• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient C N Formation for Preparing α-Branched Primary Amines by Recycled Intramolecular Reactions of 1,8-Naphthosultone Using Ammonia as Nitrogen Source*

    2014-07-18 11:56:13周新銳,陳潔,曾小萍
    關(guān)鍵詞:陳潔

    Efficient C N Formation for Preparing α-Branched Primary Amines by Recycled Intramolecular Reactions of 1,8-Naphthosultone Using Ammonia as Nitrogen Source*

    ZHOU Xinrui (周新銳)1,**, CHEN Jie (陳潔)1, ZENG Xiaoping (曾小萍)1, LIU Jihong (劉季紅)1and Istvan E. Markó1,2,**1State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
    2Laboratory of Organic and Medicinal Chemistry, Université catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium

    Amination of tertiary and secondary alcohols using aqueous ammonia as nitrogen source was carried out by a process with recyclable intramolecular reaction of 1,8-naphthosultone, which lead to α-branched primary amines. Sulfonic resin serves as the heterogeneous catalyst for C N bond formation and protects the neighboring hydroxyl group until the required hydrolysis starts in the alkaline solution. The process can be conducted under mild conditions, no additional solvent is needed and no overreaction to secondary or tertiary amines occurs.

    α-branched primary amine, 1,8-naphthosultone, ammonia

    1 INTRODUCTION

    α-Branched primary amines, especially tert-alkyl amines containing azo-quaternary carbon atom, as irreplaceable intermediates, provide basically synthetic blocks for manufacture of pharmaceuticals [1-3], agrochemicals [4-6] and various material additives [7]. Hence, the synthesis of tert-alkyl amines in bulk is needed. There are a few synthetic strategies toward tert-alkyl amines, but so far no reaction has been well adapted to the kilo-scale production. Various tert-alkyl primary amines have been prepared in micro-scale by addition of organometals to imines or imine derivatives [8-10], but the low yield with weak electrophilicity of azomethine carbon and instability of organometal are still a problem for industrial applications [11, 12]. Hydroamination of ketones or aldehydes using ammonia is an atom-economy process to produce primary and secondary amines, but tertiary amine is excluded. Nucleophilic substitution is rarely adequate for the synthesis of tert-alkyl amine, since it is difficult for tertiary carbon to undergo SN2 in neutral or basic media, while ammonia protonized in acidic media is too weak a nucleophile to undergo SN1 reaction. To enforce ammonia for electrophilic addition, caustic conditions have to be adopted [13-15]. Some sulfonamides such as p-toluenesulfonamides are used instead of ammonia, but it is practically difficult to obtain amines via desulfonation. It is hardly accessible with N-tert-alkyl sulfonamide, since the conditions are too harsh for selectively keeping tert-alkyl amine [16, 17]. Sulfonamide hydrolysis assisted by neighboring participation has been investigated, but the special sulfonamides needed are not available commercially and difficult to be synthesized [18, 19]. Therefore, a process with lower cost and higher selectivity, which proceeds under mild conditions, is highly desirable.

    This work presents an efficient process (Fig. 1), recycled and catalyzed by strong acid resin as a heterogeneous catalyst, for preparing α-branched primary amines, especially tert-alkyl primary amines. Ammonia and tertiary alcohols are adopted as the starting materials, and commercial 1,8-naphthosultone 1 is chosen as a platform for ammonia transformation. Only a few reactions with ammonia as nitrogen source and alcohols as alkyl agents for preparation of tert-alkyl amines have been reported, in which high reaction temperature or expensive catalyst are required [20, 21]. As far as we know, this is the first example of catalytic amination for tert-alkyl amines using alcohol and ammonia as starting materials, under mild conditions, without generating polluting by-products.

    2 EXPERIMENTAL

    2.1 Materials

    2.2 Instruments

    The structure of all products was determined by nuclear magnetic resonance (NMR, Bruker AvanceⅡ400 M) and confirmed by infrared spectroscopy (IR, Nicolet-20DXB). The products of amides were identified

    Received 2012-09-03, accepted 2013-02-18.

