• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Size-controlled Pd Nanoparticles Supported on α-Al2O3as Heterogeneous Catalyst for Selective Hydrogenation of Acetylene*

    2014-07-18 12:09:47ZHANGHuoli張火利YANGYuanyi楊元一DAIWei戴偉LUShuliang魯樹亮YUHaibo于海波andJIYuanyuan吉媛媛DepartmentofChemicalEngineeringBeijingUniversityofChemicalTechnologyBeijing0009ChinaSinopecBeijingResearchInstituteofChemicalIndustryBeijing0003

    ZHANG Huoli (張火利), YANG Yuanyi (楊元一), DAI Wei (戴偉)**, LU Shuliang (魯樹亮) YU Haibo (于海波)and JI Yuanyuan (吉媛媛)Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 0009, ChinaSinopec Beijing Research Institute of Chemical Industry, Beijing 0003, China

    Size-controlled Pd Nanoparticles Supported on α-Al2O3as Heterogeneous Catalyst for Selective Hydrogenation of Acetylene*

    ZHANG Huoli (張火利)1, YANG Yuanyi (楊元一)1,2, DAI Wei (戴偉)2,**, LU Shuliang (魯樹亮)2, YU Haibo (于海波)2and JI Yuanyuan (吉媛媛)21Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China2Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, China

    Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium carboxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported on α-Al2O3by the incipient wetness impregnation method. The PdNPs on α-Al2O3support were in a narrow particle size distribution in the range of 1-6 nm. A series of PdNPs/α-Al2O3catalysts were used for the selective hydrogenation of acetylene in ethylene-rich stream. The results show that PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd loading is a very effective and stable catalyst. With promoter Ag added, ethylene selectivity is increased from 41.0% to 63.8% at 100 °C. Comparing with conventional Pd-Ag/α-Al2O3catalyst, PdNPs-Ag/α-Al2O3catalyst has better catalytic performance in acetylene hydrogenation and shows good prospects for industrial application.

    Pd nanoparticles, sodium carboxymethyl cellulose, acetylene hydrogenation

    1 INTRODUCTION

    Pd/α-Al2O3catalyst is one of the most important hydrogenation catalysts in the modern petrochemical industry. It is commonly used in fixed-bed reactors to remove acetylene (0.5%-2% by volume) in ethylene-rich stream. Industrially, it is generally required that the acetylene content should be less than 5×10?6in the ethylene product [1, 2]. Generally, Pd particles on α-Al2O3support participate in the reaction as active sites for the selective hydrogenation of acetylene in ethylene-rich stream. Catalytic performance of Pd/α-Al2O3catalyst strongly depends on the size and dispersion of Pd particles. However, for conventional Pd/α-Al2O3catalysts, the solution of Pd(II) ions or Pd particles will move over the α-Al2O3substrate surface to collide and form the aggregation of Pd particles during drying and calcining process [3]. Therefore, the conventional Pd/α-Al2O3catalysts are usually prepared using Ag as a promoter to block large Pd ensembles [4, 5]. Large active sites are undesirable for the selective hydrogenation of acetylene [6-8].

    Transition-metal nanoparticles have attracted much attention due to their significant catalytic properties [9, 10]. Linear and dendritic polymers have been successfully used for the synthesis of Pd nanoparticles (PdNPs) in solutions [11-15]. It is highly significant to develop a supported catalyst with size-controlled PdNPs. Sodium carboxymethyl cellulose (CMC) is a semi-natural, renewable, inexpensive, nontoxic and linear polymer matrix in aqueous media, with which Pt nanoparticles [16] and Ag nanoparticles [17] have been synthesized. We have reported our first step in the development of an aqueous-phase catalytic process for the selective hydrogenation of acetylene using water soluble monodisperse Pd nanoparticles as catalyst [18]. In this work, size-controlled PdNPs are synthesized by the linear polymer of CMC in water and supported on α-Al2O3to develop a nanostructured heterogeneous catalyst for the selective hydrogenation of acetylene.

    2 EXPERIMENTAL

    2.1 Preparation of size-controlled PdNPs stabilized by CMC

    The aqueous solution of Pd(NO3)2(50 mg·ml?1) was obtained from Sinopec Beijing Research Institute of Chemical Industry. Sodium carboxymethyl cellulose (Mw=90000) was supplied by Sigma-Aldrich. In a typical synthesis, a 150 ml of 1 mg·ml?1solution of Pd(NO3)2was added to 350 ml of 0.06% (by mass) aqueous solution of soluble CMC. The pH value was adjusted to about 7 by dropwise adding an aqueous solution of sodium hydroxide (NaOH, 0.5 mol·L?1) at stirring speed of 300 r·min?1. The mixture in a stainless steel autoclave was reduced to obtain size-controlled PdNPs by molecular hydrogen at 40 °C for at least 30 min at atmospheric pressure.

