• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption Refrigeration Performance of Shaped MIL-101-Water Working Pair

    2014-07-18 12:09:47RUIZhengqiu芮征球LIQuanguo李全國CUIQun崔群WANGHaiyan王海燕CHENHaijun陳海軍andYAOHuqing姚虎卿CollegeofChemistryandChemicalEngineeringNanjingTechUniversityNanjing210009China
    關鍵詞:王海燕海軍

    RUI Zhengqiu (芮征球), LI Quanguo (李全國), CUI Qun (崔群)*, WANG Haiyan (王海燕), CHEN Haijun (陳海軍) and YAO Huqing (姚虎卿) College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

    Adsorption Refrigeration Performance of Shaped MIL-101-Water Working Pair

    RUI Zhengqiu (芮征球), LI Quanguo (李全國), CUI Qun (崔群)*, WANG Haiyan (王海燕), CHEN Haijun (陳海軍) and YAO Huqing (姚虎卿) College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

    A new metal-organic framework of MIL-101 was synthesized by hydrothermal method and the powder prepared was pressed into a desired shape. The effects of molding on specific surface area and pore structure were investigated using a nitrogen adsorption method. The water adsorption isotherms were obtained by high vacuum gravimetric method, the desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer, and the adsorption refrigeration performance of shaped MIL-101-water working pair was studied on the simulation device of adsorption refrigeration cycle system. The results indicate that an apparent hysteresis loop appears in the nitrogen adsorption/desorption isotherms when the forming pressure is 10 MPa. The equilibrium adsorption capacity of water is up to 0.95 kg·kg?1at the forming pressure of 3 MPa (MIL-101-3). The desorption peak temperature of water on MIL-101-3 is 82 °C, which is 7 °C lower than that of silica gel, and the desorption temperature is no more than 100 °C. At the evaporation temperature of 10 °C, the refrigeration capacity of MIL-101-3-water is 1059 kJ·kg?1, which is 2.24 times higher than that of silica gel-water working pair. Thus MIL-101-water working pair presents an excellent adsorption refrigeration performance.

    adsorption refrigeration, MIL-101, forming, adsorption capacity, refrigeration capacity

    1 INTRODUCTION

    Adsorption refrigeration systems can be driven by low-grade thermal energy (industrial waste heat, solar energy, etc.), without the need for CFCs (refrigerant) and electricity, which are energy efficient and environmentally friendly [1-4]. The core of adsorption refrigeration systems is the working pair, which is the match of adsorbent and adsorbate (refrigerant). At the present stage, working pairs used in adsorption refrigeration study have disadvantages of small adsorption capacity, low refrigeration power and relatively high desorption temperature, restricting the industrialization process of this technology [5-7]. Thus, developing efficient working pairs, especially adsorbents with excellent adsorption performance, is the key to promote the performance and development of adsorption refrigeration systems.

    In recent years, metal-organic frameworks (MOFs) have revealed promising applications in catalysis, adsorption and gas storage [8-11]. MIL-101, first reported by Ferey et al. [12], has two types of mesopores (2.9 and 3.4 nm), a tremendous Langmuir specific surface area (5900 m2·g?1), and better thermal stability compared with other MOFs. Moreover, there are lots of unsaturated metal active sites in the framework [13-15]. Henninger et al. [16, 17] reported that the water adsorption quantity of powdered MIL-101 was 1.01 kg·kg?1, and the structure remained stable after repetitive adsorption-desorption cycles. The results indicate that MIL-101 could serve as a potential adsorbent in adsorption refrigeration. The study on the adsorption refrigeration circulation performance of MIL-101 has not been reported yet.

    In this paper, we select shaped MIL-101 and water as the working pair and study the performance of adsorption refrigeration circulation. We synthesize powdered MIL-101 by hydrothermal method and preform it with rotary tablet press. We investigate the effects of molding on structure and performance, water adsorption and desorption performance, as well as the adsorption refrigeration performance of shaped MIL-101-water working pair on a self-built simulation device of adsorption refrigeration cycle system, providing the basic parameters for MIL-101 used in adsorption refrigeration processes.

    2 EXPERIMENTAL

    2.1 Raw materials

    Chromium nitrate [Cr(NO3)3·9H2O, AR, Xilong Chemical Co., Ltd., Guangdong, China, 99.0%], H2BDC [C6H4(CO2H)2, AR, Sinopharm Chemical Reagent Co., Ltd., China, 99.0%], and DMF (N,N-dimethylformamide, AR, Sinopharm Chemical Reagent Co., Ltd., China, 99.5%) were used without further purification. The deionized water was made in our laboratory.