    * Supported by the National Natural Science Foundation of China (21076036).

    Figure 1 Recyclable process for preparing α-branched primary amines by intramolecular reactions of 1,8-naphthosultone

    ** To whom correspondence should be addressed. E-mail: xinrui@dlut.edu.cn; istvan.marko@uclouvain.be and quantified by high performance liquid chromatography (HPLC, HP-1100) fitted with a column (4.6 mm× 250 mm, 5 μm) and a UV-detector. A linear gradient elution was performed with 40% (by volume) methanol in water to 100% methanol during 40 min and continuously with pure methanol for additional 10 min. The eluting rate was kept at 1 ml·min?1through the entire program.

    The products of amines were identified and quantified by gas chromatography (GC, HP-6890) equipped with flame ionization detector (FID) and compared with authentic samples. The temperature of HP-5 column was held at 35 °C for 4 min and then increased to 180 °C by 20 °C·min?1.

    2.3 Ammonolysis of sultones

    In a typical reaction, 20 ml concentrated aqueous ammonia (30%) was dripped into sultones (0.05 mol) with magnetically stirring. The reaction flask was placed in an ice bath to keep the temperature below 25 °C. A sample was taken every 5 min to monitor the process, until the sample dissolved completely in the cold 5% Na2CO3solution. Then, 70 ml of water was added into this reaction solution, with precipitate formed immediately. The precipitate was filtered with a Buchner funnel, washed with ice water for 3 times and then dried in a vacuum rotary evaporator below 40 °C.

    8-hydroxy-naphthalene-1-sulfonamide 21H-NMR: δ=6.71 (2H, s), δ=7.22 (1H, s), δ=7.49 (1H, t), δ=7.55 (1H, t), δ=7.60 (1H, d), δ=8.10 (1H, d), δ=8.36 (1H, d), δ=10.02 (1H, s); 3-aminopropane-1-sulfonic acid 51H-NMR: δ=2.18 (2H, m), δ=3.08 (2H, t), δ=3.22 (2H, t); 3-hydroxyl-1-sulfonamide 61H-NMR: δ=2.26 (2H, m), δ=3.29 (2H, t), δ=3.47 (2H, t).

    2.4 Typical process for sulfonamide alkylation and hydrolysis of N-alkyl sulfonamides

    A mixture of 8-hydroxy-naphthalene-1-sulfonamide (0.5 mmol), activated SR732 (0.4 g) [22] and alcohol (0.1 mmol) were stirred in a three-necked flask equipped with a reflux condenser at 70 °C for 24 h. Removing the ethanol by vacuum distillation, the residue was transferred to a sodium hydroxide (0.2 g) ethanol (5 ml) solution. Stirring this solution for 5 min, the sulfonic resin was filtrated using a Buchner funnel. The liquid phase was examined by GC-FID according to the authentic samples.

    N-(tert-butyl)-8-hydroxy-naphthalene-1-sulfonamide 31H-NMR: δ=1.19 (9H, s), δ=7.23 (1H, d), δ=7.48 (1H, t), δ=7.56 (1H, t), δ=7.61 (1H, d), δ=8.11 (1H, d), δ=8.41 (1H, d).

    3 RESULTS AND DISCUSSION

    3.1 Ammonolysis of sultones in aqueous ammonia

    Two commercial sultones, easily obtained, were tested to get a proper sulfonamide with aqueous ammonia. When aqueous ammonia was dripped under the ambient conditions, the temperature of sultone 1 solution increased continuously, suggesting that some exothermic reactions happen rapidly. Thin layer chromatography (TLC) examination showed that sultone 1 disappeared in 4 h and new products appeared. After leaving the reaction solution in the flask for one night, a large quantity of crystals formed and was filtrated in 90% yield.1H-NMR spectra (Fig. 2) confirm that the crystal is the desired product, compound 2 (corresponding data in section 2.3).

