• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Hexagonal-rhombic Trilayer Ice Structure Conf i ned between Hydrophobic Plates

    2014-07-19 11:17:08MinJiaWenhuiZhaoLanfengYuan
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年1期

    Min Jia,Wen-hui Zhao,Lan-feng Yuan

    Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    New Hexagonal-rhombic Trilayer Ice Structure Conf i ned between Hydrophobic Plates

    Min Jia,Wen-hui Zhao,Lan-feng Yuan?

    Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    We perform molecular dynamics simulations for water conf i ned between two smooth hydrophobic walls and observe two crystalline structures with one being f i rst reported.Both of these structures obey the ice rule.The novel ice phase is a f l at hexagonal-rhombic trilayer ice,obtained under 1 GPa load at wall separation of 1.0 nm.In this structure,the water molecules in the two layers next to one of the walls(outer layers)and in the middle layer form hexagonal rings and rhombic rings,respectively.For a molecule in the outer layers,three of its four hydrogen bonds are in the same layer,and the other one hydrogen bond connects to the middle layer.For a molecule in the middle layer,only two of its four hydrogen-bonds are located in the same layer,and the other two connect to two different outer layers.Despite their different motifs,the area densities of the three layers are almost equal.The other structure is a f l at hexagonal bilayer ice produced at wall separation of 0.8 nm under lateral pressure of 100 MPa,analogous to a system demonstrated by Koga et al.[Phys.Rev.Lett.79,5262(1997)].Both f i rst-order and continuous phase transitions take place in these simulations.

    Conf i ned water,Molecular dynamics,Hexagonal-rhombic trilayer ice, Hexagonal-rhombic trilayer ice

    I.INTRODUCTION

    Conf i nement disrupts the hydrogen bonding network in bulk water,leading to novel and intriguing structures and properties of conf i ned water different from their bulk counterparts.Because of the important role of conf i ned water in biology,geophysics and advanced technology,in recent years this area has attracted a great deal of interests[1-10].

    On one-dimensional structures,Zangi and collaborators studied the freezing of water in carbon nanotubes or under conf i nement by atomically detailed walls with dispersive,nondirectional interactions,showing the importance of substrate geometry on freezing[11,12].On two-dimensional structures,Han et al.demonstrated that in a hydrophobic nanoslit,the freezing of bilayer water may occur continuously as well as discontinuously through a f i rst-order phase transition[13].A f i rst-order water-to-ice freezing transition and a bilayer hexagonal ice phase were observed by Koga et al.via cooling along with compression of bilayer water in a nanopore with smooth walls[14,15].For water between walls with separation of 1.1 nm,Kumar et al.observed that a trilayer liquid transforms into a bilayer liquid with decrease of its density[16].

    There are also some trilayer ices possessing longrange order in the configuration of oxygen atoms.With increases of the conf i ned water density,Giovambattista et al.found a f i rst-order transition from bilayer liquid to trilayer heterogeneous fluid(THF)which was characterized by a liquid(central)layer and two crystal-like layers next to the walls[17].As Zangi et al.observed in their simulations,conf i ned water at temperature of T=280 K can be induced to crystallize under the influence of external lateral electric f i eld with magnitude of 5 V/nm[18].They found two crystals:a low-density ice built from hexagonal rings parallel to the conf i ning walls and a high-density ice built from rhombic rings.

    In the present work,we investigate the freezing transitions and structures of water conf i ned between two hydrophobic parallel walls via molecular dynamics simulations.Two crystalline structures are observed, and one of them has not been reported in literature. This new ice phase is a f l at hexagonal-rhombic trilayer ice(fHRTI),obtained under 1 GPa load at wall separation d=1.0 nm.The other crystalline phase is a f l at hexagonal bilayer ice(fHBI)produced from the simulation at d=0.8 nm and lateral pressure PL=100 MPa,and it is analogous to a system reported by Koga et al.[14].

    FIG.1 Potential energy U as a function of T for various lateral pressure at different wall separations.(a)d=0.8 nm,(b)d=1.0 nm,(c)d=1.2 nm.The cooling process and heating process are indicated by the solid and open symbols, respectively.