    2.2 Preparation of catalysts

    α-Al2O3was obtained from Sinopec Beijing Research Institute of Chemical Industry (surface area= 28 m2·g?1). Loaded catalysts with 0.01%, 0.02%, 0.03%, and 0.04% (by mass) Pd separately on α-Al2O3were prepared by the incipient wetness impregnation technique using the aqueous solution of PdNPs as mentioned in Section 2.1. PdNPs/α-Al2O3catalysts were obtained by drying at 120 °C for 8 h and calciningin air at 450 °C for 8 h to remove CMC and re-expose palladium active sites.

    Ag-promoted PdNPs/α-Al2O3catalyst was also prepared by the incipient wetness impregnation method with a solution of AgNO3(Aldrich). PdNPs-Ag/α-Al2O3catalyst [0.03% (by mass) Pd and 0.07% (by mass) Ag] was obtained by drying at 120 °C for 8 h and calcining in air at 450 °C for 8 h. For comparison, conventional Pd-Ag/α-Al2O3catalyst [0.03% (by mass) Pd and 0.07% (by mass) Ag] was prepared by the same technique using an aqueous solution with desired amount of Pd(NO3)2and AgNO3(Aldrich), subsequently dried at 120 °C for 8 h and calcined in air at 450 °C for 8 h.

    2.3 Catalyst characterization

    The size and morphology of PdNPs in aqueous solution and PdNPs on α-Al2O3were examined by transmission electron microscopy (TEM). TEM images were recorded by a JEOL JEM-3010 (200 kV). The sample for TEM characterization was prepared by placing a drop of the solution onto a carbon-coated copper grid, followed by drying in vacuum at room temperature. The particle size distribution was determined by counting 100 particles from TEM image. The actual contents of Pd and Ag on α-Al2O3were analyzed by inductively coupled plasma mass spectrometry (ICP-MS 7500CX, Agilent). The ICP analysis was performed by taking 1.0 g sample into a teflon crucible, adding 20 ml HNO3(BV-III) and staying one night, followed by ultrasonic treatment for 3 h, being diluted 50-folds with 2% HNO3and analyzed with a Agilent 7500CX ICP-MS. The specific surface area of α-Al2O3was determined using the Brunauer-Emmett-Teller (BET) method by a ASAP 2020C instrument (Micromeritics Instruments, USA). CO chemisorption on catalysts was measured with in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using a Brucker Vertex 70 spectrometer. For CO chemisorption measurement, the catalyst was grinded to powder and 30 mg powdered catalyst sample was prereduced in in-situ infrared cell at 300 °C for 2 h by 10% H2in Ar, then 10 ml·min?11% CO in Ar flowed through the sample at 40 °C for 60 min. After CO adsorption, the gas was switched to Ar purging at 80 °C. The Fourier transform infrared spectroscopy (FTIR) spectra of sample were measured every 2 min.

    2.4 Catalytic test

    The selective hydrogenation of acetylene in ethylene-rich stream was performed in an 8 mm (i.d.) stainless steel tube microreactor with 1 ml catalyst. Before reaction, the catalyst was reduced by H2at 180 °C for 2 h. A feed gas containing 0.45% (by mol) acetylene in ethylene was used for the reaction. Total gas hourly space velocity was 10000 h?1. The mole ratio H2/C2H2in ethylene-rich stream was 1.5 and the products were analyzed on line by gas chromatography (Agilent 7890) with flame ionization detector (FID) and thermal conductivity detector (TCD). Acetylene conversion and ethylene selectivity are defined as

    3 RESULTS AND DISCUSSION

    Figure 1 TEM image and size distribution of PdNPs stabilized by CMC in aqueous solution [Pd 0.03% (by mass), mCMC/mPd=2]

    3.1 Catalysts characterization

    TEM image of PdNPs stabilized by CMC is shown in Fig. 1. Size-controlled PdNPs are in an average diameter of 2.8±0.4 nm and a narrow particle size distribution in the range of 1-6 nm. The size and morphology of PdNPs on α-Al2O3are shown in Fig. 2. PdNPs/α-Al2O3catalysts form very small and uniform Pd particles on α-Al2O3. The diameter of PdNPs is in the range of 1 nm to 6 nm, which is the same with that of PdNPs stabilized by CMC in aqueous solution. Moreover, PdNPs on α-Al2O3are isolated nanoparticles, indicating isolated Pd active sites. The shape and morphology of supported metal nanoparticles are usually influenced by the metal-support interaction [19]. Thus CMC promotes the formation of isolated anddispersed PdNPs on α-Al2O3. For PdNPs/α-Al2O3catalysts, CMC inhibits PdNPs to move and prevents them from aggregation on α-Al2O3substrate surface during drying and calcining process. The inhibition mechanism is that CMC molecules could anchor to Pd particle surfaces and the association of CMC molecules with Pd nanoparticles via both the COO and

    OH functional groups facilitates the encapsulation of Pd nanoparticles with a protective layer of CMC molecules [16], providing steric stabilization of Pd nanoparticles on α-Al2O3support. Therefore, it is desirable to obtain uniform and isolated active sites on α-Al2O3using size-controlled PdNPs.

    Table 1 gives the palladium contents of PdNPs/α-Al2O3catalysts determined by inductively coupled plasma mass spectrometry. The Pd loadings on α-Al2O3support are in accordance with the design values.