    Figure 2 1H-NMR spectrum of 8-hydroxy-naphthalene-1-sulfonamide

    Figure 3 Aminolysis of 1,3-propane sultone

    Ammonolysis of sultone 4 generates two products 5 and 6 (Fig. 3), formed by C O cleavage and S O cleavage, respectively, under the same conditions as mentioned above. Unfortunately the dominant product is highly regioselective to the undesired compound 5 with the molar ratio of 100/14 of 5/6, determined by1H-NMR spectroscopic analysis of the crude crystal (Fig. 4 and section 2.3). In the NMR spectrum, the complete integral curve is contributed to 5, while the incomplete integral one is distributed to 6. The result suggests that C O is much easier to obtain than S O cleavage in this reaction system. Based on the principle of hardness or softness of acid or base, the alkyl carbon is a good deal softer than sulfonamide nitrogen. With the addition of a harder nucleophile, sodium amide (NaNH2), instead of ammonia, the selectivity in favour of compound 6 is slightly increased, but compound 5 is still dominant. Alternatively, sultone 1, with phenolic carbon retarded to undergo the substitution, is accepted as an optimized reactant for the process using ammonia as nitrogen source.

    3.2 Choosing effective catalyst for selective N-alkylation

    Strong solid acids with bulky anions were specially considered, since they are easily recovered and their anions will join the nucleophilic substitution less except contributing a proton to assist the reaction. PWA was first assessed as an acidic catalyst for N-alkylation of tert-butanol at 70 °C and ambient pressure, but most of sulfonamide 2 reversely reacted to form the stating material, sultone 1 (Fig. 1). This indicates that the neighboring OH group at position 8 of naphthalene is so active that it obstructs N-alkylation. Formic acid, which can be partly acylate OH groups, was added in the reaction solution. This strategy successfully pushed N-alkylation forward, with the yield of N-butylation increasing to 27.1 % (Table 1, entry 2) and the selectivity rising to 40%. The alkyl reactant for N-alkylation was not limited to tert-alcohol, and secondary alcohols also formed the substituted N-alkyl sulfonamide in 17.8% yield (Table 1, entry 3). However, formic acid brought in a serious problem, since it dissolves PWA, raw materials and product amine to form a paste as the concentration of tert-butanol decreases, so that amine purification and catalyst recovery are quite difficult.

    Next, SR732 was used as the catalyst for N-alkylation. Interestingly, the selectivity of sulfonamide 2 with tert-butanol was increased remarkably to 85% even in the absence of formic acid, which is needed for PWA-catalyzed alkylation to resist the early neighbor participation. Analogous reactions also appeared using 1-phenylethanol instead of tert-butanol. Agreeable results were obtained and the selectivity of N-alkylation was increased from 25% (PWA/HCOOH)to 85% (SR732), probably because the sulfonic acid groups not only served as the acid catalyst but also the protecting agent for the OH group. In general, one shortcoming for ammonia to be used in the preparation of primary amines is that the product is more reactive than ammonia and overreaction occurs, while this procedure selectively produces primary amines without the overreaction.

    Figure 4 1H-NMR spectrum of 3-aminopropane-1-sulfonic acid 5 (major) and 3-hydroxyl-1-sulfonamide 6 (minor)

    Table 1 N-alkylation of 8-hydroxy-naphthalene-1-sulfonamide 2 using tertiary or secondary alcohols

    3.3 Base-catalyzed hydrolysis of N-alkyl sulfonamide 3 for regeneration of sultone 1 and release of α-branched primary amines

    Pure N-tert-butyl sulfonamide 3 was prepared by the silica chromatographic column and confirmed by NMR (Fig. 5) and IR, to obtain the basic data about this elementary reaction C (Fig. 1). Under the simple conditions as described in section 2.4, sulfonamide 3 reacted nearly completely in 5 min in the presence of sodium hydroxide, as shown by TLC. In the temperature range and wave length of UV-detector, the samples of the crude products were checked by GC-FID and HPLC (High Performance Liquid Chromatography). As expected, the target primary amine and recycled sultone 1 were found, with the yields of tert- butylamine and sultone 1 being 90.5% and 98.5%, respectively, according to external standard of authentic samples. Since N-tert-butyl-p-toluenesulfonamides does not react under the conditions, these results indicate thatthe neighboring participation of 8OH group greatly facilitates the hydrolysis of sulfonamide 3.

