• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of H2S Tolerance of Pd-Cu Alloy Hydrogen Separation Membranes*

    2014-07-18 12:09:47GAOHuiyuan高會元andWANGLing王嶺CollegeofChemicalEngineeringHebeiUnitedUniversityTangshan063009China

    GAO Huiyuan (高會元)** and WANG Ling (王嶺)College of Chemical Engineering, Hebei United University, Tangshan 063009, China

    Analysis of H2S Tolerance of Pd-Cu Alloy Hydrogen Separation Membranes*

    GAO Huiyuan (高會元)** and WANG Ling (王嶺)
    College of Chemical Engineering, Hebei United University, Tangshan 063009, China

    The presence of a limited amount of H2S in H2-rich feed adversely affects the Pd-Cu membrane permeation performance due to the sulphidization of the membrane surface. A theoretical model was proposed to predict the S-tolerant performance of the Pd-Cu membranes in presence of H2S under the industrial water-gas-shift (WGS) reaction conditions. The ideas of surface coverage and competitive adsorption thermodynamics of H2S and H2on Pd-Cu surface were introduced in the model. The surface sulphidization of the Pd-Cu membranes mainly depended on the pressure ratio of H2S to H2, temperature and S-adsorbed surface coverage, i.e., the occurrence of sulphidization on the surface was not directly related with the bulk compositions and structures [body centered cubic and face centered cubic (bcc or fcc)] of Pd-Cu alloy membranes because of the surface segregation phenomena. The resulting equilibrium equations for the H2S adsorption/sulphidization reactions were solved to calculate the pressure ratio of H2S to H2over a wide range of temperatures. A validation of the model was performed through a comparison between lots of literature data and the model calculations over a rather broad range of operating conditions. An extremely good agreement was obtained in the different cases, and thus, the model can serve to guide the development of S-resistant Pd alloy membrane materials for hydrogen separation.

    surface coverage, Pd-Cu alloy membranes, H2S tolerance, theoretical model, hydrogen separation

    Figure 1 Schematic illustration of the catalytic membrane reactorR1—inside radius of membrane tube; R2—outside radius of membrane tube; R3—inside radius of stainless steel tube

    1 INTRODUCTION

    Hydrogen is not only the important chemical raw materials, but also an important clean energy. A variety of technologies have been and continue to be developed for the production of hydrogen [1] including coal/biomass gasification, oil and natural gas reforming, electrolysis of conductive water and so on. As a matter of fact, the gasification of coal is an effective method of thermal hydrogen production and is considered to be a key technology in the transition to a hydrogen economy. In the gasification process, carbon-based feedstocks are converted in the gasifier in the presence of steam and oxygen at high temperatures and moderate pressure to synthesis gas, a mixture H2, CO, CO2, CH4and trace components (H2S, HCN, etc.). The synthesis gas containing these minor and trace components must be cleaned to predetermined levels as consistent with further downstream processing.

    Membranes that can efficiently and economically remove hydrogen produced from the gasification processes have the potential to increase the overall efficiency of the gasification process. Recently, one study has focused on using a membrane reactor to remove H2produced, thus improving the overall conversion of the water-gas-shift (WGS) reaction. The membrane reaction is depicted in the schematic diagram in Fig. 1. A significant technical barrier impeding hydrogen separation membrane development is resistance to impurities such as H2S. Palladium-based membranes have been considered as the good candidates for membrane reactors used in the clean coal conversion processes because of the excellent selectivity and the good permeability. Especially, Pd-Cu alloy membranes [2] with bcc/fcc structures have been of interest in recent years due to the high permeability, the costadvantage relative to Pd [3, 4], and suppression of the hydride-phase transition and resistance to poisoning performance.

    Some groups [5-9] conducted research on the effect of H2S on the performance of Pd-Cu alloy membranes, and believed that membrane tolerance to H2S was strongly dependent on operating temperature, alloy composition, crystalline structure and exposure time, others [10] argued that failure of the Pd-Cu alloy membranes did not depend on H2S exposure time, only the H2S concentrations. Obviously, the statements of the observed changes in the Pd-Cu membrane performance in the presence of S-containing gases were varied considerably between studies because of the different experimental conditions and the different cognizance of poisioning mechanism.

    The effect of H2S on the membrane performance is the deposition of sulfur on the surface and the formation of sulfides, which causes the decrease in hydrogen permeation through the membrane or membrane breakage. Therefore, H2S adsorption, decomposition and the formation of palladium sulfide on the metallic surface are the important steps in the poisoning process. From the thermodynamic equilibrium point of view, it is well known that the formation of noble metal sulphides depends on the ratio of H2S to H2in the atmosphere, and to accurately predict the formation of metal sulfides is possible. However, to the best of our knowledge, so far there has not been a theoretical model based on this type of mechanism to quantitatively predict the performance of H2S tolerance of Pd-Cu alloy membranes.

    The objective of this paper is to set up a quantitative theoretical model and use it to predict the behavior of H2S tolerance of Pd-Cu alloy membranes based a surface kinetic mechanism. The rationality of the model is tested using the data derived from the literature. It is hoped that the model can guide the development of S-resistant Pd alloy membrane materials.