    2.2 Synthesis and molding

    The preparation of MIL-101 was based on reference [18]. Cr(NO3)3·9H2O (4.00 g) was dissolved in deionized water (48 ml) and 1,4-benzene dicarboxylic acid (1.64 g) was added. The solution was stirred for 15 min. The complete solution was then transferred toa Tef l on-lined stainless steel reactor and sealed. The reactor was placed inside a hot air oven at 220 °C and held for 8 h. After the reaction time, the reactor was cooled to room temperature. A fine green colored powder was obtained as major product, with significant amount of H2BDC present in the form of needle-shaped colorless crystals along with the product. To remove this impurity, contents were completely transferred into a conical flask, and DMF was added incrementally with continuous shaking to dissolve H2BDC. Then the solution was filtered and washed with water. The resulting product was dried at 150 °C overnight. The powder was pressed into a desired shape by powder pressing machine at different pressures. Then the flaky MIL-101 was smashed into particles ranging from 0.42-0.85 mm (20-40 mesh).

    Figure 1 Simulation device of adsorption refrigeration cycle system 1—vacuum system; 2—liquid storage; 3,6,9—thermocouple; 4—condenser; 5—evaporator; 7—refrigerator; 8—vacuum gauge; 10—adsorption bed; 11—heat exchanger

    2.3 Characterization

    The crystal structure was examined on D8 ADVANCE X-ray diffractometer. The scan range was from 2° to 20° (2θ) at 5 (°)·min?1. Desorption temperature of water on shaped MIL-101 was measured by thermo gravimetric analyzer (TGA), in atmosphere at a heating rate of 5 °C·min?1. Nitrogen adsorption/ desorption isotherms were obtained on a Tristar II 3020 automatic specific surface area and pore analyzer at 77 K. The sample was first activated at 170 °C for 10 h.

    2.4 Adsorption isotherms of water on shaped MIL-101

    Adsorption isotherms of water on shaped MIL-101 were investigated by a high vacuum gravimetric method, and the detailed operating procedures can be found in reference [19]. The samples were evacuated at 200 °C for 2 h in advance.

    2.5 Simulated experiment of adsorption refrigeration

    Adsorption refrigeration performance of shaped MIL-101-water working pair was examined on a simulation device of adsorption refrigeration, as shown in Fig. 1. The experimental system consists of adsorption bed, evaporator, condenser, refrigerator, heat exchanger and vacuum system. The experimental conditions are as follows, adsorbent: 10-50 g; refrigerant volume: 50 ml; water volume in refrigerator: 500 ml. The adsorption refrigeration experiment includes two processes, adsorption refrigeration process and heating desorption process. The detail experimental method and procedure refer to reference [20].

    3 RESULTS AND DISCUSSION

    3.1 XRD analysis

    The XRD pattern of synthesized sample is shown in Fig. 2. The diffraction peak positions are the same as the standard data for MIL-101 [12], so the sample is MIL-101 powder.

    Figure 2 XRD pattern of MIL-101

    3.2 Effects of molding on pore structure of MIL-101

    In this study, the powdered MIL-101 was pressed at the forming pressures of 3, 5, and 10 MPa and the shaped MIL-101 was named MIL-101-3, MIL-101-5 and MIL-101-10, respectively. The nitrogen adsorption/desorption isotherms of MIL-101 are shown in Fig. 3. The specific surface area and pore parameters calculated according to the nitrogen adsorption/ desorption isotherms are listed in Table 1, and the pore distribution is shown in Fig. 4. Fig. 3 shows that the nitrogen adsorption/desorption isotherms of MIL-101-3, MIL-101-5 and powdered MIL-101 are similar, expect for the adsorption capacity. When the molding pressure extends to 10 MPa, an apparent hysteresis loop appears in the nitrogen adsorption/desorption isotherm, and different pore distribution is found in the framework of MIL-101-10 [Fig.4 (b)]. This phenomenon may be due to the appearance of intergranular pores in the process of molding. Table 1 shows that, with the increase of molding pressure, the specific surface areaand pore volume decreases, caused by the extrusion of surface and inner pores [Fig. 4 (a)]. The variation of pore size may be related to the appearance of intergranular pores. From Fig. 3 and Table 1, we can conclude that the decrease of specific surface area and pore volume leads to the attenuation of the adsorption performance.

    Figure 3 Nitrogen adsorption/desorption isotherms at 77 K for powdered MIL-101 and shaped MIL-101

    Figure 4 Pore distribution of powdered MIL-101 and shaped MIL-101

    Table 1 Specific surface area and pore parameters of powdered MIL-101 and shaped MIL-101

    3.3 Water adsorption isotherms of shaped MIL-101

    Water adsorption isotherms of shaped MIL-101 are shown in Fig. 5, which are of an S-shaped characteristic. Water uptake is small at low partial pressure, and the adsorption mainly takes place within a relative pressure of 0.35 and 0.65. There are two obvious steps in the isotherm, attributing to the two types of mesoporous in the framework. The equilibrium adsorption capacity of water on MIL-101-3 can reach0.95 kg·kg?1, and the adsorption quantity decays with the increase of molding pressure. The equilibrium adsorption capacities on MIL-101-5 and MIL-101-10 are 0.83 and 0.66 kg·kg?1, respectively, which is 13% and 30% lower than that on MIL-101-3. The variation tendency of water adsorption quantity on different shaped MIL-101 is similar with the relationship between nitrogen adsorption quantity and the forming pressure (Fig. 3), mainly caused by the decrease of specific surface area and pore volume after the powdered MIL-101 is pressed at different pressures.