    Figure 5 1H-NMR of N-(tert-butyl)-8-hydroxy-naphthalene-1-sulfonamide 3

    As mentioned in section 3.2, the hydroxide group of amides 2 and 3 can bind to the sulfonic acid group of the sulfonic resin. Separation of them is difficult and may result in the loss of product. Hence, the crude product obtained with a simple distillation to remove tert-alcohol was used in the alkaline hydrolysis. This simplified process combined steps B and C into a one pot reaction. This way, tert-amylamine, tert-butylamine and 1-phenylethanamine were generated, the yields of which examined by GC-FID according to the authentic samples are given in Table 2. The yield of tert-butylamine, 15.7%, is comparatively higher than those obtained under caustic conditions [13-15].

    Table 2 The yield of amines obtained by hydrolysis of N-alkyl sulfonamides

    3.4 Main factors influencing the process

    To accelerate the reactions and decrease the cost of process, the reaction conditions related with by-products were investigated. As shown in Fig. 6, the reaction did not proceed at room temperature, but increased abruptly as the temperature increased from 60 °C to 70 °C. At the temperature higher than 70 °C, a large amount of white sediment like plastic aggregated atthe bottom of the flask, suggesting that the intermediate tert-carbocation underwent another competitive way, elimination and polymerization, to form polyisobutene. Therefore, the optimum temperature for this reaction is 70 °C.

    Figure 6 Influences of temperature on the conversion of sulfonamide 2 in N-alkylation using 732 resin as catalystin the absence of formic acid

    Figure 7 Ammonolysis of 1,8-naphthosultone

    The ammonolysis of sultone is an exothermal reaction, while the yield of sulfonamide 2 is affected by temperature more significantly. When stoichiometric amounts of ammonia were added quickly, the reaction temperature increased rapidly, so that abundant black tar appeared and the yield of sulfonamide 2 was less than 40%. The phenomenon is due to the formation of quinones (Fig. 7) by the auto-oxidation of phenols, which was confirmed by adding the radical scavenger to reduce the black tar. Another way is to control the temperature. With an ice bath and adding ammonia slowly to keep the temperature below 25 °C, the black tar can be avoided and the yield is 90%.

    4 CONCLUSIONS

    A resin-catalyzed amination using aqueous ammonia for preparation of α-branched primary amines is developed under mild conditions. The desired sulfonamide can be obtained from commercially available sultone 1, and the amine group is further transferred to tertiary or secondary alcohols by the delicate assistance of neighboring participation. Various factors influencing the process are investigated. In the optimized process, the yield of tert-amylamine, tertbutylamine and 1-phenylethanamine is 10.3%, 15.7% and 20.2%, respectively.

    REFERENCES

    1 Gonzalez-Antuna, A., Lavandera, I., Rodriguez-Gonzalez, P., Rodriguez, J., Alonso, J.I.G., Gotor, V., “A straightforward route to obtain13C1-labeled clenbuterol”, Tetrahedron, 67 (31), 5577-5581 (2011).

    2 Joshi, R.A., Gurjar, M.K., Tripathy, N.K., “A new and improved process for celiprolol hydrochloride”, Org. Process. Res. Dev., 5 (2), 176-178 (2001).

