,Li et al.found that once two epoxides were formed on the opposite side of a carbon hexagon,there was a strong tendency for other epoxy groups aligning in a line and then the aligned epoxy groups could induce a rupture of the underlying C-C bonds to form the open epoxide rings[26].The prediction of aligned linear epoxy groups were directly conf i rmed by STM observation recently[27].

    FIG.5(a)The schematic diagram of the device.(b)The photoresponse of the devices at 1.0 V bias voltage under the white light with power density of 100 mW/cm2.

    Based on the facts that the oxygen vacancies existed on the surface of annealed ZnO films and the epoxy groups aligned on the GO sheets,a possible interpretation for the spontaneous cracking of the GO sheet on the annealed ZnO film can thus be proposed.As the GO lying on the oxygen-def i cient ZnO film,the epoxy groups on the GO sheet can be annihilated by the surface oxygen vacancy in the annealed ZnO film.Because the aligned epoxy groups are like a zip on the GO,removing one epoxy group from the zip can start up the unzipping process to break GO(Fig.4(a)).As the cracking developed,the whole GO will end up into many small pieces(Fig.4(b)).In addition,due to the strong capillary effect between the ZnO films and the f l exible GO piece,the small GO piece adheres to the grain surface of ZnO film,resulting in widening the gaps between the pieces(Fig.4(c)).Considering the hexagon structure of GO and mechanical balance,we suggest that the adjacent cracking gaps should present an average angular vertex of 120?.Figure 4(d)plots the statistical results of angular vertex of the c-GO pieces shown in Fig.1(d). As seen,most of the angular vertex is about 120?and the result is well consistent with our above assumption.

    The cracks in c-GO pieces may offer an ideal candidate for the nano-electrodes that are useful for a variety of nanodevices such as photodetector,gas sensor,and chemical sensing[28-31].Herein,we have fabricated a prototype of white light photodetector with c-GO pieces and the schematic drawing is shown in Fig.5(a).The c-GO sheets on the annealed ZnO film are f i rst transferred to the SiO2/Si and further reduced at high temperature. The contact electrodes are fabricated by EBL with liftof ftechnology,and CuPc molecules as the photosensitizer are evaporated onto the c-GO pieces.The photoresponse of the device at a bias of 1 V under the white light illumination with power density of 100 mW/cm2is given in Fig.5(b).As shown,the photosensitivity of the device(Ion/Ioff)can be as large as~10 and the photoresponse is reversible and very stable.Note that there is no any photoresponse for the control devices with the same size based on simple CuPc or reduced c-GO,indicating the nanogap of the cracked GO sheet plays an important role in the photorespense.

    IV.CONCLUSION

    The spontaneous cracking of the GO sheet on oxygen def i cient ZnO film has been observed,which is in stark contrast with the conventional wisdom that the GO should always be stable due to its good mechanical property.Such a unusual phenomenon has been carefully examined by a series of controlling experiments and a possible mechanism is proposed.It can be suggested that the oxygen vacancies in oxygen de ficient ZnO fi lm can annihilate the epoxy groups on the surface of GO,leading to the unzipping of the aligned epoxy groups on the GO sheet.A white light detector based on the c-GO pieces has been fabricated,which has achieved high stability and good reproducibility.Our fi nding may o ff er new insight on the stability of GO sheet and novel nanogap electrodes for optoelectronic devices.

    V.ACKNOWLEDGMENTS

    This work was supported by the Ministry of Science and Technology of China(No.2011CB921403),the Chinese Academy of Science(No.XDB01020000),and the National Natural Science Foundation of China.

    [1]D.R.Dreyer,S.Park,C.W.Bielawski,and R.S.Ruof f, Chem.Soc.Rev.39,228(2010).

    [2]S.Park and R.S.Ruof f,Nat.Nanotechnol.4,217 (2009).

    [3]C.N.R.Rao,A.K.Sood,K.S.Subrahmanyam,and A. Govindaraj,Angew Chem.Int.Edit.48,7752(2009).

    [4]Y.H.Wu,T.Yu,and Z.X.Shen,J.Appl.Phys.108, 071301(2010).

    [5]A.Lerf,H.Y.He,M.Forster,and J.Klinowski,J.Phys. Chem.B 102,4477(1998).

    [6]J.I.Paredes,S.Villar-Rodil,A.Martinez-Alonso,and J.M.D.Tascon,Langmuir 24,10560(2008).