    Figure 5 Water adsorption isotherms of shaped MIL-101 at 25 °C

    3.4 Desorption temperature of water on shaped MIL-101

    For the sake of contrastive analysis, the desorption temperature of water on shaped MIL-101 and silica gel were examined. Fig. 6 shows the differential thermal analysis (DTA) curves of MIL-101-3 and silica gel. The desorption peak temperature of water on MIL-101-3 is 82 °C, which is 7 °C lower than that of silica gel, and the complete desorption temperature is approximately 100 °C. The excellent desorption performance of shaped MIL-101 indicates that it can be regenerated at a relatively low temperature, which is appropriate for adsorption refrigeration using low-grade thermal energy.

    Figure 6 DTA analysis of MIL-101-3 and silica gel

    Figure 7 Characteristic curves of adsorption refrigeration for MIL-101-3-water

    3.5 Adsorption refrigeration performance of shaped MIL-101-water working pair

    3.5.1 Characteristic curves of adsorption refrigeration for shaped MIL-101-water working pair

    In the adsorption refrigeration process (Fig. 1), the temperature of evaporator, refrigerant water in refrigerator and adsorption bed are main characteristic parameters to evaluate the adsorption refrigeration performance. The characteristic curves (the variation of characteristic temperature with adsorption time) can reflect the dynamic characteristics of the whole process. Fig. 7 shows the characteristic curves of adsorption refrigeration for MIL-101-3-water working pair obtained on the simulation device of adsorption refrigeration. As Fig. 7 (a) shows, when adsorption process begins, the temperature of evaporator and refrigerator declines quickly, then the drop of temperature becomes slower, finally the temperatures of the two units approach a same value. This phenomenon is due to the fast water adsorption rate in the initial stage of adsorption. A large amount of water in the evaporator is adsorbed, and the process of liquid water changing into vapor needs to absorb heat from ambient environment, leading to a sharply decline of the temperature of evaporator. Because of the heat exchange between evaporator and refrigerator, the temperature difference becomes small gradually. The temperature of refrigerator is controlled by that of evaporator, so the temperature drop range is relatively stable. In Fig. 7 (b), the temperature of adsorption bed risesrapidly in the initial stage, since the adsorption process releases enormous adsorption heat. The temperature reaches its peak and then falls quickly, at last achieves room temperature. In the adsorption refrigeration process, the temperature of evaporator declines from 17.3 to 14.4 °C, the temperature of refrigerator drops from 17.8 to 14.6 °C, and that of the adsorption bed rises from 23.4 to 47.8 °C. We can calculate the refrigeration capacity according to the temperature drop of refrigerator and the amount of the refrigerant water. 3.5.2 Adsorption refrigeration capacity of shaped MIL-101-water working pair

    For the adsorption refrigeration process, we use the refrigeration capacity produced by unit mass adsorbent to evaluate the performance of the working pair. The calculation of refrigeration capacity according to characteristic temperature is related to the heat loss in the heat exchange process, which is considerably affected by the environmental factor. Consequently, we usually use the amount of desorption to calculate refrigeration capacity, and the variation of sensible heat is ignored. We regard the water volume of desorption as effective adsorption quantity. The calculation formula of refrigeration capacity is

    where Δmdis the amount of desorption, kg; ΔHeis the latent heat of vaporization of refrigerant at the evaporation temperature, kJ·kg?1; and M is the adsorbent load, kg.

    The circulation adsorption capacity and refrigeration capacity of MIL-101-3-water and silica gel-water were measured on the simulation device of adsorption refrigeration at the evaporation temperatures of 10 and 15 °C (typical air conditioning conditions). The results are listed in Table 2.

    Table 2 Refrigerating capacity of MIL-101-3-water and silica gel-water

    At the evaporation temperature of 10 °C, the circulation adsorption capacity of MIL-101-3-water working pair is 0.429 kg·kg?1and the refrigeration capacity is 1059 kJ·kg?1, which is 2.24 times higher than that of silica gel-water. At 15 °C, the circulation adsorption capacity of MIL-101-3-water working pair is 0.589 kg·kg?1and the refrigeration capacity is up to 1449 kJ·kg?1, which is 2.22 times higher than that of silica gel-water. At the evaporation temperature rises from 10 to 15 °C, the refrigeration capacity increases by 37%. Thus the MIL-101-3-water working pair presents excellent refrigeration performance, especially in relatively high evaporation temperature, which is related with the shape of water adsorption isotherms of MIL-101.