    2 THEORETICAL MODEL

    The elementary reactions of abstraction of H from H2S to form a surface SH intermediate and abstraction of H from SH to form a surface S intermediate as the dissociation pathway of H2S were examined by using the atomic models by several researchers [11-14]. The results suggest that dissociation of hydrogen sulfide has relatively low activation barriers on Pd alloy surfaces, and that the pathway to the resulting S adsorption is very favorable. The S adsorption strength does not change significantly with Pd alloy composition, and increases with increasing alloy d-band center energies [12] and lattice size [13].

    The S adsorption strength decreases with increasing coverage on the metallic surface, which was attributed to the change in the adsorption sites and the repulsive interactions between the S adatoms as the S coverage increases. With increasing exposure to S-bearing contaminants, atomic S has been shown to irreversibly absorb into susceptible Pd alloys, especially Pd and Pd-Ag alloys, to form a non-limiting corrosion product layer [15, 16]. This layer often predominantly contains Pd4S, which has a significantly lower H2permeability [16]. The absorption of the relatively large S atoms significantly distorts the lattice to facilitate a high degree of S-metal coordination, serving as a precursor structure for formation of a Pd4S surface layer.

    On the basis of above analysis, a kinetic mechanism of the palladium-based membranes of hydrogen sulfide poisoning is proposed consisting of the following elementary steps:

    where g, ? and ad stand for gas, surface site and a different adsorbed intermediate, respectively.

    The transition between a sulfur chemisorbed phase and the appearance of a sulfide scale [Eq. (2)] may be expected at the threshold coverage with chemisorbed sulfur, which is thermodynamically, not kinetically, determined. Similar facts also exist in the oxidation processes of the metallic surfaces [17].

    where MxS represents the products of sulphidation.

    Sulphidation reaction Eq (3) can be derived from coupling Eqs. (1e) and (2), regardless of the microscopic processes underlying the phase transition from the two-dimensional sulfur adsorbate layer to the three-dimensional sulfide.

    As mentioned above, at elevated temperatures H2S is easily decomposed on Pd surface, suggesting that there is only S and H adsorbed on the surface [18]. It is reasonable to further assume the competitive adsorption only involved S and H adsorbates on the membrane surfaces for our thermodynamic model under the condition of WGS reaction, i.e.,2SH0θ=,SH0θ=.

    So,

    hydrogen sulfide to hydrogen ratio,

    Since a linear relation exists between the heats of formation of the two-dimensional sulfur layers and the corresponding bulk metal sulfides [19, 20], thethermodynamic relationship Eq. (5) should be applicable to0sulphidation reaction Eq. (3) as long as one uses ΔGTof sulphidation reaction instead of the sulfur chemisorption.

    According to the free energies of formation of Pd- and Cu-sulfides, Pd4S and Cu2S [21] will mainly be concerned in the PdxCu1?x-H2-H2S system. It is noted that other reactions forming tertiary compounds such as Pd13Cu3S7are possible, however, these sulfides are observed to be less common at the conditions of interest, and hence they will not be considered further in this model. Furthermore, in order to predict H2S tolerance performance of the pure Pd and PdxCu1?xalloy membranes at the different temperatures by using our theoretical model, on the basis of the research results [22-27], the surface atomic coveragesSθ andHθ of Pd membrane sulphidization in this study are chosen as 0.25 and 0.125, respectively. Actually, the value ofSθ(S/Pd)=1︰4 corresponds with the atomic ratio of Pd4S.

    As for alloying Pd with Cu membranes, it is considered that Cu does not adsorb significant amounts of hydrogen at the studied temperatures, while Pd adsorbs hydrogen with the stoichiometry H/Pd≈1.

    Meanwhile, palladium-copper alloy membranes require three times higher H2S feed concentrations to achieve the same inhibition of H2permeation as the pure Pd membranes [10]. Thus, it is assigned the H and S surface coverage (θH, θS) to 0.125 monolayer (ML) and 0.75 ML, respectively. In fact, some experimental and theoretical researches [10] have revealed that the incorporation of sulfur into the metal becomes favorable at a critical coverage of about 0.75 ML at elevated temperatures [28]. The threshold coverages, sulphidization reactions and the standard Gibbs free energies for Pd and Pd-Cu membranes are shown in Table 1.

    3 RESULTS AND DISCUSSION

    Table 1 Surface coverages, sulfidization reactions and the standard Gibbs free energies for Pd and Pd-Cu membranes

    Figure 2 represents the variation of H2S tolerance performance (H2S-to-H2partial pressure ratio) with increasing temperature predicted by our thermodynamic model for pure Pd and PdxCu1?xmembranes. The limited values of H2S-to-H2ratios require formation Pd4S for the pure Pd membrane poisoning, and formation Pd4S or/and Cu2S for Pd-Cu membrane poisoning are clearly shown as the three lines, respectively. H2S-to-H2partial pressure ratio obviously increases with increasing temperature for the pure Pd and Pd-Cu alloy membranes H2S tolerance, i.e., the sulfur tolerance performance of Pd-based membranes increases with increasing temperature due to the exothermic nature of the sulphidization reactions. On the other hand, the sulphidization of the membrane alloyed Pd and Cu requires much higher H2S/H2ratios (at least more than 1.5 orders of magnitude) as compared with the pure Pd membrane, indicating that the PdxCu1?xalloy membrane has better sulfur resistance than the pure Pd membrane.