    [7]L.J.Cote,F.Kim,and J.X.Huang,J.Am.Chem. Soc.131,1043(2009).

    [8]Z.G.Geng,G.H.Zhang,Y.Lin,X.X.Yu,W.Z.Ren, Y.K.Wu,N.Pan,and X.P.Wang,Chin.J.Chem. Phys.25,494(2012).

    [9]G.X.Wang,B.Wang,X.L.Wang,J.Park,S.X.Dou, H.Ahn,and K.Kim,J.Mater.Chem.19,8378(2009).

    [10]S.Chen,J.W.Zhu,X.D.Wu,Q.F.Han,and X.Wang, ACS Nano 4,2822(2010).

    [11]Y.W.Zhu,S.Murali,W.W.Cai,X.S.Li,J.W.Suk,J. R.Potts,and R.S.Ruof f,Adv.Mater.22,3906(2010).

    [12]J.Y.Liu,X.X.Yu,G.H.Zhang,Y.K.Wu,K.Zhang, N.Pan,and X.P.Wang,Chin.J.Chem.Phys.26,225 (2013).

    [13]Z.Q.Wei,D.B.Wang,S.Kim,S.Y.Kim,Y.K.Hu, M.K.Yakes,A.R.Laracuente,Z.T.Dai,S.R.Marder, C.Berger,W.P.King,W.A.de Heer,P.E.Sheehan, and E.Riedo,Science 328,1373(2010).

    [14]K.Zhang,Q.Fu,N.Pan,X.X.Yu,J.Y.Liu,Y.Luo,X. P.Wang,J.L.Yang,and J.G.Hou,Nature Commun. 3,(2012).

    [15]Y.Z.Song and T.Sakurai,Vacuum 74,409(2004).

    [16]Q.M.Song,B.J.Wu,B.Xie,F.Huang,M.Li,H.Q. Wang,Y.S.Jiang,and Y.Z.Song,J.Appl.Phys.105, 044509(2009).

    [17]G.Williams,B.Seger,and P.V.Kamat,ACS Nano 2, 1487(2008).

    [18]X.X.Yu,H.B.Cai,W.H.Zhang,X.J.Li,N.Pan, Y.Luo,X.P.Wang,and J.G.Hou,ACS Nano 5,952 (2011).

    [19]J.W.Suk,R.D.Piner,J.An,and R.S.Ruof f,ACS Nano 4,6557(2010).

    [20]H.Y.Ding,Z.Zhao,G.H.Zhang,Y.K.Wu,Z.W. Gao,J.W.Li,K.Zhang,N.Pan,and X.P.Wang,J. Phys.Chem.C 116,17294(2012).

    [21]Q.H.Shen,Z.W.Gao,H.Y.Ding,G.H.Zhang, N.Pan,and X.P.Wang,Acta Phys.Sin-Ch.Ed.61, (2012).

    [22]B.X.Lin,Z.X.Fu,Y.B.Jia,and G.H.Liao,J. Electrochem.Soc.148,G110(2001).

    [23]S.A.Studenikin,N.Golego,and M.Cocivera,J.Appl. Phys.84,2287(1998).

    [24]A.B.Djurisic,Y.H.Leung,K.H.Tam,Y.F.Hsu, L.Ding,W.K.Ge,Y.C.Zhong,K.S.Wong,W.K. Chan,H.L.Tam,K.W.Cheah,W.M.Kwok,and D. L.Phillips,Nanotechnology 18,095702(2007).

    [25]A.B.Djurisic and Y.H.Leung,Small 2,944(2006).

    [26]J.L.Li,K.N.Kudin,M.J.McAllister,R.K. Prud’homme,I.A.Aksay,and R.Car,Phys.Rev.Lett. 96,176101(2006).

    [27]D.Pandey,R.Reifenberger,and R.Piner,Surf.Sci. 602,1607(2008).

    [28]T.Li,W.P.Hu,and D.B.Zhu,Adv.Mater.22,286 (2010).

    [29]W.Chen,H.Ahmed,and K.Nakazoto,Appl.Phys. Lett.66,3383(1995).

    [30]L.D.Qin,S.Park,L.Huang,and C.A.Mirkin,Science 309,113(2005).