    4 CONCLUSIONS

    (1) Forming pressure has a large influence on pore structure of shaped MIL-101, and an apparent hysteresis loop appears in the nitrogen adsorption/ desorption isotherms of MIL-101-10. As the forming pressure increases from 3 to 5 MPa, the specific surface area of shaped MIL-101 reduces from 2047 to 1494 m2·g?1.

    (2) The water adsorption isotherms are of an S-shaped characteristic and the equilibrium adsorption capacity of water on MIL-101-3 reaches 0.95 kg·kg?1.

    (3) The desorption peak temperature of water on MIL-101-3 is 82 °C, and the complete desorption temperature is approximately 100 °C, which is apparently lower than that of silica gel. Shaped MIL-101 can be applied to adsorption refrigeration systems driven by low-grade thermal energy.

    (4) At the evaporation temperature of 10 °C, the refrigeration capacity of MIL-101-3-water working pair is 1059 kJ·kg?1, which is 2.24 times higher than that of silica gel-water. As the evaporation temperature extends from 10 to 15 °C, the refrigeration capacity increases by 37%, reaching 1449 kJ·kg?1. For high evaporation temperature conditions, MIL-101-3-water working pair has excellent refrigeration performance.

    (5) Compared with silica gel, shaped MIL-101 has advantages of large adsorption capacity and low desorption temperature in the adsorption refrigeration process using water as adsorbate. MIL-101 has promising application as an efficient adsorbent in adsorption refrigeration.

    NOMENCLATURE

    REFERENCES

    1 Wang, R.Z., Oliveira, R.G., “Adsorption refrigeration-An efficient way to make good use of waste heat and solar Energy”, Prog. Energy Combust. Sci., 32 (24), 424-458 (2006).

    2 Saha, B.B., Koyama, S., Lee, J.B., Kuwahara, K., Alam, K.C.A.,“Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller”, Int. J. Multiphase Flow, 29 (8), 1249-1263 (2003).

    3 Saha, B.B., Koyama, S., Kashiwagi, T., Akisawa, A., Ng, K.C., Chua, H.T., “Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system”, Int. J. Refriger., 26 (7), 749-757 (2003).

    4 Boubakri, A., Guillemiont, J.J., Meunier, F., “Adsorptive solar powered ice-maker: Experiments and model”, Solar Energ, 69 (3),249-263 (2000).

    5 Henninger, S.K., Schicktanz, M., Hugenell, P.P.C., Sievers, H., Henning, H.M., “Evaluation of methanol adsorption on activated carbons for thermally driven chillers part I: Thermophysical characterization”, Int. J. Refriger., 35 (3), 543-553 (2012).

    6 Henninger, S.K., Schmidt, F.P., Henning, H.M., “Water adsorption characteristics of novel materials for heat transformation applications”, Appl. Thermal Eng., 30 (13), 1692-1702 (2010).

    7 Zhong, Y., Critoph, R.E., Thorpe, R., “Evaluation of the performance of solid sorption refrigeration systems using carbon dioxide as refrigerant”, Appl. Thermal Eng., 26 (16), 1807-1811 (2006).

    8 Ferey, G., “Hybrid porous solids: past, present, future”, Chemical Society Reviews, 37 (1), 191-214 (2008).

    9 Chae, H.K., Siberio-Perez, D.Y., Jaheon, K., Go, Y.B., Eddaoudi, M., Matzger, A.J., Okeeffe, M., Yaghi, O.M., “A route to high surface area, porosity and inclusion of large molecules in crystals”, Nature, 427 (6974), 523-527 (2004).

    10 Zhao, X.B., Xiao, B., Fletcher, A.J., Thomas, K.M., Bradshaw, D., Rosseinsky, M.J., “Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks”, Science, 306 (5698), 1012-1015 (2004).

    11 Kitagawa, S., Kitaura, R., Noro, S., “Functional porous coordination polymers”, Angewandet Chemie International Edition, 43 (18), 2234-2375 (2004).

    12 Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble, S., Margiolaki, I., “Achromium terephthalate-based solid with unusually large pore volumes and surface area”, Science, 309 (5743), 2040-2043 (2005).

    13 Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P.L., Lee, J., Chang, J., Jhung, S.H., Ferey, G., “Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101”, Angewandet Chemie International Edition, 45 (48), 8227-8231 (2006).

    14 Khan, N.A., Kang, I.J., Seok, H.Y., Jhung, S.H., “Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101”, Chem. Eng. J., 166 (3), 1152-1157 (2011).

    15 Jhung, S.H., Lee, J.H., Yoon, J.W., Serre, C., Ferey, G., Chang, J.S.,“Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption bbility”, Adv. Mater., 19 (1), 121-124 (2007).

    16 Henninger, S.K., Hesham, A.H., Christoph, J., “MOFs as adsorbents for low temperature heating and cooling applications”, JACS, 131 (8), 2776-2777 (2009).

    17 Ehrenmann, J., Henninger, S.K., Janiak, C., “Water adsorption characteristics of MIL-101 for heat transformation applications of MOFs”, Eur. J. Inorg. Chem., 2011 (4), 471-474 (2011).