    The composition of the formed sulfide depends on the H2S-to-H2partial pressure ratio rather than H2S concetration. When H2S-to-H2ratios are greater than or equal to the equilibrium values predicted for Pd4S and Cu2S formations, a stable Pd4S scale and a stable Pd4S+Cu2S scale should be formed on the PdxCu1?xalloy membrane surface at the corresponding temperature of interest, respectively. From thermodynamic considerations the ΔG0values of the sulphides of Pd indicate greater stability of these compounds ascompared to those of Cu. The experimental studys have pointed out that as a comparison of these two metals, Pd is less resistant to attack by H2S. Therefore, both thermodynamics and chemical kinetics predict a predominant formation of palladium sulphide over copper sulphide when an alloy of them is sulphidized in H2S.

    Figure 2 Predicting H2S tolerance for Pd and Pd-Cu membranes with increasing temperature Zone I: Pd4S+Cu2S; Zone II: Pd4S; Zone III: no sulfide for Pd-Cu membranes; Zone IV: no sulfide for Pd membranes

    Furthermore, the comparison of the experimental results with the predicted outcomes for the PdxCu1?xalloy membranes at the respective H2S-to-H2feed ratios and temperatures is tabulated in Table 2. The agreement between the experimental and the model predicted results is excellent. Table 3 compares the experimental results with the predicted outcomes for the pure Pd membranes, illustrating a completely accurate prediction.

    Table 2 Comparing predicted outcome to experimental results of PdxCu1?xalloy membranes (%, by atom)

    Table 3 Comparing predicted outcome to experimental results of Pd membrane

    Why can the PdxCu1?xalloy membrane resist H2S poisoning? As a matter of fact, the higher sulfur tolerance of PdxCu1?xalloy compared with pure Pd metal should be attributed to both ligand (surface reactivity) and ensemble (spatial distribution of atom) effects due to alloying [30]. Fig. 3 shows the high-symmetry sites including top, bridge, fcc and hcp sites, which adsorb the reactants.

    The preferred adsorption sites for S on Pd(111), PdCu3(1 1 1) and Pd3Cu(1 1 1) surfaces are the threefoldface centered cubic/hexagonal close-packed (fcc/hcp) hollow sites [12], the comparison of the relative concentration of various Pd sites for pure Pd and PdxCu1?xalloys shows that Pd0.7Cu0.3(111) has a lower relative concentration of Pd threefold sites, similar bridge sites, and higher Pd top sites than the Pd(111) surface [31]. Therefore, from the viewpoint of the ensemble effects, a Pd-Cu alloy membrane is conducive to decrease the poisoning effect of sulfur for the permeation of H2. What should be pointed out is, that the real Pd alloy surfaces are highly complex. PdCu alloys, for example, exhibit random distributions of the alloying metal. The effective adsorption energy on a polycrystalline surface examined in experiments is expected to be somewhat different from that on a single facet of a perfect crystal, but the difference does not affect the above conclusion. A detailed interpretation is beyond the scope of this paper, but it is noted that the possibilities are interesting.

    On the other hand, in view of the ligand effects, the interaction between Pd and Cu leads to a decrease in the charge in the electronic bands of Cu 4s4p and, to a smaller extent, of Pd 4d and an increase in the population of the Pd 5s5p bands. The interaction does not modify the occupancy of the Cu 3d band. As a result, the S-Pd bonding interactions are reduced. In other words, the PdxCu1?xmembranes have acquired tolerance for sulfure poisoning due to alloying.

    It is noted that the surface segregation, except the ratio of H2S to H2and temperature, plays an important role in the sulphidization of the Pd-Cu alloy. Clean surface studies have shown that the top atomic layer of PdxCu1?xalloys is rich in Cu, whereas the nearsurface region (~7 atomic layers) is rich in Pd. The surface compositions varied smoothly with bulk composition [35], suggesting that segregation is insensitive to bulk structure (bcc or fcc) of the alloy. However, if there are strongly interacting adsorbates present such as sulfur, Pd is brought to the surface. Segregation reversal may be driven by the formation of thermodynamically favored Pd S bonds at the terminating surface of the alloy. That is to say, the occurrence of sulphidization on the surface is not directly related with the bulk compositions and structures (bcc or fcc) of Pd-Cu alloy membranes because of the surface segregation phenomena.

    Figure 3 Schematic illustration of the high symmetry sites of low index surface

    4 CONCLUSIONS

    This study reports a theoretical model for the calculation of the pressure ratio of H2S to H2, which can be used in the prediction of the S-tolerant performance for Pd-Cu membranes in coal-derived syngas streams containing a limited H2S. The model explicitly considers the interaction of both H2and H2S with a alloy surface including surface coverage and segregation effects. Unlike previous equilibrium models in the literature, this model based on the surface reaction theory introduces the idea of S-adsorbed surface coverage rather than the activity of the solid solutions in the Pd-Cu system because the sulphidization reactions occur on the surface, not in the bulk. In other words, the occurrence of sulphidization on the surface involving S-adsorbed surface coverage and surface segregation is not directly related with the bulk compositions and structures (bcc or fcc) of Pd-Cu alloy membranes.

    The thermodynamic predictions are in exact agreement with the reported studies in the literature involving Pd and Pd-Cu membranes exposed to varying H2-H2S mixtures at various temperatures. The demonstration of the predictive capability of our proposed approach is not only limited to the Pd-Cu alloy membranes, but also readily extended to other Pd-based membranes such as PdCuAu, PdCuAg ect. In this procedure the only fitting parameter used is the sulfure surface coverage, which is allowed to vary in the range of values experimentally observed for different Pd-based membranes.