    Figure 2 TEM images of PdNPs/α-Al2O3catalysts (a) Pd 0.01% (by mass); (b) Pd 0.02% (by mass); (c) Pd 0.03%(by mass); (d) Pd 0.04% (by mass)

    Figure 3 Acetylene conversion (a) and ethylene selectivity (b) with PdNPs/α-Al2O3catalysts

    Table 1 The palladium contents of PdNPs/α-Al2O3catalysts determined by ICP

    3.2 Catalytic performance of PdNPs/α-Al2O3catalysts

    The catalytic performance of PdNPs/α-Al2O3catalysts is shown in Fig. 3. The catalytic activity of catalysts follows the order of Pd mass content (%) inthis way: 0.03, 0.04, 0.02, and 0.01. PdNPs/α-Al2O3catalyst with 0.03% Pd mass loading exhibits the highest catalytic activity among the four catalysts, while it presents the lowest ethylene selectivity. As the temperature increases, acetylene conversion increases and ethylene selectivity decreases. The main reason is that the selective hydrogenation of acetylene is a typical consecutive reaction with ethylene as an intermediate. Therefore, the ethylene selectivity decreases as acetylene conversion increases [3]. PdNPs/α-Al2O3catalysts have the same conversion-selectivity relationship for selective hydrogenation of acetylene as conventional Pd/α-Al2O3catalysts.

    The reason for PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd to present higher hydrogenation activity is that the solution supported on α-Al2O3generates much larger Pd particles on the catalyst with 0.04% (by mass) Pd, as shown in Fig. 4. The formation of large Pd particles on α-Al2O3decreases the Pd active sites over the catalyst. Therefore, PdNPs/α-Al2O3catalyst with 0.04% (by mass) Pd has a lower activity than that with 0.03% (by mass) Pd. In order to test the stability, PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd was used in stream for 60 h at 100 °C. The result is shown in Fig. 5. It is found that PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd presents a high efficiency and long term stability without any deactivation in ethylene-rich stream.

    Figure 4 Pd particles in the range of 5-10 nm on PdNPs/α-Al2O3catalysts

    Figure 6 Comparison of catalytic performance of PdNPs/α-Al2O3catalyst and conventional Pd-Ag/α-Al2O3catalyst at 100 °C■ PdNPs/Al2O3; ● Pd-Ag/Al2O3

    Figure 5 Stability of PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd at 100 °C

    3.3 Comparison of PdNPs/α-Al2O3catalyst and conventional Pd-Ag/α-Al2O3catalyst

    The catalytic performance of PdNPs/α-Al2O3catalyst with 0.03% (by mass) Pd is compared with that of conventional Pd-Ag/α-Al2O3catalyst [0.03% Pd (by mass) and 0.07% (by mass) Ag]. Table 2 shows the actual contents of Pd and Ag on α-Al2O3determined by ICP. For the catalysts in stream for 24 h at 100 °C, Fig. 6 shows that acetylene conversion with PdNPs/α-Al2O3catalyst is higher than that with conventional Pd-Ag/α-Al2O3catalyst, but ethylene selectivity with PdNPs/α-Al2O3catalyst is lower. It is likely that Ag as a promoter not only promotes the geometric blocking of large Pd ensembles but also enhances a synergetic effect on Pd-Ag/α-Al2O3catalyst [5, 20].

    Table 2 The actual contents of Pd and Ag on α-Al2O3(determined by ICP)

    3.4 Comparison of PdNPs-Ag/α-Al2O3catalyst and conventional Pd-Ag/α-Al2O3catalyst

    In order to improve the catalytic performance, Agis introduced to PdNPs/α-Al2O3catalyst as promoter. The catalytic performance of PdNPs-Ag/α-Al2O3catalyst is also compared with conventional Pd-Ag/α-Al2O3catalyst. The actual contents of Pd and Ag on α-Al2O3are shown in Table 3.

    Figure 7 Comparison of catalytic performance of PdNPs-Ag/α-Al2O3catalyst and conventional Pd-Ag/α-Al2O3catalyst at 100 °C■ PdNPs/Al2O3; ● Pd-Ag/Al2O3

    Figure 8 In situ DRIFTS spectra of Ar purging CO adsorbed on catalysts

    Table 3 The actual contents of Pd and Ag on α-Al2O3(determined by ICP)

    Figure 7 shows the results with PdNPs-Ag/α-Al2O3catalyst and conventional Pd-Ag/α-Al2O3catalyst used in stream for 16 h at 100 °C separately. The catalytic performance of PdNPs-Ag/α-Al2O3catalyst is better. Moreover, ethylene selectivity of PdNPs-Ag/α-Al2O3catalyst is improved remarkably, compared with PdNPs/α-Al2O3catalyst. Ethylene selectivity is increased from 40.1% to 63.8%.