    18 Pradip, C., Chaitanya, B., Sasidhar, G., “Gas adsorption properties of the chromium-based metal organic framework MIL-101”, American Chemical Society, 113 (16), 6616-6621 (2009).

    19 Chen, H.J., Cui, Q., Tang, Y., Chen, X.J., Yao, H.Q., “Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications”, Appl. Thermal Eng., 28 (17/18), 2187-2193 (2008).

    20 Cui, Q., Tao, G., Chen, H.J., Guo, X.Y., Yao, H.Q., “Environmentally benign working pairs for adsorption refrigeration”, Energy, 30 (2-4), 261-271 (2005).

    2012-09-07, accepted 2012-10-14.

    * To whom correspondence should be addressed. E-mail: cuiqun@njtech.edu.cn

    猜你喜歡
    王海燕海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    踐行全過程人民民主為人民群眾辦好實事
    更正
    基于VTR-PLFM擴頻調(diào)制的移動水聲通信方法
    生命絕境“謀財治病”:暗戀者有筆天價拆遷款
    我的海軍之夢
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    Phase Transition and Physical Properties of InS?
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    精品酒店卫生间| 国产一区有黄有色的免费视频| 精品亚洲乱码少妇综合久久| 一级毛片aaaaaa免费看小| 亚洲精品一二三| 又爽又黄a免费视频| 精品人妻一区二区三区麻豆| 在线播放无遮挡| 久久女婷五月综合色啪小说| 日韩av在线免费看完整版不卡| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 97在线视频观看| 久久ye,这里只有精品| 国产高清有码在线观看视频| 51国产日韩欧美| 在线亚洲精品国产二区图片欧美 | 久久97久久精品| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 精品亚洲乱码少妇综合久久| 五月开心婷婷网| 纵有疾风起免费观看全集完整版| 国内揄拍国产精品人妻在线| 最黄视频免费看| 五月玫瑰六月丁香| 国产高清国产精品国产三级| 青青草视频在线视频观看| 人人澡人人妻人| 亚洲成人手机| 亚洲情色 制服丝袜| 欧美日韩视频高清一区二区三区二| 久久人人爽人人爽人人片va| 免费观看无遮挡的男女| 韩国av在线不卡| 高清在线视频一区二区三区| 国产精品.久久久| 日韩欧美 国产精品| 高清黄色对白视频在线免费看 | 一本一本综合久久| 三上悠亚av全集在线观看 | xxx大片免费视频| 亚洲精品国产成人久久av| 91精品国产国语对白视频| 精品人妻熟女av久视频| 亚洲美女搞黄在线观看| 中国美白少妇内射xxxbb| 人体艺术视频欧美日本| 国内精品宾馆在线| 精品一区二区三区视频在线| 日本vs欧美在线观看视频 | 国产日韩欧美亚洲二区| 亚洲在久久综合| 国产av码专区亚洲av| 亚洲一区二区三区欧美精品| 大片电影免费在线观看免费| 久久午夜福利片| 麻豆乱淫一区二区| 精品视频人人做人人爽| 国产精品一区二区三区四区免费观看| 日本-黄色视频高清免费观看| 久久99精品国语久久久| 亚洲内射少妇av| 热re99久久国产66热| 亚洲精品第二区| 91成人精品电影| 99re6热这里在线精品视频| 免费观看av网站的网址| 精品一区二区免费观看| 亚洲国产精品一区三区| 高清欧美精品videossex| 国产精品久久久久久精品古装| 在线观看一区二区三区激情| 成人免费观看视频高清| 日本色播在线视频| 九色成人免费人妻av| 亚洲婷婷狠狠爱综合网| 免费观看无遮挡的男女| 欧美3d第一页| 色5月婷婷丁香| 两个人的视频大全免费| 少妇人妻久久综合中文| 久久国产亚洲av麻豆专区| 97精品久久久久久久久久精品| 中文字幕亚洲精品专区| 国产成人freesex在线| 欧美精品人与动牲交sv欧美| 日韩三级伦理在线观看| 中文字幕精品免费在线观看视频 | 黄色日韩在线| 又大又黄又爽视频免费| 中文字幕av电影在线播放| 少妇人妻精品综合一区二区| 亚洲丝袜综合中文字幕| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频 | 国产深夜福利视频在线观看| 亚洲性久久影院| 久久久久久久久久久久大奶| 日韩三级伦理在线观看| 日韩免费高清中文字幕av| 国产片特级美女逼逼视频| 中文字幕免费在线视频6| 另类亚洲欧美激情| 男女啪啪激烈高潮av片| 国产亚洲午夜精品一区二区久久| 丰满少妇做爰视频| 国产乱人偷精品视频| 欧美人与善性xxx| 人妻制服诱惑在线中文字幕| 日本av免费视频播放| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 麻豆乱淫一区二区| 人人妻人人看人人澡| 欧美日韩一区二区视频在线观看视频在线| 最近最新中文字幕免费大全7| av国产精品久久久久影院| 久久精品久久久久久久性| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| www.