    3 Bujnowski, K., Synoradzki, L., Dinjus, E., Zevaco, D., Augustynowicz-Kope, E., Zwolska, C., “Rifamycin antibiotics-new compounds and synthetic methods. Part 1: Study of the reaction of 3-formylrifamycin SV with primary alkylamines or ammonia”, Tetrahedron, 59 (11), 1885-1893 (2003).

    4 Esser, T., Karu, A.E., Toia, R.F., Casida, J.E., “Recognition of tetramethylenedisulfotetramine and related sulfamides by the brain GABA-gated chloride channel and a cyclodiene-sensitive monoclonal antibody”, Chem. Res. Toχicol., 4 (2), 162-167 (1991).

    5 Jabusch, T.W., Tjeerdema, R.S., “Partitioning of penoxsulam, a new sulfonamide herbicide”, J. Agric. Food. Chem., 53 (18), 7179-7183 (2005).

    6 Gonzalez, M.A., Gorman, D.B., Hamilton, C.T., Roth, G.A., “Process development for the sulfonamide herbicide pyroxsulam”, Org. Process. Res. Dev., 12 (2), 301-303 (2008).

    7 Xu, W.P., Deng, F.X., Zhang, Z.L., “The synthesis of the vulcanization accelerator-NS”, Fine Chemicals (China), 17 (5), 277-279 (2000). (in Chinese)

    8 Ellman, J.A., Owens, T.D., Tang, T.P., “N-tert-butanesulfinyl imines: Versatile intermediates for the asymmetric synthesis of amines”, Acc. Chem. Res., 35 (11), 984-995 (2002).

    9 Enders, D., Reinhold, U., “Asymmetric synthesis of amines by nucleophilic 1,2-addition of organometallic reagents to the CN-double bond”, Tetrahedron: Asymmetry, 8 (12), 1895-1946 (1997).

    10 Cogan, D.A., Liu, G., Ellman, J., “Asymmetric synthesis of chiral amines by highly diastereoselective 1,2-additions of organometallic reagents to N-tert-butanesulfinyl imines”, Tetrahedron, 55 (29), 8883-8904 (1999).

    11 Bloch, R., “Additions of organometallic reagents to C N bonds: reactivity and selectivity”, Chem. Rev., 98 (4), 1407-1438 (1998).

    12 Buey, J., Espinet, P., “Monomeric and dimeric ortho-metalated palladium (II)-imine systems as liquid crystals”, J. Organomet. Chem., 507, 137-145 (1996).

    13 Yan, J.X., Jin, Y.F., Liu, Z.X., Wang, Y.F., “Environment-friendly preparation of tert-butylamine”, Chemical Industry and Engineering Progress (China), 31 (9), 2107-2109 (2012). (in Chinese)

    14 Josef, P., Josef, K., Stanislav, S., Ivan, D., Julius, K., Pavol, S.,“Process of preparation of aliphatic amines”, European Pat., 1289925 B1, (2000).

    15 Ma, H., Huo, W.Z., “Synthesis of tert-butylamine by direct amination of iso-butene”, Petrochemical Technology (China), 34 (8), 766-769 (2005). (in Chinese)

    16 Searles, S., Nukina, S., “Cleavage and rearrangement of sulfonamides”, Chem. Rev., 59 (6), 1077-1103 (1959).

    17 Neumann, R., Sasson, Y., “Mechanism of base-catalyzed reactions in phase-transfer systems with poly(ethylene glycols) as catalysts. The isomerization of allylanisole”, J. Org. Chem., 49 (19), 3448-3451 (1984).

    18 Wagenaar, A., Engberts, J.B.F.N., “Intramolecular nucleophilic catalysis by the neighboring hydroxyl group in acid-and base-catalyzed hydrolysis of aromatic sulfonamides and sultones. Mechanism of intramolecular nucleophilic substitution at sulfonyl sulfur”, J. Org. Chem., 53 (4), 768-772 (1988).