    [31]Y.D.He,H.L.Dong,T.Li,C.L.Wang,W.Shao,Y. J.Zhang,L.Jiang,and W.P.Hu,Appl.Phys.Lett. 97,133301(2010).

    ceived on May 18,2013;Accepted on May 23,2013)

    ?Author to whom correspondence should be addressed.E-mail:xpwang@ustc.edu.cn

    丝袜美足系列| 久久久久久久亚洲中文字幕| 赤兔流量卡办理| 国产精品久久久久久久电影| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 国产精品久久久久久精品电影小说| 999精品在线视频| 久热这里只有精品99| 99视频精品全部免费 在线| 亚洲天堂av无毛| 在线观看国产h片| 丝袜脚勾引网站| 国产色爽女视频免费观看| 国产精品一区二区在线观看99| 中文欧美无线码| www.熟女人妻精品国产 | 满18在线观看网站| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 午夜视频国产福利| 一区二区三区精品91| 国产精品欧美亚洲77777| 欧美国产精品va在线观看不卡| 日日啪夜夜爽| 最近中文字幕2019免费版| 搡女人真爽免费视频火全软件| 视频中文字幕在线观看| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 成人手机av| 久久久久人妻精品一区果冻| 欧美亚洲日本最大视频资源| 少妇高潮的动态图| 精品一区二区三区四区五区乱码 | 宅男免费午夜| 国产一区二区三区av在线| 精品第一国产精品| 国产欧美日韩一区二区三区在线| 国产一区二区激情短视频 | 啦啦啦中文免费视频观看日本| 国产69精品久久久久777片| 国产精品人妻久久久久久| 久久久久久久久久久久大奶| 国产国拍精品亚洲av在线观看| 国产精品久久久久成人av| 国产亚洲精品第一综合不卡 | 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 国产免费福利视频在线观看| 在线观看三级黄色| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频| 久久精品国产自在天天线| 亚洲色图综合在线观看| 久久精品国产亚洲av天美| 女性生殖器流出的白浆| 男人舔女人的私密视频| 久久精品国产亚洲av涩爱| 只有这里有精品99| 精品少妇久久久久久888优播| 999精品在线视频| 99国产精品免费福利视频| 日本av免费视频播放| 黄色怎么调成土黄色| 欧美3d第一页| 捣出白浆h1v1| 久久精品久久久久久噜噜老黄| 日日爽夜夜爽网站| 乱码一卡2卡4卡精品| 国产有黄有色有爽视频| 啦啦啦在线观看免费高清www| 欧美国产精品va在线观看不卡| 精品国产一区二区三区四区第35| 天天躁夜夜躁狠狠久久av| 黑人猛操日本美女一级片| 欧美日韩av久久| 一区二区日韩欧美中文字幕 | 亚洲欧美清纯卡通| 成年女人在线观看亚洲视频| 大香蕉久久成人网| 丝袜美足系列| 男女无遮挡免费网站观看| 交换朋友夫妻互换小说| 久久人人爽av亚洲精品天堂| 成年av动漫网址| 国产精品一区二区在线观看99| 亚洲av.av天堂| 春色校园在线视频观看| 亚洲第一av免费看| 欧美日韩成人在线一区二区| 黑人高潮一二区| 国产精品女同一区二区软件| 国产在视频线精品| a 毛片基地| 国产日韩欧美视频二区| 国产精品久久久久久精品古装| 国产乱人偷精品视频| 久热这里只有精品99| 国产免费现黄频在线看| 亚洲精品日韩在线中文字幕| 一区在线观看完整版| 男女边吃奶边做爰视频| 黄色毛片三级朝国网站| 一级黄片播放器| 男女午夜视频在线观看 | 丰满乱子伦码专区| 亚洲国产最新在线播放| 超碰97精品在线观看| 亚洲三级黄色毛片| 女性生殖器流出的白浆| 久久99精品国语久久久| 色吧在线观看| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 久久久欧美国产精品| 精品熟女少妇av免费看| 丝袜喷水一区| 国产白丝娇喘喷水9色精品| 欧美日韩精品成人综合77777| 一级毛片电影观看| 国内精品宾馆在线| 18禁观看日本| 国产成人午夜福利电影在线观看| 免费观看av网站的网址| 欧美日韩视频精品一区| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 国产精品一区www在线观看| 亚洲图色成人| av有码第一页| 精品人妻偷拍中文字幕| 国产成人免费观看mmmm| 免费大片18禁| 国产精品久久久久久精品电影小说| 久久人人97超碰香蕉20202| 午夜福利,免费看| 成人毛片a级毛片在线播放| 日本色播在线视频| 美女xxoo啪啪120秒动态图| 欧美日韩av久久| 久久毛片免费看一区二区三区| 伊人亚洲综合成人网| 五月玫瑰六月丁香| 一边摸一边做爽爽视频免费| 黑丝袜美女国产一区| 欧美精品国产亚洲| 婷婷色av中文字幕| av.