    II.METHODS

    We use the GROMACS simulation package[19]to simulate a system of 400 water molecules conf i ned between two inf i nite smooth hydrophobic parallel walls. The f i ve-site tetrahedrally coordinated model of TIP5P [20]is used to describe the water molecules.The wallwall separation d is set to be in the range from 0.8 nm to 1.2 nm,with an increment of 0.2 nm.The direction perpendicular to the walls is chosen as z,and the middle slab with equal distances to the two walls is def i ned as z=0.Periodic boundary conditions are imposed in the x and y directions,parallel to the walls.The waterwall interactions are modeled by a 9-3 Lennard-Jones potential which is commonly used to represent the effective interactions of water molecules with the conf i ning surfaces.This potential function is shown as follows [21-25]:

    here?z is the distance from the oxygen atom of a water molecule to the wall,whereas σo-wl=0.25 nm and εo-wl=1.25 kJ/mol are potential parameters,this set of parameter values were commonly used in simulations for conf i ned water[26-28].The ensemble is with constant number of molecules,PLand T.The Nos′e-Hoover thermostat[29,30]and Parrinello-Rahman barostat[31]are employed to control the temperature and pressure.Due to the non-periodicity in z direction, the long-range electrostatic interactions are treated with the slab-adapted Ewald sum method[32],and a cutof fof 1 nm is used for van der Waals and Coulomb interactions in real space.The simulation for each set of T and d is carried out for 50 ns with a step of 2 fs.

    III.RESULTS

    The MD simulations for various d and PLare performed.For each PL,the T is f i rst lowered from 350 K to 160 K with a step of 10 K and then raised in the same way.As Fig.1(a)shows,in the MD simulations for d=0.8 nm,the potential energy U f i rst gradually decreases with cooling of the system,and then suddenly drops by about 3-5 kJ/mol to a lower value.Analogously,upon heating the potential energy jumps to a higher value,but at a temperature higher than the transition temperature in the cooling process.In addition to the MD simulation for d=0.8 nm,the potential energies of system under 1 GPa load at d=1.0 nm also exhibit these abrupt changes.These phase transitions are identif i ed as f i rst-order.Moreover,these f i rst-order transitions between liquid and solid are accompanied by discontinuities of 3-4 orders of magnitude in the lateral diffusion coefficient DL,as shown in Fig.2.For example, in the cooling process at d=0.8 nm and PL=100 MPa and T=250 K,DL≈2.0×10-6cm2/s;for the same system at 240 K,DL≈1.2×10-11cm2/s.In the other simulations,those are no sharp changes in the U and DL,while the DLgradually decrease under 10-8cm2/s, so we attribute them to continuous phase transitions. The lines of potential energy in the cooling and heating processes for continuous phase transitions are almost in registry.

    With cooling of the system,conf i ned liquid water transforms into ice phases,including ten amorphous structures and two crystal-like structures in which one has not be reported in literature.We now turn attention to these structures.Based on the snapshots,their inherent configurations are obtained as the potential-energy local minimum structure by applying steepest-descent method.The inherent structures of the two crystalline phases and a representative amorphous structure are shown in Figs.3,4,and 5,respecvtively.

    FIG.2 The lateral diffusion coefficient DLas a function of temperature T for various lateral pressure in the cooling process at different wall separations.(a)d=0.8 nm,(b)d=1.0 nm,(c)d=1.2 nm.

    FIG.3 Inherent configuration of fHBI obtained from MD simulation at PL=100 MPa,T=240 K and d=0.8 nm.(a) Top view of the upper layer of this hexagonal bilayer lattice structure.(b)Zoomed top view of fHBI.(c)Side view of fHBI.Oxygen atoms in upper and lower layer are depicted in red and yellow,respectively;and hydrogen bonds in blue dotted lines.

    Figure 3 shows the top and side views of a f l at hexagonal bilayer ice(fHBI)obtained at d=0.8 nm and PL=100 MPa and T=240 K.The water molecules in both layers form hexagonal rings,and all the oxygen atoms in each layer are located in the same plane.As a measure of the planarity of a layer,the width of the transverse density profile(TDP)of oxygen atoms is less than 0.05 nm(as shown in Fig.6(a)).This structure obeys the ice rule,i.e.,every molecule participates in four hydrogen bonds.Among these four hydrogen bonds,three are in the same layer,and the fourth one connects to a molecule in the opposite layer.As shown in Fig.7,the hydrogen bond O-H···O angle distribution exhibits a peak around 167?and a shoulder ranging from 140?to 160?.The small angles of the shoulder are originated from the hydrogen bonds in the same planes.An analogous structure was reported by Koga et al.[13],which was also a f l at hexagonal bilayer ice. Nevertheless,there are still some differences between these two structures.In their simulations,the upper and lower distorted hexagonal lattices were completely in registry.While in this work,the oxygen atoms in the two layers are regularly staggered,as displayed in Fig.3(b).