    For the effect of Ag on Pd active sites, Fig. 8 shows the in-situ DRIFTS spectra of the two catalysts after CO adsorption. The peaks at 2173 cm?1and 2110 cm?1are adsorption bands owing to gas phase CO, which exist in the 0 min spectrum and disappear in the 2 min spectrum by N2purging. Meanwhile, two types of CO adsorption are observed in the spectra: linear adsorption (COl) at 2086 cm?1, bridge adsorption (COb) at 1970 cm?1and 1918 cm?1, which are attributed to CO adsorbed on Pd(100) plane and Pd(111) plane, respectively [21, 22]. There are two major differences between PdNPs-Ag/α-Al2O3catalyst and PdNPs/α-Al2O3catalyst. Firstly, the CO species adsorbed on Pd are mainly COlfor PdNPs-Ag/α-Al2O3catalyst, while those on Pd are COland CObfor PdNPs/α-Al2O3catalyst in the 0 min spectrum. Secondly, the relative absorption intensity of COb/COl is obviously different. In the 2 min spectrum, the peak height ratio of COb/COlis 0.47 for PdNPs-Ag/α-Al2O3catalyst and 1.75 for PdNPs/α-Al2O3catalyst. It has been demonstrated that Ag as a promoter effectively provides electronic and geometric effects on Pd surface for PdNPs-Ag/α-Al2O3catalyst [5]. Therefore, ethylene selectivity of PdNPs-Ag/α-Al2O3catalyst is higher than that of PdNPs/α-Al2O3catalyst.

    In a word, PdNPs/α-Al2O3catalyst with 0.03% mass loading is a very effective catalyst owing to isolated active sites. With promoter Ag added, ethylene selectivity is improved and the catalytic performance of PdNPs-Ag/α-Al2O3catalyst is better than conventional Pd-Ag/α-Al2O3catalyst.

    4 CONCLUSIONS

    CMC was used as a suitable and good stabilizer to synthesize size-controlled PdNPs in aqueous solution. Low-loaded PdNPs/α-Al2O3catalysts were prepared by the incipient wetness impregnation technique using the aqueous solution of PdNPs. PdNPs/α-Al2O3catalysts form very small and uniform Pd particles on α-Al2O3. PdNPs/α-Al2O3catalyst with 0.03% Pd mass loading is a very effective and stable catalyst for the selective hydrogenation of acetylene in ethylene-rich stream. PdNPs-Ag/α-Al2O3catalyst exhibits better catalytic performance than conventional Pd-Ag/α-Al2O3catalyst, which is a kind of industrial candidate catalyst.

    REFERENCES

    1 Borodziński, A., Bond, G.C., “Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction”, Catal. Rev., 48, 91-144 (2006).

    2 Molnár, á., Sárkány, A., Varga, M., “Recirculation hydrogenation of carbon-carbon multiple bonds: Chemo-, regio- and stereo-selectivity”, J. Mol. Catal. A: Chem., 173, 185-221 (2001).

    3 Kang, J.H., Shin, E.W., Kim, W.J., Park, J.D., Moon, S.H., “Selective hydrogenation of acetylene on TiO2-added Pd catalysts”, J. Catal., 208, 310-320 (2002).

    4 Khan, N.A., Shaikhutdinov, S., Freund, H.J., “Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts”, Catal. Lett., 108, 159-164 (2006).

    5 Lee, J.H., Kim, S.K., Ahn, I.Y., Kim, W.J., Moon, S.H., “Performance of Pd-Ag/Al2O3catalysts prepared by the selective deposition of Ag onto Pd in acetylene hydrogenation”, Catal. Commun., 12, 1251-1254 (2011).

    6 Borodziński, A., Cybulski, A., “The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits”, Appl. Catal. A: Gen., 198, 51-66 (2000).

    7 Mei, D., Neurock, M., Smith, C.M., “Hydrogenation of acetyleneethylene mixtures over Pd and Pd-Ag alloys: First-principles-based kinetic monte carlo simulations”, J. Catal., 268, 181-195 (2009).

    8 Komhom, S., Mekasuwandumrong, O., Praserthdam, P., Panpranot, J., “Improvement of Pd/Al2O3catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3support ”, Catal. Commun., 10, 86-91 (2008).

    9 Bronstein, L.M., Shifrina, Z.B., “Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles”, Chem. Rev., 111, 5301-5344 (2011).

    10 Roucoux, A., Schulz, J., Patin, H., “Reduced transition metal colloids: A novel family of reusable catalysts?”, Chem. Rev., 102, 3757-3778 (2011).

    11 Li, Y., Boone, E., EI-Sayed, M.A., “Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution”, Langmuir, 18, 4921-4925 (2002).

    12 Esuni, K., Isono, R., Yoshimura, T., “Preparation of PAMAM- and PPI-metal (silver, platinum and palladium) nanocomposites and their catalytic activities for reduction of 4-Nitrophenol”, Langmuir, 20, 237-243 (2004).

    13 Nemamcha, A., Rehspringer, J., Khatmi, K., “Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution”, J. Phys. Chem. B, 110, 383-387 (2006).

    14 Gallon, B.J., Kojima, R.W., Kaner, R.B., Diaconescu, P.L., “Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water”, Angew. Chem. Int. Ed., 46, 7251-7254 (2007).