色视频.com| 人人澡人人妻人| 欧美xxxx性猛交bbbb| 欧美一级a爱片免费观看看| 亚洲经典国产精华液单| 一区在线观看完整版| 亚洲精品国产色婷婷电影| 亚洲综合精品二区| 久久久a久久爽久久v久久| 黄色配什么色好看| 精华霜和精华液先用哪个| av福利片在线| 黄色怎么调成土黄色| 夜夜骑夜夜射夜夜干| 在线亚洲精品国产二区图片欧美 | 亚洲av电影在线观看一区二区三区| 欧美另类一区| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久| 国产在线免费精品| 亚洲欧美精品自产自拍| 极品人妻少妇av视频| 一级二级三级毛片免费看| 国产中年淑女户外野战色| 亚洲三级黄色毛片| 99精国产麻豆久久婷婷| 久久久久精品久久久久真实原创| 成人18禁高潮啪啪吃奶动态图 | 高清av免费在线| 亚洲欧美日韩卡通动漫| 久久精品夜色国产| 爱豆传媒免费全集在线观看| 国产日韩一区二区三区精品不卡 | 久久久久国产网址| av福利片在线| 热re99久久国产66热| 国产精品伦人一区二区| 国产精品国产av在线观看| 交换朋友夫妻互换小说| 日本爱情动作片www.在线观看| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 五月玫瑰六月丁香| 在线亚洲精品国产二区图片欧美 | 搡女人真爽免费视频火全软件| 一级毛片我不卡| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 亚洲,一卡二卡三卡| 丁香六月天网| 亚洲精品,欧美精品| 国产精品一区二区在线不卡| av线在线观看网站| 老司机影院毛片| 久久精品国产自在天天线| 亚洲av男天堂| 大片免费播放器 马上看| 性色av一级| 国产精品人妻久久久久久| 亚洲精品亚洲一区二区| 麻豆精品久久久久久蜜桃| 久久国产精品男人的天堂亚洲 | 久久久久人妻精品一区果冻| 一级黄片播放器| 国产一区有黄有色的免费视频| 国产精品一区二区在线观看99| 看非洲黑人一级黄片| 国产综合精华液| 丝袜脚勾引网站| 丝瓜视频免费看黄片| 国产精品.久久久| 亚洲国产av新网站| 午夜福利影视在线免费观看| 熟妇人妻不卡中文字幕| 美女视频免费永久观看网站| 亚洲伊人久久精品综合| 少妇丰满av| 不卡视频在线观看欧美| 人人妻人人添人人爽欧美一区卜| 午夜91福利影院| 免费看av在线观看网站| 久久久a久久爽久久v久久| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 美女主播在线视频| 亚洲精品国产色婷婷电影| 在线观看美女被高潮喷水网站| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 狂野欧美白嫩少妇大欣赏| 精品久久国产蜜桃| 久久99蜜桃精品久久| 国产91av在线免费观看| 国产中年淑女户外野战色| 高清不卡的av网站| 最近中文字幕2019免费版| 欧美高清成人免费视频www| 久久久a久久爽久久v久久| 国产欧美日韩一区二区三区在线 | www.av在线官网国产| 国产成人一区二区在线| 中文字幕久久专区| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 国产视频内射| 成人无遮挡网站| 少妇丰满av| 国产精品成人在线| 看非洲黑人一级黄片| 赤兔流量卡办理| 在线观看人妻少妇| 欧美精品高潮呻吟av久久| 欧美 日韩 精品 国产| 日韩亚洲欧美综合| 人妻人人澡人人爽人人| 性色avwww在线观看| 亚洲国产欧美日韩在线播放 | a 毛片基地| 国产成人免费无遮挡视频| 精品久久久久久久久亚洲| 日韩三级伦理在线观看| 18禁在线无遮挡免费观看视频| 简卡轻食公司| 三上悠亚av全集在线观看 | 最黄视频免费看| 91aial.com中文字幕在线观看| 又爽又黄a免费视频| 亚洲高清免费不卡视频| 一级片'在线观看视频| 国产国拍精品亚洲av在线观看| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| 免费播放大片免费观看视频在线观看| 国内揄拍国产精品人妻在线| 国语对白做爰xxxⅹ性视频网站| 国产一区亚洲一区在线观看| 青青草视频在线视频观看| 男男h啪啪无遮挡| 国产淫片久久久久久久久| 欧美日韩av久久| 99热6这里只有精品| 蜜桃久久精品国产亚洲av| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 