    ACKNOWLEDGEMENTS

    The Excellent Going Abroad Experts’ Training Program in Hebei Province is gratefully acknowledged. Furthermore, the authors would like to thank Professor Jerry Lin from Arizona State University for helpful discussions and modifying the paper.

    NOMENCLATURE

    REFERENCES

    1 Stiegel, G. J., Ramezan, M., “Hydrogen from coal gasification: An economical pathway to a sustainable energy future”, Int. J. Coal Geology, 65, 173-190 (2006).

    2 Gao, H.Y., Lin, Y.S., Li, Y.D., Zhang, B.Q., “Electroless plating synthesis, characterization and permeation properties of Pd-Cu membranes supported on ZrO2modified porous stainless steel”, J. Membr. Sci., 265 (1-2), 142-152 (2005).

    3 Zhang, K., Gao, H.Y., Rui, Z.B., Lin, Y.S., Li, Y.D., “Preparation of thin palladium composite membranes and application to hydrogen/nitrogen separation”, Chin. J. Chem. Eng., 15 (5), 643-647 (2007).

    4 Fan, J., Hu, X.Y., Ohya, H., Ueda, Y., Yamawaki, M., Aihara, M., Takeuchi, T., Negishi, Y., “Preparation of palladium-silica conjugated membrane for selective hydrogen permeation”, Chin. J. Chem. Eng., 10 (5), 580-586 (2002).

    5 O’Brien, C.P., Howard, B.H., Miller, J.B., Morreale, Br.D., Gellman, A.J., “Inhibition of hydrogen transport through Pd and Pd47Cu53membranes by H2S at 350 °C”, J. Membr. Sci., 349, 380-384 (2010).

    6 Morreale, B.D., Ciocco, M.V., Howard, B.H., Killmeyer, R.P., Cugini, A.V., Enick, R.M., “Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures”, J. Membr. Sci., 241, 219-224 (2004).

    7 Yang, J.Y., Nishimura, C., Komaki, M., “Hydrogen permeation of Pd60Cu40alloy covered V-15Ni composite membrane in mixed gases containing H2S”, J. Membr. Sci., 309, 246-250 (2008).

    8 Opalka, S.M., Huang, W., Wang, D., Flanagan, T.B., L?vvik, O.M., Emerson, S.C., She, Y., Vanderspurt, T.H., “Hydrogen interactions with the PdCu ordered B2 alloy”, J. Alloys Compd., 446-447 , 583-587 (2007).

    9 Pomerantz, N., Ma, Y.H., “Effect of H2S on the performance and long-term stability of Pd/Cu membranes”, Ind. Eng. Chem. Res., 48, 4030-4039 (2009).

    10 Kulprathipanja, A., Alptekin, G.O., Falconer, J.L., Way, J.D., “Pd and Pd-Cu membranes: inhibition of H2permeation by H2S”, J. Membr. Sci., 254, 49-62 (2005).

    11 Alfonso, D.R., Cugini, A.V., Sorescu, D.C., “Adsorption and decomposition of H2S on Pd(1 1 1) surface: A first-principles study”, Catal. Today, 99, 315-322 (2005).

    12 Alfonso, D.R., Cugini, A.V., Sholl, D.S., “Density functional theory studies of sulfur binding on Pd, Cu and Ag and their alloys”, Surf. Sci., 546, 12-26 (2003).

    13 Hyman, M.P., Loveless, B.T., Medlin, J.W., “A density functional theory study of H2S decomposition on the (1 1 1) surfaces of model Pd-alloys”, Surf. Sci., 601 (23), 5382-5393 (2007).

    14 Ozdogan, E., Wilcox, J., “Investigation of H2and H2S adsorption on niobium- and copper-doped palladium surfaces”, J. Phys. Chem. B, 114, 12851-12858 (2010).

    15 Morreale, B.D., “The influence of hydrogen sulfide on palladium and palladium-copper alloy membranes”, Ph.D. Thesis, The University of Pittsburgh, USA (2006).

    16 Morreale, B.D., Howard, B.H., Iyoha, O., Enick, R.M., Ling, C., Sholl, D.S., “Experimental and computational prediction of the hydrogen transport properties of Pd4S”, Ind. Eng. Chem. Res., 46 (19), 6313-6319 (2007).

    17 Todorova, M., Li, W.X., Ganduglia-Pirovano, M.V., Stampfl, C., Reuter, K., Scheffler, M., “Role of subsurface oxygen in oxide formation at transition metal surfaces”, Phys. Rev. Lett., 89 (9), 096103-1-096103-4 (2002).

    18 Miller, J.B., Morreale, B.D., Gellman, A.J., “The effect of adsorbed sulfur on surface segregation in a polycrystalline Pd70Cu30alloy”, Surf. Sci., 602, 1819-1825 (2008).

    19 Benard, J., Oudar, J., Barbouth, N., Margot, E., Berthier, Y., “The thermodynamics of some metallic 2D sulphides”, Surf. Sci., 88, L35-L41 (1979).

    20 Oudar, J., “Sulphur-metal interactions”, Mater. Sci. Eng., 42, 101-109 (1980).

    21 Chattopadhyay, B., Sadigh-Esfandiary, S., “Sulphidation of Cu and Cu-Ni alloys in H2S/argon mixture”, Corrosion Sci., 13, 747-757 (1973).