    15 Evangelisti, C., Panziera, N., D’Alessio, A., Bertinetti, L., Botavina, M., “New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): Preparation, structural study and catalytic properties”, J. Catal., 272, 246-252 (2010).

    16 Lu, J.C., Sutton, J., Roberts, C.B., “Synthesis and extraction of monodisperse sodium carboxymethylcellulose-stabilized platinum nanoparticles for the self-assembly of ordered arrays”, J. Phys. Chem. C, 111, 11566-11576 (2007).

    17 Chen, J., Wang, J., Zhang, X., Jin, Y.L., “Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate”, Mater. Chem. Phys., 108, 421-424 (2008).

    18 Zhang, H.L., Yang, Y.Y., Dai, W., Yang, D., Lu, S.L., Ji, Y.Y., “An aqueous-phase catalytic process for the selective hydrogenation of acetylene with monodisperse water soluble palladium nanoparticles as catalyst”, Catal. Sci. Technol., 2, 1319-1323 (2012).

    19 Liu, J., “Advanced electron microscopy of metal-support interactions in supported metal catalysts”, Chem. Cat. Chem., 3, 934-948 (2011).

    20 Zhang, Q.W., Li, J., Liu, X.X., Zhu, Q.M., “Synergetic effect of Pd and Ag dispersed on Al2O3in the selective hydrogenation of acetylene”, Appl. Catal. A: Gen., 197, 221-228 (2000).

    21 Zhang, Q., Dai, W., Mu, W., Yu, H.B., “Pd-Ag/Al2O3and Pd/Al2O3catalysts for selective hydrogenation of ethyne with in-situ DRIFTS”, CIESC Journal, 62, 71-77 (2011).

    22 Palazov, A., Kadinov, G., Bonev, C.H., Shopov, D., “Infrared spectroscopic study of the interaction between carbon monoxide and hydrogen on supported palladium”, J. Catal., 74, 44-54 (1982)

    2012-10-29, accepted 2013-02-28.

    * Supported by SINOPEC Beijing Research Institute of Chemical Industry (01-09ZS0440, 11-08ZS0442).