在线天堂| www.熟女人妻精品国产 | 母亲3免费完整高清在线观看 | 日本av手机在线免费观看| av线在线观看网站| 亚洲av国产av综合av卡| 亚洲综合精品二区| 高清视频免费观看一区二区| av片东京热男人的天堂| 国产亚洲一区二区精品| 寂寞人妻少妇视频99o| 激情五月婷婷亚洲| av黄色大香蕉| 一区二区三区精品91| 美女内射精品一级片tv| 日韩精品免费视频一区二区三区 | 黄色视频在线播放观看不卡| av有码第一页| √禁漫天堂资源中文www| 国产69精品久久久久777片| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 国产欧美日韩一区二区三区在线| 1024视频免费在线观看| 国产精品麻豆人妻色哟哟久久| 国产女主播在线喷水免费视频网站| 久久影院123| 免费黄网站久久成人精品| 亚洲第一区二区三区不卡| av一本久久久久| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 久久影院123| 亚洲少妇的诱惑av| 久久99蜜桃精品久久| 精品国产国语对白av| 久久婷婷青草| 99热网站在线观看| 成人二区视频| 欧美精品人与动牲交sv欧美| 久久精品国产综合久久久 | 亚洲 欧美一区二区三区| 丁香六月天网| 日韩中字成人| 三级国产精品片| 免费av不卡在线播放| 2018国产大陆天天弄谢| av线在线观看网站| 国产 一区精品| 午夜福利影视在线免费观看| 岛国毛片在线播放| 国产精品三级大全| 日本91视频免费播放| 国产黄色免费在线视频| 在线 av 中文字幕| 久久久久久久久久人人人人人人| 伦理电影免费视频| 亚洲欧美色中文字幕在线| 大香蕉久久成人网| 午夜激情av网站| 精品酒店卫生间| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 成人手机av| 久久国内精品自在自线图片| 国产在线免费精品| 国产片内射在线| 男女午夜视频在线观看 | 新久久久久国产一级毛片| 18在线观看网站| 午夜91福利影院| 亚洲精品久久成人aⅴ小说| 日本色播在线视频| 久久人人爽人人片av| 久久久久久久久久人人人人人人| 最近中文字幕高清免费大全6| 青春草视频在线免费观看| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| 国产在线一区二区三区精| 国产精品国产三级专区第一集| 精品久久久精品久久久| 久久久久国产网址| 成人漫画全彩无遮挡| av在线老鸭窝| 亚洲国产av新网站| 欧美成人精品欧美一级黄| 伊人亚洲综合成人网| 美女内射精品一级片tv| 黄色配什么色好看| 男女国产视频网站| 成年女人在线观看亚洲视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人一二三区av| 女人久久www免费人成看片| 女人精品久久久久毛片| 亚洲欧美一区二区三区黑人 | 欧美xxⅹ黑人| 免费不卡的大黄色大毛片视频在线观看| av国产精品久久久久影院| 熟妇人妻不卡中文字幕| videosex国产| 精品久久久久久电影网| videossex国产| videos熟女内射| 免费观看在线日韩| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 成人毛片60女人毛片免费| 色哟哟·www| 秋霞在线观看毛片| 看免费成人av毛片| 亚洲综合色惰| 午夜激情av网站| 91精品三级在线观看| 菩萨蛮人人尽说江南好唐韦庄| 三级国产精品片| 国产福利在线免费观看视频| 一本久久精品| 免费av不卡在线播放| 国产成人av激情在线播放| 久久婷婷青草| 午夜激情久久久久久久| 老女人水多毛片| 哪个播放器可以免费观看大片| 熟女人妻精品中文字幕| 男女下面插进去视频免费观看 | 人成视频在线观看免费观看| 好男人视频免费观看在线| 亚洲久久久国产精品| 精品久久国产蜜桃| 精品视频人人做人人爽| 国产成人精品婷婷| 巨乳人妻的诱惑在线观看| 日韩精品有码人妻一区| 中文字幕制服av| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区国产| 交换朋友夫妻互换小说| 久久久久网色| 亚洲av日韩在线播放| 亚洲高清免费不卡视频| videosex国产| av卡一久久| 久久久久久久久久成人| 国产综合精华液| 赤兔流量卡办理| 欧美精品国产亚洲| 日韩视频在线欧美| 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 日韩一区二区三区影片| 视频在线观看一区二区三区| 在现免费观看毛片| 精品熟女少妇av免费看| 我要看黄色一级片免费的| 久久久国产精品麻豆| 免费观看性生交大片5| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 人妻 亚洲 视频| 看非洲黑人一级黄片| www.