    22 Burke, M.L., Madix, R.J., “Hydrogen on Pd(100)-S: The effect of sulfur on precursor mediated adsorption and desorption”, Surf. Sci., 237 (1-3), 1-19 (1990).

    23 Kiskinova, M., Goodman, D.W., “Modification of chemisorption properties by electronegative adatoms: H2and CO on chlorided sulfided, and phosphided Ni( 100)”, Surf. Sci., 108, 64-76 (1981).

    24 Mccarty, J.G., Sancier, K.M., Wise, H., “Thermodynamics of sulfur chemisorption on metals IV. Alumina-supported platinum”, J. Catal., 82, 92-97 (1983).

    25 Castro, F.J., Meyer, G., Zampieri,G., “Effects of sulfur poisoning on hydrogen desorption from palladium”, J. Alloys Compd., 330-332, 612-616 (2002).

    26 Gravil, P.A., Toulhoat, H., “Hydrogen, sulphur and chlorine coadsorption on Pd(111): A theoretical study of poisoning and promotion”, Surf. Sci., 430 (1-3), 176-191(1999).

    27 Wilke, S., Scheffler, M., “Poisoning of Pd(100) for the dssociations of H2: A theoretical study of co-adsorption of hydrogen and sulphur”, Surf. Sci., 329, L605-L610 (1995).

    28 Alfonso, D.R., “Initial incorporation of sulfur into the Pd(111) surface: A theroretical study”, Surf. Sci., 600, 4508-4516 (2006).

    29 Brooks, A.A., “A thermodynamic study of the equilibrium 2Cu(s) + H2S(g)=Cu2S(r) + H2(g)”, J. Am. Chem. Soc., 75, 2464-2467 (1953). 30 Gao, H.Y., Lin, Y.S., Li, Y.D., Zhang, B.Q., “Chemical stability and its improvement of palladium-based metallic membranes”, Ind. Eng. Chem. Res., 43, 6920-6930 (2004).

    31 Noordermeer, A., Kok, G.A., Nieuwenhuys, B.E., “Comparison between the adsorption properties of Pd (111) and PdCu (111) surfaces for carbon monoxide and hydrogen”, Surf. Sci., 172 (2), 349-362 (1986).

    32 Coq, B., Figueras, F., “Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance”, J. Mol. Catal. A: Chemical, 173, 117-134 (2001).

    33 Mundschau, M., Xie, X., Evenson, C.R., Sammells, A.F., “Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration”, Catal. Today, 118 (1-2), 12-23 (2006).

    34 McKinley, D.L., “Metal alloy for hydrogen separation and purification”, U. S. Pat., 3350845 (1967).

    35 Priyadarshini, D., Kondratyuk, P., Picard, Y.N., Morreale, B.D., Gellman, A.J., Miller, J.B., “High-throughput characterization of surface segregation in CuxPd1?xalloys”, J. Phys. Chem. C, 115, 10155-10163 (2011).

    36 Mundschau, M., Xie, X., Sammells, A., “Advances in hydrogen separation membrane technology for the separation of CO2and the purification of hydrogen produced from coal”, In: Proceedings of the 30th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, USA (2005).

    37 Iyoha, O., Enick, R., Killmeyer, R., Morreale, B., “The influence of hydrogen sulfide-to-hydrogen partial pressure ratio on the sulfidization of Pd and 70 mol% Pd-Cu membranes”, J. Membr. Sci., 305, 77-92 (2007).

    2012-07-17, accepted 2012-10-05.

    * Supported by the National Natural Science Foundation of China (50972038), the National Natural Science Foundation of Hebei Province (B2009000739, B2014209258), Science and Technology Support Program of Hebei Province (09215142D).