    ** To whom correspondence should be addressed. E-mail: daiw.bjhy@sinopec.com

    超碰av人人做人人爽久久 | 欧美日本视频| 嫩草影视91久久| 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 97超级碰碰碰精品色视频在线观看| 免费在线观看日本一区| 亚洲精品在线美女| 国产欧美日韩精品亚洲av| 日韩高清综合在线| 国产成人a区在线观看| 欧美最新免费一区二区三区 | 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 91麻豆av在线| 欧美精品啪啪一区二区三区| 国产成人系列免费观看| 亚洲黑人精品在线| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看| 丁香欧美五月| 男女视频在线观看网站免费| 高清在线国产一区| 亚洲中文字幕日韩| 九色成人免费人妻av| 欧美乱妇无乱码| 日韩欧美国产在线观看| 欧美日韩黄片免| 国产精品,欧美在线| 亚洲精品久久国产高清桃花| 午夜久久久久精精品| 国产精品1区2区在线观看.| 国产精品香港三级国产av潘金莲| 露出奶头的视频| 一进一出抽搐动态| 欧美日韩国产亚洲二区| 亚洲成人精品中文字幕电影| 99国产精品一区二区蜜桃av| 尤物成人国产欧美一区二区三区| 国产极品精品免费视频能看的| 高清日韩中文字幕在线| a在线观看视频网站| 女警被强在线播放| 99久久精品国产亚洲精品| 中文在线观看免费www的网站| 国产精品一区二区三区四区免费观看 | 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 中文字幕高清在线视频| 麻豆久久精品国产亚洲av| 99精品欧美一区二区三区四区| 男插女下体视频免费在线播放| 午夜久久久久精精品| 久久香蕉精品热| 一进一出好大好爽视频| 麻豆成人午夜福利视频| 真人做人爱边吃奶动态| 午夜福利18| 99国产综合亚洲精品| 欧美色欧美亚洲另类二区| 99久久99久久久精品蜜桃| 男人舔奶头视频| 亚洲av电影在线进入| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 日韩免费av在线播放| 欧美日韩中文字幕国产精品一区二区三区| 成人鲁丝片一二三区免费| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 欧美日韩瑟瑟在线播放| 色吧在线观看| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 99久久精品热视频| 69人妻影院| 亚洲最大成人手机在线| 中亚洲国语对白在线视频| 免费人成视频x8x8入口观看| 男插女下体视频免费在线播放| 一级黄片播放器| 欧美一级毛片孕妇| svipshipincom国产片| 可以在线观看毛片的网站| 99久久99久久久精品蜜桃| 久久国产精品影院| 亚洲av成人不卡在线观看播放网| 国产精品av视频在线免费观看| 十八禁网站免费在线| 日本免费a在线| 欧美黑人巨大hd| 日本 av在线| 亚洲黑人精品在线| 精品久久久久久久久久免费视频| av天堂在线播放| 偷拍熟女少妇极品色| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 一区福利在线观看| 国产精品嫩草影院av在线观看 | 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 18禁黄网站禁片免费观看直播| 欧美zozozo另类| 国内久久婷婷六月综合欲色啪| 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 一二三四社区在线视频社区8| 午夜精品在线福利| 老司机午夜福利在线观看视频| 综合色av麻豆| 99国产精品一区二区蜜桃av| 亚洲欧美一区二区三区黑人| 欧美色欧美亚洲另类二区| 脱女人内裤的视频| 99久久99久久久精品蜜桃| 久久伊人香网站| 小蜜桃在线观看免费完整版高清| 高潮久久久久久久久久久不卡| 网址你懂的国产日韩在线| 女人高潮潮喷娇喘18禁视频| 他把我摸到了高潮在线观看| 亚洲精品色激情综合| 亚洲av免费在线观看| 97人妻精品一区二区三区麻豆| 欧美黑人欧美精品刺激| 日日干狠狠操夜夜爽| 亚洲成av人片免费观看| 三级毛片av免费| 亚洲av成人精品一区久久| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 亚洲 欧美 日韩 在线 免费| 成人特级黄色片久久久久久久| 国产一级毛片七仙女欲春2| 日韩精品青青久久久久久| 欧美av亚洲av综合av国产av| 国产精品免费一区二区三区在线| 五月玫瑰六月丁香| 亚洲av成人av| 狠狠狠狠99中文字幕| 18禁裸乳无遮挡免费网站照片| 亚洲人成伊人成综合网2020| 国产精品 欧美亚洲| 九色国产91popny在线| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| 99久久精品热视频| 真人一进一出gif抽搐免费| 成人亚洲精品av一区二区| 色综合欧美亚洲国产小说| 国产av一区在线观看免费| 中文字幕高清在线视频| 波多野结衣巨乳人妻| 亚洲av五月六月丁香网| 国产免费男女视频| 久久国产精品影院| 欧美+亚洲+日韩+国产| 男女做爰动态图高潮gif福利片| 国产一区二区亚洲精品在线观看| 久久天躁狠狠躁夜夜2o2o| 在线看三级毛片| 中文字幕久久专区| av福利片在线观看| 日本与韩国留学比较| 舔av片在线| 51国产日韩欧美| 小蜜桃在线观看免费完整版高清| 一级黄色大片毛片| 啦啦啦观看免费观看视频高清| 免费看十八禁软件| 国产97色在线日韩免费| 久久久久免费精品人妻一区二区| 国产精品综合久久久久久久免费| 日韩欧美精品v在线| 久久久久久大精品| 三级毛片av免费| 9191精品国产免费久久| 一级a爱片免费观看的视频| 亚洲国产欧美人成| 青草久久国产| 国产v大片淫在线免费观看| 国内精品久久久久精免费| 黄色成人免费大全| 午夜福利18| 国产一区二区亚洲精品在线观看| 国产成人影院久久av| 久久久国产成人精品二区| 九色国产91popny在线| 少妇熟女aⅴ在线视频| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 