熟女人妻精品国产 | 欧美97在线视频| 18在线观看网站| 午夜福利影视在线免费观看| 色5月婷婷丁香| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 久久久久视频综合| 丝袜在线中文字幕| 免费观看av网站的网址| 亚洲情色 制服丝袜| 国产日韩欧美在线精品| 成人国产麻豆网| 性色av一级| 女的被弄到高潮叫床怎么办| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 大香蕉久久成人网| 午夜激情av网站| 人体艺术视频欧美日本| 黄片播放在线免费| 久久久a久久爽久久v久久| 日韩中字成人| 曰老女人黄片| 久久久久久久久久人人人人人人| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 18在线观看网站| 欧美国产精品va在线观看不卡| 亚洲中文av在线| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 国产极品粉嫩免费观看在线| 秋霞在线观看毛片| 插逼视频在线观看| 国产综合精华液| 天天影视国产精品| 久久这里只有精品19| 水蜜桃什么品种好| 99视频精品全部免费 在线| 最近中文字幕高清免费大全6| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 卡戴珊不雅视频在线播放| 精品国产一区二区三区四区第35| 又大又黄又爽视频免费| 最近的中文字幕免费完整| 日本黄大片高清| 9191精品国产免费久久| 亚洲国产日韩一区二区| 亚洲欧美成人综合另类久久久| 99热这里只有是精品在线观看| 午夜福利网站1000一区二区三区| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产色婷婷电影| 亚洲国产精品国产精品| 两性夫妻黄色片 | 成人午夜精彩视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 精品国产露脸久久av麻豆| 制服人妻中文乱码| 精品人妻一区二区三区麻豆| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 亚洲精品美女久久av网站| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 亚洲av中文av极速乱| 日韩免费高清中文字幕av| 欧美人与善性xxx| 国产国拍精品亚洲av在线观看| 天天躁夜夜躁狠狠躁躁| 日韩av不卡免费在线播放| 又黄又粗又硬又大视频| 九草在线视频观看| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 99热国产这里只有精品6| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 热re99久久国产66热| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级| 日本欧美视频一区| 日本wwww免费看| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 熟妇人妻不卡中文字幕| 免费不卡的大黄色大毛片视频在线观看| 夜夜爽夜夜爽视频| 中文字幕最新亚洲高清| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 全区人妻精品视频| 9热在线视频观看99| 亚洲精品视频女| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| 亚洲伊人色综图| 成人国语在线视频| 考比视频在线观看| 午夜免费鲁丝| 大香蕉久久网| av国产久精品久网站免费入址| 天堂中文最新版在线下载| a级毛片黄视频| 亚洲精品久久久久久婷婷小说| 国产无遮挡羞羞视频在线观看| 国产极品粉嫩免费观看在线| av在线老鸭窝| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 国产在视频线精品| 1024视频免费在线观看| 中文字幕制服av| av片东京热男人的天堂| 午夜福利乱码中文字幕| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 卡戴珊不雅视频在线播放| 