    ** To whom correspondence should be addressed. E-mail: hygao@heuu.edu.cn

    久久久久久久亚洲中文字幕| 久久亚洲精品不卡| а√天堂www在线а√下载| 麻豆成人午夜福利视频| 老师上课跳d突然被开到最大视频| 国内精品一区二区在线观看| 久久99蜜桃精品久久| 国产一区二区激情短视频| 男人的好看免费观看在线视频| 中出人妻视频一区二区| 国产毛片a区久久久久| 男的添女的下面高潮视频| 久久婷婷人人爽人人干人人爱| 日本av手机在线免费观看| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 欧美日韩一区二区视频在线观看视频在线 | 久久久久国产网址| 中文欧美无线码| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 亚洲欧美清纯卡通| 欧美一级a爱片免费观看看| 在线观看免费视频日本深夜| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 干丝袜人妻中文字幕| 国产亚洲精品av在线| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 久久精品夜色国产| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 一级毛片久久久久久久久女| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 2021天堂中文幕一二区在线观| 久久久精品94久久精品| 桃色一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看| 欧美又色又爽又黄视频| 国产视频首页在线观看| 精品无人区乱码1区二区| 日韩一区二区视频免费看| av在线蜜桃| 五月玫瑰六月丁香| 国产美女午夜福利| 国产精品人妻久久久久久| 成人毛片60女人毛片免费| 免费不卡的大黄色大毛片视频在线观看 | 久久这里有精品视频免费| 国产亚洲精品av在线| 久久久午夜欧美精品| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 18+在线观看网站| 又粗又爽又猛毛片免费看| av免费在线看不卡| 99在线视频只有这里精品首页| 国产精品麻豆人妻色哟哟久久 | www.av在线官网国产| 亚洲欧美日韩无卡精品| 男女视频在线观看网站免费| av黄色大香蕉| 悠悠久久av| 91久久精品国产一区二区成人| 极品教师在线视频| 国产精品.久久久| 欧美日韩在线观看h| 亚洲av一区综合| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 欧美日本亚洲视频在线播放| 久久综合国产亚洲精品| 亚洲不卡免费看| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 一本久久精品| 美女被艹到高潮喷水动态| 午夜福利高清视频| 成人特级av手机在线观看| 狂野欧美白嫩少妇大欣赏| 精品久久久久久久人妻蜜臀av| 波多野结衣高清无吗| 99九九线精品视频在线观看视频| 久久精品国产99精品国产亚洲性色| 欧美激情国产日韩精品一区| 3wmmmm亚洲av在线观看| 最后的刺客免费高清国语| 精品久久久久久久久久免费视频| av在线蜜桃| 久久久久久久午夜电影| 国产一级毛片在线| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 可以在线观看的亚洲视频| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 天美传媒精品一区二区| 午夜精品国产一区二区电影 | 欧美一区二区亚洲| 欧美成人免费av一区二区三区| 伦理电影大哥的女人| 男女做爰动态图高潮gif福利片| 久久6这里有精品| 亚洲美女搞黄在线观看| 身体一侧抽搐| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 九草在线视频观看| 亚洲av男天堂| 国产片特级美女逼逼视频| 中文字幕av在线有码专区| 亚洲乱码一区二区免费版| 狠狠狠狠99中文字幕| 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 成人永久免费在线观看视频| 日韩精品有码人妻一区| 性色avwww在线观看| 国产日韩欧美在线精品| 亚洲真实伦在线观看| av在线播放精品| 欧洲精品卡2卡3卡4卡5卡区| 免费观看在线日韩| 欧美一区二区亚洲| 丝袜喷水一区| 久久99蜜桃精品久久| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看 | 国产精品久久久久久精品电影小说 | 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 国产精品福利在线免费观看| 色播亚洲综合网| 丝袜喷水一区| 久久国产乱子免费精品| 毛片女人毛片| 国产免费男女视频| 久久婷婷人人爽人人干人人爱| 日韩亚洲欧美综合| 免费看光身美女| 美女国产视频在线观看| 免费在线观看成人毛片| 少妇高潮的动态图| 亚洲自偷自拍三级| 国产日本99.免费观看| 国产精品.久久久| av又黄又爽大尺度在线免费看 | 亚洲国产精品久久男人天堂| 国产一级毛片七仙女欲春2| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 欧美又色又爽又黄视频| 亚洲精品国产av成人精品| 午夜视频国产福利| 少妇被粗大猛烈的视频| 一进一出抽搐动态| 国产精品一区二区在线观看99 | 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 校园春色视频在线观看| 国产乱人视频| 美女内射精品一级片tv| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 男人的好看免费观看在线视频| 少妇的逼水好多| 日韩中字成人| 麻豆国产av国片精品| 亚洲国产日韩欧美精品在线观看| 免费av毛片视频| 乱系列少妇在线播放| 亚洲最大成人中文| 国产国拍精品亚洲av在线观看| 青春草国产在线视频 | 综合色丁香网| 日韩大尺度精品在线看网址| 精华霜和精华液先用哪个| 亚洲精品国产av成人精品| 18+在线观看网站| 久久精品国产亚洲av香蕉五月| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 美女cb高潮喷水在线观看| 