    FIG.4 Inherent structure of fHRTI obtained from MD simulation at d=1.0 nm and PL=1 GPa.(a,b)Top view of the ice layer next to one of the walls and at the middle slab. (c,d)Side view of fHRTI at direction of x and y.Oxygen atoms are depicted in red,hydrogen atoms in white,and hydrogen bonds in blue dotted lines.

    We obtain another polymorph of ice under 1 GPa load at wall separation d=1.0 nm,which is previously unknown.Its TDP exhibits three peaks,as Fig.6(b) shows.At high temperature,the peak height of the central peak is lower than those of the other two peaks. When the temperature decreases from 300 K to 290 K, the heights of all the three peaks jump to higher values that are nearly equal.Meanwhile,the lateral diffusion coefficient DLdrops from 1.45×10-5cm2/s to 1.13×10-8cm2/s(Fig.2(b))and the potential energy shows a sharp change of about 4 kJ/mol(Fig.1(b)), indicating a f i rst-order transition between liquid and solid.In this ice phase(Fig.4(a)-(d)),the oxygen atoms form three f l at planes;the water molecules in the two layers next to one of the walls(outer layers)and in the middle layer form hexagonal and rhombic rings,respectively.So we name this structure as fHRTI.In the middle layer,a minimum repeating unit consists of two rhmobuses with different directions.Despite the different motifs in the outer layers and in the middle layer, the area densities of the three layers are nearly equal:the numbers of oxygen atoms in the three layers(up to down)are 132,136,and 132,respectively.This is also ref l ected in the three TDP peaks with similar heights and widths(Fig.6(b)).

    FIG.5 Inherent structure obtained from MD simulation at d=1.2 nm and PL=1 GPa.(a)The top view of the upper layer of this amorphous structure.(b)The zoomed top view of the amorphous.(c)The side view of the amorphous. Oxygen atoms are depicted in red,hydrogen atoms in white, and hydrogen bonds in blue dotted lines.

    As the case of fHBI,each water molecule in fHRTI also possesses four hydrogen bonds.For a molecule in the outer layers,three of its hydrogen bonds are in the same layer,and the other one connects to a molecule in the middle layer.On the other hand,for a molecule in the middle layer,two hydrogen bonds are in the same layer,and the other two connect to the two different outer layers.The distribution of O-H···O angles of hydrogen bonds(Fig.7)exhibits a peak around 162?and a shoulder around 118?,i.e.,some hydrogen bonds are heavily bent.These bent hydrogen bonds are between neighboring molecules of the outer layers in the chains in y direction(Fig.4(a)).

    Among the ten amorphous structures,we pick the one at PL=1 GPa and d=1.2 nm as an example,and show its inherent structure in Fig.5.Its TDP exhibits four peaks(or two peaks and two shoulders),and shows no sharp change with change of temperature(Fig.6(c)). The densities of layers near the wall are signif i cantly higher than the middle two layers.Therefore,the composition of this structure may be called either four layers or two puckered layers.This amorphous structure lacks long-range order in the configuration of oxygen atoms, resulting in diverse and complicated hydrogen bonding patterns.

    IV.CONCLUSION

    In this work we have employed extensive MD simulations of water conf i ned between two hydrophobic parallel walls for three separations:d=0.8,1.0,1.2 nm. Both f i rst-order and continuous phase transitions are observed.

    FIG.6 The TDP of oxygen atoms at different d,PL,and T. The TDP depending on T at(a)d=0.8 nm,(b)d=1.0 nm, and(c)d=1.2 nm.

    Two kinds of crystalline ice phase fHBI and fHRTI are formed spontaneously,and fHRTI is f i rst ever reported. In both structures,each water molecule has four hydrogen bonds.The fHRTI is composed of two outer layers of hexagonal rings and a middle layer of rhombic rings. Among the four hydrogen bonds of a molecule in the outer layers,three are in the same layer,and the other one connects to the middle layer.For a molecule in the middle layer,only two hydrogen bonds are in the same layer,and the other two connect to the two different outer layers.These novel and interesting f i ndings on bilayer and trilayer ices deepen our understanding for conf i ned water.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.20603032,No.20733004, No.21121003,No.91021004,and No.20933006),by the Ministry of Science and Technology of China (No.2011CB921400),theNationalExcellentDoc-toralDissertationofChina(No.200736),theFundamental Research Funds for the Central Universities(No.WK2340000006,No.WK2060140005,and No.WK2060030012),and the USTC-HP HPC Project.