精品国产一区二区久久| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 久久ye,这里只有精品| 乱系列少妇在线播放| av线在线观看网站| 日韩,欧美,国产一区二区三区| 三级国产精品欧美在线观看| 极品人妻少妇av视频| 久久久久久久精品精品| 男人爽女人下面视频在线观看| 美女视频免费永久观看网站| 高清视频免费观看一区二区| 一级av片app| 秋霞伦理黄片| 国产成人精品无人区| 国产成人免费观看mmmm| 日日爽夜夜爽网站| 超碰97精品在线观看| 久久精品熟女亚洲av麻豆精品| 九九在线视频观看精品| 国产精品无大码| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 欧美 日韩 精品 国产| a级一级毛片免费在线观看| 欧美日本中文国产一区发布| 日日啪夜夜撸| 日韩大片免费观看网站| videossex国产| 亚洲国产精品成人久久小说| 婷婷色综合www| 日日爽夜夜爽网站| av在线播放精品| 欧美性感艳星| 国产成人精品婷婷| 国产精品人妻久久久影院| 少妇丰满av| 亚洲美女黄色视频免费看| 久久久亚洲精品成人影院| 欧美精品人与动牲交sv欧美| 久久99一区二区三区| 永久免费av网站大全| 91久久精品电影网| 2022亚洲国产成人精品| 男人舔奶头视频| 一区二区三区精品91| 91aial.com中文字幕在线观看| 26uuu在线亚洲综合色| 国产极品天堂在线| 五月伊人婷婷丁香| 色婷婷av一区二区三区视频| 又大又黄又爽视频免费| 成人黄色视频免费在线看| 中文欧美无线码| 在线观看免费日韩欧美大片 | 最后的刺客免费高清国语| 国产69精品久久久久777片| a级一级毛片免费在线观看| 久久99一区二区三区| 色吧在线观看| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 一级毛片黄色毛片免费观看视频| 搡女人真爽免费视频火全软件| 国产国拍精品亚洲av在线观看| 一本一本综合久久| 国产日韩欧美在线精品| 色网站视频免费| 精品国产乱码久久久久久小说| 在线观看免费高清a一片| 一级av片app| 国产av精品麻豆| 日本wwww免费看| 春色校园在线视频观看| 国产一区有黄有色的免费视频| 亚洲精华国产精华液的使用体验| 久久人妻熟女aⅴ| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 熟妇人妻不卡中文字幕| 欧美老熟妇乱子伦牲交| av福利片在线观看| 视频区图区小说| 亚洲情色 制服丝袜| 日本欧美国产在线视频| 黑人巨大精品欧美一区二区蜜桃 | 一本色道久久久久久精品综合| 久久久久人妻精品一区果冻| 亚洲婷婷狠狠爱综合网| 插阴视频在线观看视频| av黄色大香蕉| 成人免费观看视频高清| 亚洲精品日韩av片在线观看| 亚洲色图综合在线观看| 2018国产大陆天天弄谢| 五月玫瑰六月丁香| 春色校园在线视频观看| 久久久国产欧美日韩av| 波野结衣二区三区在线| 久久精品久久久久久噜噜老黄| 成人18禁高潮啪啪吃奶动态图 | 欧美bdsm另类| 亚洲,一卡二卡三卡| 在线亚洲精品国产二区图片欧美 | 成人综合一区亚洲| 精品熟女少妇av免费看| 97超视频在线观看视频| 毛片一级片免费看久久久久| 国产日韩欧美在线精品| 免费观看在线日韩| 桃花免费在线播放| 18禁在线无遮挡免费观看视频| 久久国产精品男人的天堂亚洲 | 人妻人人澡人人爽人人| 欧美日韩亚洲高清精品| 国产成人freesex在线| 国产极品粉嫩免费观看在线 | freevideosex欧美| 色哟哟·www| 国模一区二区三区四区视频| 18禁动态无遮挡网站| 高清视频免费观看一区二区| 亚洲精品,欧美精品| 男女国产视频网站| 国内精品宾馆在线| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 熟女人妻精品中文字幕| 妹子高潮喷水视频| 黄色欧美视频在线观看| 国产欧美亚洲国产| av免费观看日本| 国产高清有码在线观看视频| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 亚洲精品久久午夜乱码| 女的被弄到高潮叫床怎么办| 九九在线视频观看精品| 多毛熟女@视频| 亚洲av不卡在线观看| 欧美区成人在线视频| 国产精品三级大全| 日本黄色片子视频| 欧美xxⅹ黑人| 啦啦啦在线观看免费高清www| av不卡在线播放| 亚洲图色成人| 九草在线视频观看| 国产极品粉嫩免费观看在线 | 欧美人与善性xxx| 久久国产乱子免费精品| 亚洲精品久久午夜乱码| 精品亚洲乱码少妇综合久久| 黑丝袜美女国产一区| 99热网站在线观看| 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看| 91久久精品电影网| 免费观看性生交大片5| 狂野欧美激情性bbbbbb| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 一级毛片电影观看| 国产视频内射| 国产午夜精品一二区理论片| 成人毛片a级毛片在线播放| 国产国拍精品亚洲av在线观看| 