久久这里有精品视频免费| 成人特级黄色片久久久久久久| 精品久久久久久久久av| 亚洲人成网站在线播| 亚洲欧美精品自产自拍| 变态另类丝袜制服| 国产麻豆成人av免费视频| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 舔av片在线| 国产久久久一区二区三区| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 国产久久久一区二区三区| 精品人妻偷拍中文字幕| 国产成人影院久久av| 人人妻人人看人人澡| 草草在线视频免费看| 成人性生交大片免费视频hd| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 亚洲久久久久久中文字幕| 22中文网久久字幕| 亚洲精品国产av成人精品| 91狼人影院| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 女同久久另类99精品国产91| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| 精品久久久久久久末码| 国产午夜精品论理片| 91麻豆精品激情在线观看国产| 青春草国产在线视频 | 免费人成视频x8x8入口观看| 看片在线看免费视频| 国产高清激情床上av| 国产精品美女特级片免费视频播放器| 白带黄色成豆腐渣| 免费大片18禁| 十八禁国产超污无遮挡网站| 看非洲黑人一级黄片| 亚洲国产色片| 亚洲电影在线观看av| 国产黄色小视频在线观看| 观看免费一级毛片| 成人国产麻豆网| 在线免费观看不下载黄p国产| 欧美最新免费一区二区三区| 黄色视频,在线免费观看| 久久人妻av系列| 日韩欧美精品v在线| 男人和女人高潮做爰伦理| 两性午夜刺激爽爽歪歪视频在线观看| 综合色av麻豆| 黄色欧美视频在线观看| 草草在线视频免费看| 美女 人体艺术 gogo| 欧美不卡视频在线免费观看| 噜噜噜噜噜久久久久久91| 精品久久久久久久久久久久久| 最好的美女福利视频网| 乱系列少妇在线播放| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 免费观看精品视频网站| 在线免费观看的www视频| 国产单亲对白刺激| 国产精品一区二区性色av| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区 | 国产美女午夜福利| 身体一侧抽搐| 禁无遮挡网站| 欧美区成人在线视频| 一级毛片久久久久久久久女| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 特大巨黑吊av在线直播| 中文欧美无线码| 亚洲国产精品成人久久小说 | 成人性生交大片免费视频hd| 你懂的网址亚洲精品在线观看 | 内地一区二区视频在线| 哪个播放器可以免费观看大片| 国产真实乱freesex| 欧美日韩综合久久久久久| 免费观看人在逋| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 直男gayav资源| 中文欧美无线码| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 欧美xxxx黑人xx丫x性爽| 国产伦理片在线播放av一区 | 国产大屁股一区二区在线视频| 成人三级黄色视频| 婷婷色av中文字幕| 亚洲av中文av极速乱| 日本一二三区视频观看| 高清午夜精品一区二区三区 | 91久久精品电影网| 在现免费观看毛片| 夜夜看夜夜爽夜夜摸| 日日干狠狠操夜夜爽| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 在线观看一区二区三区| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 日本一二三区视频观看| 你懂的网址亚洲精品在线观看 | 99久久人妻综合| 日本色播在线视频| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 亚洲av二区三区四区| 欧美日韩乱码在线| 91狼人影院| 一级毛片电影观看 | 国产精品不卡视频一区二区| 亚洲无线在线观看| 看片在线看免费视频| 中文精品一卡2卡3卡4更新| 日韩欧美国产在线观看| 高清日韩中文字幕在线| 亚洲国产精品国产精品| 久久精品国产亚洲av香蕉五月| 特大巨黑吊av在线直播| 看非洲黑人一级黄片| 欧美3d第一页| 欧美日韩在线观看h| 在线免费观看不下载黄p国产| 12—13女人毛片做爰片一| 一本久久精品| 欧美日韩一区二区视频在线观看视频在线 | 国产91av在线免费观看| avwww免费| 亚洲精品456在线播放app| 人人妻人人澡欧美一区二区| 午夜激情欧美在线| 99国产极品粉嫩在线观看| 可以在线观看的亚洲视频| 1000部很黄的大片| 乱系列少妇在线播放| 人妻夜夜爽99麻豆av| 男人的好看免费观看在线视频| 欧美最新免费一区二区三区| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 天美传媒精品一区二区| 黄色配什么色好看| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看| 夜夜爽天天搞| av福利片在线观看| 久久久久九九精品影院| 在线天堂最新版资源| 一级毛片我不卡| 国产精品1区2区在线观看.| 少妇猛男粗大的猛烈进出视频 | 亚洲四区av| 国产老妇女一区| 美女内射精品一级片tv| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 欧美区成人在线视频| 在线观看午夜福利视频| 国产午夜福利久久久久久| 国产亚洲av嫩草精品影院| 夜夜看夜夜爽夜夜摸| 校园人妻丝袜中文字幕| 久久鲁丝午夜福利片| 日韩成人av中文字幕在线观看| 亚洲国产日韩欧美精品在线观看| 综合色丁香网| 婷婷亚洲欧美| 日韩欧美精品免费久久| 寂寞人妻少妇视频99o| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 国内精品宾馆在线| 成人毛片a级毛片在线播放| 久久午夜亚洲精品久久| 国产爱豆传媒在线观看| 热99re8久久精品国产| 在线观看av片永久免费下载| 麻豆精品久久久久久蜜桃| 国产亚洲5aaaaa淫片| 久久久久性生活片| 国产精品福利在线免费观看| 女的被弄到高潮叫床怎么办| 草草在线视频免费看| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 99久久中文字幕三级久久日本| 丝袜喷水一区| 国产一区二区在线av高清观看| 