在线天堂最新版资源| 丝袜脚勾引网站| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| av免费在线看不卡| h视频一区二区三区| 美女xxoo啪啪120秒动态图| av有码第一页| 老司机影院成人| 18在线观看网站| 亚洲国产成人一精品久久久| 日韩三级伦理在线观看| 国产又色又爽无遮挡免| 日日摸夜夜添夜夜爱| 亚洲av电影在线进入| 老司机影院成人| 蜜臀久久99精品久久宅男| 狠狠精品人妻久久久久久综合| 两个人免费观看高清视频| 伦理电影免费视频| 国产一区二区三区综合在线观看 | 22中文网久久字幕| 另类精品久久| 日日撸夜夜添| 赤兔流量卡办理| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 一二三四在线观看免费中文在 | 少妇 在线观看| 免费观看a级毛片全部| av在线app专区| 色哟哟·www| 国产探花极品一区二区| 又黄又粗又硬又大视频| 久久99精品国语久久久| 高清在线视频一区二区三区| √禁漫天堂资源中文www| 国产一区二区三区综合在线观看 | 2022亚洲国产成人精品| 免费黄网站久久成人精品| 大码成人一级视频| 久久久久久久久久成人| 春色校园在线视频观看| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 亚洲成人手机| 精品福利永久在线观看| 久久久久久人人人人人| 午夜激情久久久久久久| 日本黄色日本黄色录像| 免费日韩欧美在线观看| 成人手机av| 男女午夜视频在线观看 | 成人亚洲精品一区在线观看| 人妻少妇偷人精品九色| 精品国产乱码久久久久久小说| 巨乳人妻的诱惑在线观看| 免费大片18禁| 狠狠婷婷综合久久久久久88av| 在线免费观看不下载黄p国产| 最黄视频免费看| 夜夜爽夜夜爽视频| 最近中文字幕高清免费大全6| av.在线天堂| 激情视频va一区二区三区| 国产成人免费观看mmmm| 熟女av电影| 丰满少妇做爰视频| 国产黄色免费在线视频| 伊人久久国产一区二区| 搡老乐熟女国产| 波野结衣二区三区在线| 熟女人妻精品中文字幕| 人人妻人人澡人人看| 亚洲国产毛片av蜜桃av| 9色porny在线观看| 人体艺术视频欧美日本| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久亚洲国产成人精品v| 9191精品国产免费久久| 亚洲精品久久久久久婷婷小说| 久久精品国产鲁丝片午夜精品| av一本久久久久| 国产男女超爽视频在线观看| 亚洲精品第二区| 色婷婷av一区二区三区视频| 国产精品不卡视频一区二区| av电影中文网址| 超色免费av| 日本91视频免费播放| 黑人欧美特级aaaaaa片| 永久网站在线| 欧美日韩亚洲高清精品| 午夜久久久在线观看| 看十八女毛片水多多多| 免费黄色在线免费观看| 国产成人免费观看mmmm| 深夜精品福利| 国产亚洲精品久久久com| 男人操女人黄网站| 精品视频人人做人人爽| 美女福利国产在线| 亚洲激情五月婷婷啪啪| 亚洲伊人色综图| 成人18禁高潮啪啪吃奶动态图| 性高湖久久久久久久久免费观看| 少妇人妻精品综合一区二区| av片东京热男人的天堂| 欧美+日韩+精品| 国产亚洲精品久久久com| 哪个播放器可以免费观看大片| 精品视频人人做人人爽| 嫩草影院入口| av在线观看视频网站免费| av在线老鸭窝| 亚洲 欧美一区二区三区| av网站免费在线观看视频| 高清毛片免费看| av天堂久久9| 免费观看av网站的网址| 欧美 日韩 精品 国产| 国产精品免费大片| 国产成人精品在线电影| 日韩一区二区三区影片| 精品久久蜜臀av无| 少妇高潮的动态图| 久久人人爽人人片av| 亚洲精品乱久久久久久| 九草在线视频观看| 亚洲欧美日韩另类电影网站| 日日撸夜夜添| 十八禁网站网址无遮挡| 国产 精品1| 搡女人真爽免费视频火全软件| 国产精品不卡视频一区二区| 欧美国产精品va在线观看不卡| 99热国产这里只有精品6| 国产成人午夜福利电影在线观看| 高清欧美精品videossex| 婷婷色综合大香蕉| 亚洲精品久久成人aⅴ小说| 精品国产国语对白av| 香蕉国产在线看| 久久精品熟女亚洲av麻豆精品| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 欧美97在线视频| 亚洲高清免费不卡视频| 中文欧美无线码| 亚洲丝袜综合中文字幕| 99久久综合免费| 91aial.com中文字幕在线观看| 久久婷婷青草| 性色avwww在线观看| 观看av在线不卡| 国产av一区二区精品久久| 亚洲综合精品二区| 看非洲黑人一级黄片| 宅男免费午夜| 女性被躁到高潮视频| 日本wwww免费看| 在线精品无人区一区二区三| 97人妻天天添夜夜摸| 亚洲一级一片aⅴ在线观看| 国产一区二区激情短视频 |