    FIG.7 Distribution of hydrogen bond angles for fHBI(solid line)and fHRTI(dotted line).

    [1]K.Koga,H.Tanaka,and X.C.Zeng,Nature 408,564 (2000).

    [2]K.Koga,G.T.Gao,H.Tanaka,and X.C.Zeng,Nature 412,802(2001).

    [3]R.J.Mashl,S.Joseph,N.R.Aluru,and E.Jakobsson, Nano Lett.3,589(2003).

    [4]J.Bai,C.R.Su,R.D.Parra,X.C.Zeng,H.Tanaka,K. Koga,and J.M.Li,J.Chem.Phys.118,3913(2003).

    [5]Y.Liu,Q.Wang,T.Wu,and L.Zhang,J.Chem.Phys. 123,234701-1(2005).

    [6]D.Takaiwa,I.Hatano,K.Koga,and H.Tanaka,Proc. Natl.Acad.Sci.USA 105,39(2008).

    [7]N.Kastelowitz,J.C.Johnston,and V.Molinero,J. Chem.Phys.132,124511(2010).

    [8]K.Xu,P.Cao,and J.R.Heath,Science 329,1188 (2010).

    [9]R.M.Kumar,M.Elango,R.Parthasarathi,and V. Subramanian,J.Phys.Chem.A 115,12841(2011).

    [10]C.Guse and R.Hentschke,J.Phys.Chem.B 116,751 (2012).

    [11]J.Bai,J.Wang,and X.C.Zeng,Proc.Natl.Acad.Sci. USA 103,19664(2006).

    [12]R.Zangi and A.Mark,Phys.Rev.Lett.91,025502 (2003).

    [13]S.Han,M.Y.Choi,P.Kumar,and H.E.Stanley,Nat. Phys.10,1038(2010).

    [14]K.Koga,X.C.Zeng,and H.Tanaka,Phys.Rev.Lett. 79,5262(1997).

    [15]J.C.Johnston,N.Kastelowitz,and V.Molinero,J. Chem.Phys.132,124511(2010).

    [16]P.Kumar,S.V.Buldyrev,F.W.Starr,N.Giovambattista,and H.E.Stanley,Phys.Rev.E 72,051503 (2005).

    [17]N.Giovambattista,P.J.Rossky,and P.G.Debenedetti, Phys.Rev.Lett.102,050603-1(2009).

    [18]R.Zangi and A.E.Mark,J.Chem.Phys.120,7123 (2004).

    [19]B.Hess,C.Kutzner,D.van der Spoel,and E.Lindahl, J.Chem.Theory Comput.4,435(2008).

    [20]M.W.Mahoney and W.L.Jorgensen,J.Chem.Phys. 112,8910(2000).

    [21]S.Han,P.Kumar,and H.E.Stanley,Phys.Rev.E 79, 041202(2009).

    [22]P.Kumar,S.V.Buldyrev,F.W.Starr,N.Giovambattista,and H.E.Stanley,Phys.Rev.E 72,051503-1 (2005).

    [23]K.Koga and H.Tanaka,J.Chem.Phys.122,104711-1 (2005).

    [24]J.Bai,C.A.Angell,and X.C.Zeng,Proc.Natl.Acad. Sci.USA 107,5718(2010).

    [25]D.Bratko,C.D.Daub,and A.Luzar,Phys.Chem. Chem.Phys.10,6807(2008).

    [26]S.H.Han,M.Y.Choi,P.Kumar,and H.E.Stanley, Nat.Phys.6,685(2010).

    [27]C.Y.Lee,J.A.McCammon,and P.J.Rossky,J.Chem. Phys.80,4448(1984).

    [28]S.H.Lee and P.J.Rossky,J.Chem.Phys.100,3334 (1994).

    [29]S.Nos′e and M.L.Klein,Mol.Phys.50,1055(1983).

    [30]W.G.Hoover,Phys.Rev.A31,1695(1985).

    [31]M.Parrinello and A.Rahman,J.Appl.Phys.52,7182 (1981).