如何舔出高潮| 亚洲av欧美aⅴ国产| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| 国产亚洲5aaaaa淫片| 少妇猛男粗大的猛烈进出视频| 在线亚洲精品国产二区图片欧美 | 免费观看无遮挡的男女| 插阴视频在线观看视频| 九草在线视频观看| 搡老乐熟女国产| 99热这里只有是精品50| 最新的欧美精品一区二区| 高清不卡的av网站| 午夜影院在线不卡| 免费人妻精品一区二区三区视频| 国精品久久久久久国模美| 久久久a久久爽久久v久久| 精品熟女少妇av免费看| 成人影院久久| 高清毛片免费看| 成人毛片a级毛片在线播放| 久久综合国产亚洲精品| 日日啪夜夜爽| 交换朋友夫妻互换小说| 在线观看美女被高潮喷水网站| 三上悠亚av全集在线观看 | 精品少妇内射三级| 国产精品蜜桃在线观看| 中文字幕人妻丝袜制服| 精品久久国产蜜桃| 欧美丝袜亚洲另类| 色网站视频免费| 欧美另类一区| 亚洲精品中文字幕在线视频 | 91午夜精品亚洲一区二区三区| 黑人猛操日本美女一级片| 丝袜在线中文字幕| 久久99一区二区三区| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 日韩欧美 国产精品| 综合色丁香网| 精品一区二区三卡| 只有这里有精品99| 国产亚洲精品久久久com| 伊人久久精品亚洲午夜| 自拍欧美九色日韩亚洲蝌蚪91 | 伦理电影大哥的女人| 免费久久久久久久精品成人欧美视频 | 最黄视频免费看| 女性被躁到高潮视频| 人人妻人人爽人人添夜夜欢视频 | 偷拍熟女少妇极品色| 中文在线观看免费www的网站| 国产极品天堂在线| 美女cb高潮喷水在线观看| 亚洲国产日韩一区二区| 日韩中字成人| 色婷婷久久久亚洲欧美| 国产在线免费精品| 偷拍熟女少妇极品色| 男女无遮挡免费网站观看| 成人黄色视频免费在线看| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 日本91视频免费播放| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 国产高清不卡午夜福利| 丰满迷人的少妇在线观看| 免费人成在线观看视频色| 国产伦精品一区二区三区视频9| 美女视频免费永久观看网站| 国产永久视频网站| 精品久久久精品久久久| 亚洲国产日韩一区二区| 激情五月婷婷亚洲| 精品久久久噜噜| 草草在线视频免费看| 亚洲av综合色区一区| 久久免费观看电影| av国产久精品久网站免费入址| 欧美+日韩+精品| 久久久精品94久久精品| 91成人精品电影| 成人国产麻豆网| 亚洲精品国产av蜜桃| 最新的欧美精品一区二区| 曰老女人黄片| 99视频精品全部免费 在线| 国产精品女同一区二区软件| 熟女av电影| 免费观看性生交大片5| 在线精品无人区一区二区三| 成人18禁高潮啪啪吃奶动态图 | 欧美成人精品欧美一级黄| 日本色播在线视频| 香蕉精品网在线| 日韩不卡一区二区三区视频在线| 黑人巨大精品欧美一区二区蜜桃 | a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 一级爰片在线观看| 五月玫瑰六月丁香| 97在线人人人人妻| 91aial.com中文字幕在线观看| 精品一区二区三区视频在线| 欧美日本中文国产一区发布| 青青草视频在线视频观看| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 日韩电影二区| 亚洲国产精品专区欧美| 亚洲精品国产成人久久av| 又爽又黄a免费视频| 黑丝袜美女国产一区| 六月丁香七月| 欧美高清成人免费视频www| 日韩不卡一区二区三区视频在线| 下体分泌物呈黄色| 赤兔流量卡办理| 欧美日韩在线观看h| 国产精品伦人一区二区| 免费观看av网站的网址| 国产日韩一区二区三区精品不卡 | 熟女电影av网| 亚洲精品国产成人久久av| 97精品久久久久久久久久精品| 免费观看av网站的网址| 欧美性感艳星| 欧美高清成人免费视频www| av福利片在线| 欧美精品亚洲一区二区| 久久久久国产网址| 久久久久视频综合| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 久久久久网色| 成人免费观看视频高清| 黑人高潮一二区| 97精品久久久久久久久久精品| av天堂中文字幕网| 国产视频首页在线观看| av在线老鸭窝| 亚洲综合色惰| 一级黄片播放器| 欧美日韩综合久久久久久| 午夜91福利影院| 成年女人在线观看亚洲视频| av在线观看视频网站免费| 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| 久久久久久久久大av| 新久久久久国产一级毛片| 少妇人妻一区二区三区视频| 久久午夜综合久久蜜桃| 人妻一区二区av| 少妇人妻久久综合中文| 黄色视频在线播放观看不卡| 免费观看在线日韩| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 在线观看三级黄色| 如何舔出高潮| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| 五月开心婷婷网|