国产精品自产拍在线观看55亚洲| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 九九在线视频观看精品| 精品久久久久久,| 国产一区二区三区在线臀色熟女| 51午夜福利影视在线观看| 欧美+亚洲+日韩+国产| 国产精品,欧美在线| 国产高清有码在线观看视频| xxxwww97欧美| 人人妻人人看人人澡| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av | 日韩 欧美 亚洲 中文字幕| 我要搜黄色片| 在线免费观看不下载黄p国产 | 亚洲黑人精品在线| 日本在线视频免费播放| 一个人看的www免费观看视频| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 国产精品亚洲av一区麻豆| 天天一区二区日本电影三级| 淫秽高清视频在线观看| 国产精品永久免费网站| 亚洲精品成人久久久久久| 真人一进一出gif抽搐免费| 国产探花极品一区二区| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 2021天堂中文幕一二区在线观| 男插女下体视频免费在线播放| 国产精品99久久久久久久久| 国产精品日韩av在线免费观看| 亚洲国产精品久久男人天堂| 丁香欧美五月| 国产亚洲欧美98| 动漫黄色视频在线观看| 亚洲精华国产精华精| 欧美高清成人免费视频www| 18禁国产床啪视频网站| 日韩欧美在线二视频| 97碰自拍视频| 99在线视频只有这里精品首页| 激情在线观看视频在线高清| 极品教师在线免费播放| 丁香六月欧美| 美女高潮喷水抽搐中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲真实伦在线观看| 男人的好看免费观看在线视频| 无限看片的www在线观看| 哪里可以看免费的av片| 丰满人妻熟妇乱又伦精品不卡| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 欧美激情在线99| 午夜日韩欧美国产| 久久中文看片网| 免费看日本二区| ponron亚洲| a在线观看视频网站| 特级一级黄色大片| 乱人视频在线观看| 日韩大尺度精品在线看网址| 宅男免费午夜| 丰满人妻熟妇乱又伦精品不卡| 男女午夜视频在线观看| 精品无人区乱码1区二区| 国产极品精品免费视频能看的| 丝袜美腿在线中文| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 很黄的视频免费| 我的老师免费观看完整版| 久久精品91无色码中文字幕| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 欧美乱色亚洲激情| 黄色视频,在线免费观看| 国产成人av激情在线播放| 最新中文字幕久久久久| 欧美一级毛片孕妇| 亚洲国产精品999在线| 欧美日韩福利视频一区二区| 色哟哟哟哟哟哟| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 亚洲乱码一区二区免费版| 中文字幕人妻丝袜一区二区| 午夜福利18| 欧美黄色片欧美黄色片| 岛国在线免费视频观看| 久久久久性生活片| 9191精品国产免费久久| 99国产极品粉嫩在线观看| 变态另类丝袜制服| 久久久色成人| 一级毛片女人18水好多| 在线a可以看的网站| 哪里可以看免费的av片| 免费在线观看成人毛片| 国产探花极品一区二区| 男人舔女人下体高潮全视频| 亚洲精品影视一区二区三区av| 午夜福利成人在线免费观看| 久久国产精品影院| 99热只有精品国产| 国产精品嫩草影院av在线观看 | 美女免费视频网站| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 狂野欧美白嫩少妇大欣赏| 999久久久精品免费观看国产| 日韩欧美免费精品| 制服人妻中文乱码| 国产探花在线观看一区二区| 国产在视频线在精品| 成人特级黄色片久久久久久久| 国产一区在线观看成人免费| 性色avwww在线观看| 亚洲天堂国产精品一区在线| 中文字幕av成人在线电影| 国产伦人伦偷精品视频| 午夜久久久久精精品| 国内精品美女久久久久久| 黄片小视频在线播放| 久9热在线精品视频| 9191精品国产免费久久| 91av网一区二区| 欧美在线一区亚洲| 亚洲国产精品久久男人天堂| 国产精品亚洲一级av第二区| 精品国产美女av久久久久小说| 欧美成狂野欧美在线观看| 窝窝影院91人妻| 久久久久亚洲av毛片大全| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| 国产老妇女一区| 波多野结衣高清作品| 操出白浆在线播放| 在线播放无遮挡| 精品国产美女av久久久久小说| 久久久色成人| 特级一级黄色大片| 国产精品一及| 91久久精品国产一区二区成人 | 久久香蕉国产精品| 99热6这里只有精品| 内射极品少妇av片p| 国产欧美日韩一区二区三| 亚洲欧美日韩卡通动漫| 怎么达到女性高潮| 2021天堂中文幕一二区在线观| www.色视频.com| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 97碰自拍视频| 在线观看美女被高潮喷水网站 | 极品教师在线免费播放| 亚洲国产精品久久男人天堂| 免费在线观看影片大全网站| av女优亚洲男人天堂| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| av在线蜜桃| 久久久色成人| 亚洲 国产 在线| 热99re8久久精品国产| 中文字幕av成人在线电影| 亚洲成人久久爱视频| 91字幕亚洲| 三级毛片av免费| 神马国产精品三级电影在线观看| 欧美3d第一页| 亚洲激情在线av| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 亚洲欧美激情综合另类| 97人妻精品一区二区三区麻豆| 久久草成人影院| 国产成人系列免费观看| 少妇人妻精品综合一区二区 | 一本精品99久久精品77| 国产成年人精品一区二区| 欧美一级a爱片免费观看看| www.999成人在线观看| 亚洲av成人精品一区久久| 亚洲av成人av| 18+在线观看网站| 国产精品精品国产色婷婷| 国产伦一二天堂av在线观看| 69av精品久久久久久| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 成人av在线播放网站| 成人国产一区最新在线观看| 