    [32]I.C.Yeh and M.L.Berkowitz,J.Chem.Phys.111, 3155(1999).

    ceived on May 22,2013;Accepted on May 29,2013)

    ?Author to whom correspondence should be addressed.E-mail:yuanlf@ustc.edu.cn

    热99re8久久精品国产| 你懂的网址亚洲精品在线观看 | 看非洲黑人一级黄片| 亚洲国产欧美人成| 成人av在线播放网站| 直男gayav资源| 国内精品一区二区在线观看| 国产不卡一卡二| 午夜亚洲福利在线播放| 免费看日本二区| 日韩一区二区视频免费看| 永久网站在线| 丰满人妻一区二区三区视频av| 天天躁日日操中文字幕| 亚洲不卡免费看| 亚洲最大成人中文| 午夜a级毛片| 69人妻影院| 国产av一区在线观看免费| 又黄又爽又刺激的免费视频.| 国产黄片美女视频| 色吧在线观看| 给我免费播放毛片高清在线观看| 亚洲国产精品久久男人天堂| 波野结衣二区三区在线| 搡女人真爽免费视频火全软件| 亚洲av第一区精品v没综合| a级毛色黄片| 日韩欧美在线乱码| 91aial.com中文字幕在线观看| 九九热线精品视视频播放| 久久九九热精品免费| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 亚洲av.av天堂| 国产成人a∨麻豆精品| 人妻久久中文字幕网| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 午夜免费激情av| 亚洲国产精品国产精品| 日本成人三级电影网站| www.色视频.com| 国产成人a∨麻豆精品| 亚洲久久久久久中文字幕| 九草在线视频观看| 国产精品一及| 禁无遮挡网站| 午夜视频国产福利| 精品人妻视频免费看| 久久综合国产亚洲精品| 欧美成人免费av一区二区三区| 国产免费男女视频| www.色视频.com| 日韩欧美精品免费久久| 联通29元200g的流量卡| 蜜臀久久99精品久久宅男| 久久久精品欧美日韩精品| 精品无人区乱码1区二区| 听说在线观看完整版免费高清| 在现免费观看毛片| 成人美女网站在线观看视频| 99久久久亚洲精品蜜臀av| 久久精品影院6| 99在线视频只有这里精品首页| 精品久久久噜噜| 国产精品一区二区性色av| 中文精品一卡2卡3卡4更新| 亚洲四区av| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 青春草亚洲视频在线观看| 久久久久性生活片| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 欧美zozozo另类| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 午夜福利在线观看吧| 老师上课跳d突然被开到最大视频| 国产老妇女一区| 美女黄网站色视频| 亚洲国产精品成人久久小说 | 欧美性感艳星| 高清毛片免费看| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 中国美白少妇内射xxxbb| 国产一区二区三区av在线 | 亚洲第一区二区三区不卡| 国产精品一区二区三区四区久久| 国产亚洲欧美98| 国产免费男女视频| 在线免费观看的www视频| 一本一本综合久久| 国产亚洲精品av在线| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 又爽又黄a免费视频| 国产亚洲精品久久久久久毛片| 在线免费观看的www视频| 好男人在线观看高清免费视频| 天堂av国产一区二区熟女人妻| 欧美又色又爽又黄视频| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 日本免费一区二区三区高清不卡| 搡老妇女老女人老熟妇| 日本三级黄在线观看| 高清午夜精品一区二区三区 | 一个人看视频在线观看www免费| 亚洲精品成人久久久久久| 夜夜爽天天搞| 久久这里有精品视频免费| 日日啪夜夜撸| 国模一区二区三区四区视频| 日韩欧美在线乱码| 日韩中字成人| 99久国产av精品国产电影| 国产av麻豆久久久久久久| 男人舔奶头视频| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 免费观看在线日韩| 综合色丁香网| av黄色大香蕉| 久久久久久九九精品二区国产| 听说在线观看完整版免费高清| 老司机福利观看| 国产精品一区二区在线观看99 | 免费观看在线日韩| 日本免费a在线| 内地一区二区视频在线| 日韩av不卡免费在线播放| 亚洲av一区综合| 欧洲精品卡2卡3卡4卡5卡区| 久久精品人妻少妇| 精品免费久久久久久久清纯| 日韩视频在线欧美| 国产真实伦视频高清在线观看| 色播亚洲综合网| 