成人午夜精彩视频在线观看| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱 | 国产极品精品免费视频能看的| 亚洲四区av| 1000部很黄的大片| 99热全是精品| 成人三级黄色视频| 国产久久久一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 久久久久久久久中文| 青春草亚洲视频在线观看| 国产成人一区二区在线| 国产黄片视频在线免费观看| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 午夜福利在线观看免费完整高清在 | 日本熟妇午夜| 毛片一级片免费看久久久久| 亚洲国产高清在线一区二区三| 精品欧美国产一区二区三| 国产高潮美女av| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 中出人妻视频一区二区| 国产精品久久久久久精品电影| 国产色爽女视频免费观看| 长腿黑丝高跟| 91精品一卡2卡3卡4卡| 美女xxoo啪啪120秒动态图| 久久精品国产亚洲av涩爱 | 一区二区三区高清视频在线| 久久人人爽人人片av| 深夜a级毛片| 九九爱精品视频在线观看| www.色视频.com| 成人美女网站在线观看视频| 又粗又硬又长又爽又黄的视频 | 久久中文看片网| 亚洲欧美日韩高清在线视频| 九九热线精品视视频播放| 亚洲欧美成人精品一区二区| 超碰av人人做人人爽久久| 大香蕉久久网| 亚洲va在线va天堂va国产| 麻豆久久精品国产亚洲av| 能在线免费观看的黄片| 欧美日本亚洲视频在线播放| 亚洲美女搞黄在线观看| 欧美精品国产亚洲| 久久久久免费精品人妻一区二区| av在线播放精品| 免费无遮挡裸体视频| 高清毛片免费观看视频网站| 一进一出抽搐gif免费好疼| 国产日本99.免费观看| av国产免费在线观看| av黄色大香蕉| 亚洲精品粉嫩美女一区| kizo精华| 美女xxoo啪啪120秒动态图| 亚洲最大成人中文| 日本一二三区视频观看| 国产精品久久久久久亚洲av鲁大| 女的被弄到高潮叫床怎么办| 免费不卡的大黄色大毛片视频在线观看 | 免费搜索国产男女视频| 成年女人看的毛片在线观看| 麻豆乱淫一区二区| 男女下面进入的视频免费午夜| 国产色爽女视频免费观看| 97在线视频观看| 伊人久久精品亚洲午夜| 日本一二三区视频观看| 神马国产精品三级电影在线观看| 精品久久久久久成人av| 亚洲av成人av| 亚洲在久久综合| 国模一区二区三区四区视频| 天天躁夜夜躁狠狠久久av| 麻豆av噜噜一区二区三区| 婷婷六月久久综合丁香| 成人美女网站在线观看视频| 国产一区二区激情短视频| 91狼人影院| 免费人成视频x8x8入口观看| 人妻夜夜爽99麻豆av| 麻豆av噜噜一区二区三区| 久久婷婷人人爽人人干人人爱| 成人综合一区亚洲| 免费看美女性在线毛片视频| av福利片在线观看| 国产黄色视频一区二区在线观看 | 亚洲av熟女| 欧美区成人在线视频| 一进一出抽搐动态| 最新中文字幕久久久久| 99精品在免费线老司机午夜| 最近中文字幕高清免费大全6| 三级男女做爰猛烈吃奶摸视频| 午夜爱爱视频在线播放| 国产一区二区在线观看日韩| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清| 亚洲成人av在线免费| 亚洲成人久久爱视频| 少妇人妻一区二区三区视频| 最近最新中文字幕大全电影3| a级毛片a级免费在线| www.av在线官网国产| 久久午夜亚洲精品久久| 日韩欧美精品v在线| 国产亚洲av片在线观看秒播厂 | 自拍偷自拍亚洲精品老妇| 直男gayav资源| 国国产精品蜜臀av免费| 国内精品一区二区在线观看| 久久午夜亚洲精品久久| 美女大奶头视频| 国产 一区 欧美 日韩| 91久久精品国产一区二区三区| 成年版毛片免费区| 可以在线观看的亚洲视频| 国产不卡一卡二| 久久久精品大字幕| 免费观看人在逋| 夜夜看夜夜爽夜夜摸| 桃色一区二区三区在线观看| 国产精品,欧美在线| 日韩欧美在线乱码| 亚洲精品久久国产高清桃花| 神马国产精品三级电影在线观看| 直男gayav资源| 九九热线精品视视频播放| 国语自产精品视频在线第100页| 精品人妻熟女av久视频| 热99在线观看视频| 日韩一区二区视频免费看| 91久久精品国产一区二区成人| 国产女主播在线喷水免费视频网站 | 国产精品女同一区二区软件| 国产亚洲精品久久久久久毛片| 国产中年淑女户外野战色| 国产伦精品一区二区三区视频9| 麻豆一二三区av精品| 性插视频无遮挡在线免费观看| 国内少妇人妻偷人精品xxx网站| 精品久久久久久成人av| 久久久久久国产a免费观看| 成年版毛片免费区| 三级毛片av免费| 亚洲美女视频黄频| 午夜视频国产福利| 一边摸一边抽搐一进一小说| 最好的美女福利视频网| 久久久久久久亚洲中文字幕| а√天堂www在线а√下载| 人妻夜夜爽99麻豆av| 嘟嘟电影网在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人国产麻豆网| a级一级毛片免费在线观看| 天天躁日日操中文字幕| 2022亚洲国产成人精品| 精品久久久久久久久久久久久| 青春草亚洲视频在线观看| 亚洲中文字幕日韩| 免费看日本二区| 国产私拍福利视频在线观看| 久久久久久久久久成人| 日韩亚洲欧美综合| 日韩精品有码人妻一区| 国产精品人妻久久久久久| av在线天堂中文字幕| 一个人看的www免费观看视频| 午夜福利视频1000在线观看| 成人毛片60女人毛片免费| 成人亚洲精品av一区二区| 国产一区二区激情短视频| 免费av不卡在线播放| 国产成人影院久久av| 一进一出抽搐gif免费好疼| 国产精品蜜桃在线观看 | 一区二区三区免费毛片| 神马国产精品三级电影在线观看| 夜夜夜夜夜久久久久| 日本色播在线视频| 国产在视频线在精品| 久久久久久久午夜电影| 美女脱内裤让男人舔精品视频 | 精品一区二区三区人妻视频| 亚洲人成网站在线播| 淫秽高清视频在线观看| 黄色日韩在线| 色视频www国产| 久久久久久久久久黄片| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 久久这里只有精品中国| 日韩在线高清观看一区二区三区| 久久6这里有精品| 一区二区三区高清视频在线| 欧美另类亚洲清纯唯美| 嫩草影院精品99| 身体一侧抽搐| 久久精品国产亚洲av天美| 深爱激情五月婷婷| 国产免费一级a男人的天堂| 日本在线视频免费播放| 超碰av人人做人人爽久久| 91久久精品电影网| 国产av一区在线观看免费| 午夜亚洲福利在线播放| 精品人妻偷拍中文字幕| 国产 一区 欧美 日韩| 成人午夜高清在线视频|