成人鲁丝片一二三区免费| 国产真人三级小视频在线观看| 精品99又大又爽又粗少妇毛片 | 精品久久久久久,| 婷婷丁香在线五月| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 极品教师在线免费播放| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 成年女人看的毛片在线观看| 51国产日韩欧美| 免费看a级黄色片| 欧美一级毛片孕妇| 国产欧美日韩一区二区三| 亚洲av成人精品一区久久| 亚洲内射少妇av| 亚洲中文日韩欧美视频| 18禁美女被吸乳视频| 激情在线观看视频在线高清| 午夜福利视频1000在线观看| 伊人久久大香线蕉亚洲五| 国产亚洲欧美98| 3wmmmm亚洲av在线观看| 最新美女视频免费是黄的| 哪里可以看免费的av片| 搡老熟女国产l中国老女人| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 一级作爱视频免费观看| 亚洲自拍偷在线| 亚洲男人的天堂狠狠| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 欧美一区二区国产精品久久精品| 日韩国内少妇激情av| 日本 欧美在线| 夜夜看夜夜爽夜夜摸| 一级作爱视频免费观看| 久久国产乱子伦精品免费另类| av在线天堂中文字幕| 91九色精品人成在线观看| 两个人视频免费观看高清| 黄色日韩在线| 国产欧美日韩一区二区精品| 亚洲乱码一区二区免费版| 亚洲avbb在线观看| 欧美黄色片欧美黄色片| 欧美高清成人免费视频www| а√天堂www在线а√下载| 婷婷亚洲欧美| 给我免费播放毛片高清在线观看| 神马国产精品三级电影在线观看| 校园春色视频在线观看| 五月玫瑰六月丁香| 韩国av一区二区三区四区| 69av精品久久久久久| 亚洲中文字幕日韩| 一级黄片播放器| 国产一区二区在线观看日韩 | 国产主播在线观看一区二区| 啦啦啦观看免费观看视频高清| 国产一区二区三区在线臀色熟女| 欧美不卡视频在线免费观看| 日韩亚洲欧美综合| 精品久久久久久,| 色尼玛亚洲综合影院| 长腿黑丝高跟| 久久精品亚洲精品国产色婷小说| 在线观看午夜福利视频| 在线观看av片永久免费下载| 久久草成人影院| 亚洲激情在线av| 国产色婷婷99| 免费高清视频大片| 亚洲av成人精品一区久久| 啦啦啦韩国在线观看视频| 欧美在线黄色| 欧美黄色淫秽网站| ponron亚洲| 欧美激情在线99| 成人精品一区二区免费| 久久久久久久久大av| 黄色丝袜av网址大全| 成人三级黄色视频| 日本撒尿小便嘘嘘汇集6| 中文字幕av成人在线电影| 国产淫片久久久久久久久 | 黄色丝袜av网址大全| 热99在线观看视频| 熟女少妇亚洲综合色aaa.| 97人妻精品一区二区三区麻豆| 日本黄色片子视频| 免费看a级黄色片| 夜夜夜夜夜久久久久| 波多野结衣高清无吗| 中文字幕精品亚洲无线码一区| 久久久久久人人人人人| 最近在线观看免费完整版| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 欧美又色又爽又黄视频| e午夜精品久久久久久久| 国产精品影院久久| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 免费在线观看成人毛片| 色在线成人网| 国产精品久久久久久久久免 | 国产成年人精品一区二区| 午夜福利成人在线免费观看| 无遮挡黄片免费观看| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| xxxwww97欧美| 亚洲成人精品中文字幕电影| 又爽又黄无遮挡网站| 国产一区二区三区视频了| 午夜精品在线福利| 久久久久久人人人人人| 国产美女午夜福利| 亚洲精品在线观看二区| e午夜精品久久久久久久| 亚洲乱码一区二区免费版| 首页视频小说图片口味搜索| 18禁黄网站禁片免费观看直播| 亚洲精品456在线播放app | 国产av麻豆久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 国产成人影院久久av| av中文乱码字幕在线| 国产在视频线在精品| 嫩草影院精品99| 欧美区成人在线视频| xxxwww97欧美| 99热只有精品国产| 老司机深夜福利视频在线观看| 亚洲五月婷婷丁香| 欧美av亚洲av综合av国产av| 高潮久久久久久久久久久不卡| 69人妻影院| 91久久精品电影网| 成人亚洲精品av一区二区| 亚洲精品国产精品久久久不卡| 又黄又爽又免费观看的视频| 可以在线观看的亚洲视频| 国产主播在线观看一区二区| 午夜免费男女啪啪视频观看 | 好男人电影高清在线观看| 亚洲不卡免费看| 欧美性猛交黑人性爽| 免费av不卡在线播放| 亚洲欧美激情综合另类| 97超视频在线观看视频| 国产探花极品一区二区| 别揉我奶头~嗯~啊~动态视频| 男女下面进入的视频免费午夜| 免费一级毛片在线播放高清视频| 国产精品久久视频播放| 国产精品影院久久| 黑人欧美特级aaaaaa片| 两个人视频免费观看高清| 午夜福利高清视频| 99久久成人亚洲精品观看| 黄色视频,在线免费观看| 亚洲电影在线观看av| 性欧美人与动物交配| 久久精品影院6| 国产黄片美女视频| 99久久精品国产亚洲精品| 亚洲精品色激情综合| 岛国在线观看网站| 女警被强在线播放| 国产精品一及| 日本熟妇午夜| 亚洲成人久久爱视频| 欧美午夜高清在线| 国产探花极品一区二区| 熟女人妻精品中文字幕| www.色视频.com| 欧美+日韩+精品| av女优亚洲男人天堂| 久久99热这里只有精品18| 国产亚洲精品一区二区www| 日韩亚洲欧美综合| 婷婷六月久久综合丁香| netflix在线观看网站| 国产亚洲av嫩草精品影院| 午夜福利欧美成人| 色综合婷婷激情| 国产亚洲精品久久久com| 少妇丰满av| 免费观看精品视频网站| 少妇裸体淫交视频免费看高清| 99久久九九国产精品国产免费| 黄片大片在线免费观看| 亚洲av成人不卡在线观看播放网| 亚洲国产中文字幕在线视频| 欧美性猛交╳xxx乱大交人| 国产一区二区三区视频了| 亚洲不卡免费看| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 国产在视频线在精品| 69人妻影院| 欧美又色又爽又黄视频| 天堂网av新在线| 色精品久久人妻99蜜桃| 欧美av亚洲av综合av国产av| 精品久久久久久久人妻蜜臀av| 午夜福利视频1000在线观看| av欧美777|