亚洲国产精品国产精品| 在线a可以看的网站| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 亚洲欧美精品综合久久99| 午夜福利高清视频| 久久国产乱子免费精品| 国产成人福利小说| 国产成人影院久久av| 人妻久久中文字幕网| 日韩在线高清观看一区二区三区| 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 免费观看人在逋| 国产精品一区www在线观看| 丝袜喷水一区| 精品少妇黑人巨大在线播放 | 亚洲精品日韩av片在线观看| 色综合站精品国产| 人妻少妇偷人精品九色| 成年版毛片免费区| 淫秽高清视频在线观看| 日韩欧美国产在线观看| 国产亚洲5aaaaa淫片| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 亚洲欧洲国产日韩| 国产老妇伦熟女老妇高清| 国产伦一二天堂av在线观看| 亚洲18禁久久av| 麻豆精品久久久久久蜜桃| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 国产一级毛片在线| 亚洲人成网站在线播放欧美日韩| a级毛片免费高清观看在线播放| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线 | 国产男人的电影天堂91| 国产一级毛片在线| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 联通29元200g的流量卡| 久久99热这里只有精品18| 亚洲国产精品成人久久小说 | 午夜福利视频1000在线观看| 国产成人freesex在线| 美女黄网站色视频| 亚洲av电影不卡..在线观看| 国产高潮美女av| 精品免费久久久久久久清纯| 国产欧美日韩精品一区二区| 国产 一区精品| 一区二区三区免费毛片| 亚洲在久久综合| av又黄又爽大尺度在线免费看 | 午夜久久久久精精品| 国产三级中文精品| 毛片女人毛片| 网址你懂的国产日韩在线| 精品久久久久久久久av| 午夜久久久久精精品| 免费看a级黄色片| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区 | 99在线视频只有这里精品首页| 日韩,欧美,国产一区二区三区 | 精品人妻熟女av久视频| av福利片在线观看| 少妇裸体淫交视频免费看高清| 亚洲人成网站高清观看| 最新中文字幕久久久久| 99热这里只有是精品在线观看| 美女脱内裤让男人舔精品视频 | 国产激情偷乱视频一区二区| 99热只有精品国产| 99热这里只有精品一区| 日韩av不卡免费在线播放| 国产精品久久久久久av不卡| 精品少妇黑人巨大在线播放 | 日韩 亚洲 欧美在线| 婷婷精品国产亚洲av| 九九热线精品视视频播放| 精品久久久久久久久久久久久| 国产极品天堂在线| 国产淫片久久久久久久久| 欧美不卡视频在线免费观看| 亚洲av一区综合| 精品久久久噜噜| 看非洲黑人一级黄片| 国产美女午夜福利| 色哟哟哟哟哟哟| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 26uuu在线亚洲综合色| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 中国国产av一级| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 一夜夜www| 啦啦啦观看免费观看视频高清| 精品国产三级普通话版| 啦啦啦啦在线视频资源| 日日啪夜夜撸| 国产黄色视频一区二区在线观看 | 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪| 人人妻人人澡欧美一区二区| 三级毛片av免费| 小说图片视频综合网站| 毛片一级片免费看久久久久| 欧美人与善性xxx| 少妇的逼好多水| 亚洲不卡免费看| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 网址你懂的国产日韩在线| 听说在线观看完整版免费高清| 亚洲欧美日韩高清在线视频| 99久久中文字幕三级久久日本| 久久草成人影院| 成人毛片a级毛片在线播放| 97热精品久久久久久| 内射极品少妇av片p| 国产一区二区在线av高清观看| av黄色大香蕉| 最新中文字幕久久久久| 亚洲一区高清亚洲精品| 国产乱人视频| 国内精品宾馆在线| 欧美三级亚洲精品| 一个人观看的视频www高清免费观看| 在线国产一区二区在线| 丰满人妻一区二区三区视频av| 中文字幕制服av| 国产极品天堂在线| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 一区二区三区免费毛片| av福利片在线观看| 最近中文字幕高清免费大全6| 波多野结衣巨乳人妻| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 免费看a级黄色片| 能在线免费观看的黄片| 色哟哟哟哟哟哟| 97热精品久久久久久| www.av在线官网国产| 听说在线观看完整版免费高清| 成人一区二区视频在线观看| 国产精品人妻久久久影院| 国产精品不卡视频一区二区| 色综合站精品国产| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 亚洲av成人精品一区久久| 婷婷六月久久综合丁香| 久久精品国产亚洲av天美| 日本色播在线视频| 免费看日本二区| 国产亚洲5aaaaa淫片| 能在线免费观看的黄片| 久久热精品热| 老司机影院成人| 中文亚洲av片在线观看爽| 少妇猛男粗大的猛烈进出视频 | 国内精品宾馆在线| 国产成人精品久久久久久| 好男人视频免费观看在线| 黄色配什么色好看| 成人午夜高清在线视频| 亚洲最大成人中文| av在线播放精品| 亚洲无线观看免费| 丰满乱子伦码专区| 在线国产一区二区在线| 国产一区二区亚洲精品在线观看| 午夜精品一区二区三区免费看| 亚洲av男天堂| 国产大屁股一区二区在线视频| 男女下面进入的视频免费午夜| 欧美3d第一页| 18禁黄网站禁片免费观看直播| 青春草国产在线视频 | 欧美xxxx黑人xx丫x性爽| 九草在线视频观看| 夜夜爽天天搞| 亚洲成人av在线免费| 性插视频无遮挡在线免费观看| 国产精品乱码一区二三区的特点| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 亚洲精品影视一区二区三区av| 色综合色国产| 69av精品久久久久久| 国产午夜精品论理片| 亚洲最大成人av| 久久久欧美国产精品| 精品久久国产蜜桃| av专区在线播放| 亚洲av成人av| 免费人成在线观看视频色| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 哪个播放器可以免费观看大片| 国产视频内射| 久久国产乱子免费精品| 校园春色视频在线观看| 男人舔女人下体高潮全视频| 内地一区二区视频在线| 久久婷婷人人爽人人干人人爱| 别揉我奶头 嗯啊视频| 一区福利在线观看| 又爽又黄a免费视频| 国产成人91sexporn| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人精品婷婷| 成人欧美大片| 综合色av麻豆| 国产伦在线观看视频一区| 欧美一区二区亚洲| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 久久久久网色| 欧美+亚洲+日韩+国产| 在线免费观看不下载黄p国产| 中文字幕av成人在线电影| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 日本黄色片子视频| 26uuu在线亚洲综合色| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 免费不卡的大黄色大毛片视频在线观看 | 欧美成人a在线观看| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 变态另类成人亚洲欧美熟女| 亚洲最大成人手机在线| 22中文网久久字幕| 麻豆乱淫一区二区| 亚洲精品成人久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 成人国产麻豆网| 别揉我奶头 嗯啊视频| 美女国产视频在线观看| 亚洲三级黄色毛片| 九九热线精品视视频播放| 国产亚洲精品av在线| 欧美日韩乱码在线| h日本视频在线播放| 一级毛片我不卡| 国产午夜福利久久久久久| 麻豆国产av国片精品| 日韩人妻高清精品专区| 欧美3d第一页| 国产高清激情床上av| 午夜久久久久精精品| av又黄又爽大尺度在线免费看 | 国内精品一区二区在线观看| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 久久久久性生活片| 国产不卡一卡二| 国产乱人偷精品视频| 久久中文看片网| 国内精品久久久久精免费| 精品久久久久久久久av| 国产伦一二天堂av在线观看| 毛片一级片免费看久久久久| 国产成人精品久久久久久| 国产精品美女特级片免费视频播放器| 国产精品无大码| 国产精品久久电影中文字幕| 亚洲自偷自拍三级| 欧美高清成人免费视频www| 一级毛片久久久久久久久女| .国产精品久久| 亚洲精品国产av成人精品| 亚洲一区二区三区色噜噜| 欧美xxxx性猛交bbbb| 亚洲欧美精品专区久久| 亚洲久久久久久中文字幕| 美女黄网站色视频| 国产午夜精品一二区理论片| 亚洲av熟女| 黄色日韩在线| 欧美色视频一区免费| 亚洲精品亚洲一区二区| 亚洲av不卡在线观看| 亚洲av男天堂| 精品久久久久久久人妻蜜臀av| 亚洲av一区综合| 一个人看的www免费观看视频| 男人的好看免费观看在线视频| 亚洲一区二区三区色噜噜| 非洲黑人性xxxx精品又粗又长| 久久国产乱子免费精品| 乱码一卡2卡4卡精品| 久久精品影院6| 日韩成人伦理影院| 18禁在线无遮挡免费观看视频| 亚洲第一区二区三区不卡| 国产麻豆成人av免费视频| 久久99蜜桃精品久久| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 国产精品不卡视频一区二区| 亚洲国产精品成人综合色| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| 久久国产乱子免费精品| 久久人妻av系列| 亚洲精品国产成人久久av| 人妻制服诱惑在线中文字幕| 日本免费a在线| 日韩制服骚丝袜av| 中文字幕制服av| 黄片wwwwww| 成年免费大片在线观看| 亚洲精品乱码久久久久久按摩| 精品一区二区三区视频在线| 亚洲中文字幕一区二区三区有码在线看| 久久久午夜欧美精品| 国产精品伦人一区二区| 免费电影在线观看免费观看| 欧美高清成人免费视频www| 丝袜美腿在线中文| 寂寞人妻少妇视频99o| 韩国av在线不卡| 久久亚洲精品不卡| 成人欧美大片| 欧美一区二区亚洲| av天堂中文字幕网| 国产美女午夜福利| 一区福利在线观看| 美女被艹到高潮喷水动态| 一夜夜www| 欧美日韩一区二区视频在线观看视频在线 | 99热这里只有是精品在线观看| 久久亚洲精品不卡| 99久久精品一区二区三区| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在 | 欧美区成人在线视频| 精品欧美国产一区二区三| 日本五十路高清| 国产久久久一区二区三区| 国产黄a三级三级三级人| 两性午夜刺激爽爽歪歪视频在线观看| 国产亚洲精品久久久com| 欧美日本亚洲视频在线播放| 天堂影院成人在线观看| 舔av片在线| 波野结衣二区三区在线| 久久精品夜色国产| 99久久精品热视频| 久久久欧美国产精品| 六月丁香七月| 亚洲精品日韩在线中文字幕 | 国产精品三级大全| 岛国毛片在线播放| 午夜爱爱视频在线播放| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 亚洲国产精品成人综合色| 欧美精品一区二区大全| 如何舔出高潮| 久久精品影院6| 亚洲国产精品合色在线| av女优亚洲男人天堂| 18禁黄网站禁片免费观看直播| 午夜精品一区二区三区免费看| 天美传媒精品一区二区| 色哟哟哟哟哟哟| 如何舔出高潮| 有码 亚洲区| 成年版毛片免费区| 久久精品夜色国产| 美女国产视频在线观看| 久久亚洲国产成人精品v| 亚洲精品久久国产高清桃花| av在线观看视频网站免费| 国产综合懂色| 午夜亚洲福利在线播放| 人妻夜夜爽99麻豆av| 女的被弄到高潮叫床怎么办| 又粗又硬又长又爽又黄的视频 | 18禁在线播放成人免费| 熟女电影av网| 成年免费大片在线观看| 亚洲自偷自拍三级| 国内精品一区二区在线观看| 能在线免费观看的黄片| 国产蜜桃级精品一区二区三区| 少妇的逼水好多| av卡一久久| 久久久午夜欧美精品| 老师上课跳d突然被开到最大视频| 美女xxoo啪啪120秒动态图| 熟女电影av网| 亚洲精品456在线播放app| 国产国拍精品亚洲av在线观看| 天天一区二区日本电影三级| 成人性生交大片免费视频hd| 久久精品国产亚洲av香蕉五月| kizo精华| 国产精华一区二区三区| 精华霜和精华液先用哪个| 欧美潮喷喷水| 卡戴珊不雅视频在线播放| 日韩精品青青久久久久久| 中文在线观看免费www的网站| 美女xxoo啪啪120秒动态图| 永久网站在线| 成年av动漫网址| 久久久久久大精品| 国产精品久久久久久久电影| 久久草成人影院| 麻豆国产97在线/欧美| 欧美最新免费一区二区三区| 色视频www国产| 国产精品一区二区三区四区久久| 少妇高潮的动态图| 国产中年淑女户外野战色| 丰满人妻一区二区三区视频av| 伊人久久精品亚洲午夜| 能在线免费观看的黄片| 久久久久久伊人网av| 亚洲在久久综合| 乱系列少妇在线播放| 亚洲av男天堂| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 国产精品一及| 看免费成人av毛片| 午夜激情欧美在线| 日韩欧美三级三区| 国产精品一区二区三区四区免费观看| 少妇人妻精品综合一区二区 | 内地一区二区视频在线| 乱人视频在线观看| 亚洲欧美精品自产自拍| 国产精品久久电影中文字幕| 欧美性猛交╳xxx乱大交人| 人妻夜夜爽99麻豆av| 直男gayav资源| 欧美日韩乱码在线| 天天躁夜夜躁狠狠久久av| 最近最新中文字幕大全电影3| 两个人视频免费观看高清| 国产精品久久久久久亚洲av鲁大| 国产日韩欧美在线精品| 免费搜索国产男女视频| 国产三级在线视频| 可以在线观看毛片的网站| 国产成人影院久久av| 看非洲黑人一级黄片| 亚洲国产日韩欧美精品在线观看| 99在线视频只有这里精品首页| 国产成人91sexporn|