    19 Graafland, T., Wagenaar, A., Kirby, A.J., Engberts, J.B.F.N., “Structure and reactivity in intramolecular catalysis. Catalysis of sulfonamide hydrolysis by the neighboring carboxyl group”, J. Am. Chem. Soc., 101 (23), 6981-6991 (1979).

    20 Yamaguchi, R., Kawagoe, S., Asai, C., Fujita, K., “Selective synthesis of secondary and tertiary amines by Cp*iridium-catalyzed multi alkylation of ammonium salts with alcohols”, Org. Lett., 10 (2), 181-184 (2008).

    21 Kawahara, R., Fujita, K., Yamaguchi, R., “Multialkylation of aqueous ammonia with alcohols catalyzed by water-soluble Cp*Ir-ammine complexes”, J. Am. Chem. Soc., 132 (43), 15108-15111 (2010).

    22 Huo, W.Z., Gou, L.K., Yu, Z.M., “Study on pretreatment of strong acidity canion exchange resin catalyst”, Industrial Catalysis (China), 7 (6), 13-18 (1999). (in Chinese)

    cals were used as

    unless otherwise noted. 1,8-Naphthosultone (98%) was purchased from Vcare Pharmatech Co., and 1,3-propanesultone (analytical-grade reagent, AR) was obtained from Sun Chemicals Co. Tert-butanol, tert-pentanol, phosphotungstic acid hydrate (PWA) and 732 sulfonic resin (SR732, Ф0.3-1.2 mm) were purchased from Sinopharm Chemical Reagent Co., Ltd.

    猜你喜歡
    陳潔
    《目光》樂譜
    Ultrafast magneto-optical dynamics in nickel(111)single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
    《湖中漫行》樂譜
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    深度學(xué)習(xí)視域下小學(xué)數(shù)學(xué)課堂教學(xué)新樣態(tài)
    樂譜2
    河北畫報(2021年4期)2021-06-16 06:18:16
    抑郁癥女孩:一只流浪狗為我奏響的歡樂頌
    陳潔雕塑作品
    風(fēng)流蔣介石
    愛你(2016年11期)2016-04-11 02:13:46
    媽媽向前沖
    37°女人(2015年7期)2015-12-23 06:52:31
    久久精品国产亚洲av天美| 日本欧美视频一区| 日韩欧美一区视频在线观看 | 久热这里只有精品99| 亚洲无线观看免费| 免费看光身美女| 欧美日韩综合久久久久久| 日韩欧美 国产精品| 黄片无遮挡物在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品午夜福利在线看| 免费大片18禁| 亚洲人成网站在线观看播放| 中文资源天堂在线| 欧美日韩综合久久久久久| 久久这里有精品视频免费| 国产在线视频一区二区| 日本黄大片高清| 免费人妻精品一区二区三区视频| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 观看美女的网站| 久久青草综合色| 国产在视频线精品| 国产无遮挡羞羞视频在线观看| 亚洲国产精品国产精品| 久久久欧美国产精品| 欧美日本中文国产一区发布| 永久网站在线| 看非洲黑人一级黄片| 国产成人精品婷婷| 久久韩国三级中文字幕| 少妇 在线观看| 国产91av在线免费观看| 在线播放无遮挡| 夫妻性生交免费视频一级片| 自拍偷自拍亚洲精品老妇| 女人久久www免费人成看片| 国产免费福利视频在线观看| 亚洲欧美成人综合另类久久久| 一边亲一边摸免费视频| videossex国产| 97精品久久久久久久久久精品| 亚洲国产欧美日韩在线播放 | 亚洲精品国产av蜜桃| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 少妇人妻一区二区三区视频| 有码 亚洲区| 中文字幕av电影在线播放| 人妻少妇偷人精品九色| 免费黄网站久久成人精品| 亚洲人成网站在线播| 99re6热这里在线精品视频| 久久精品久久久久久久性| 亚洲三级黄色毛片| 国产极品天堂在线| 久久久久人妻精品一区果冻| 啦啦啦啦在线视频资源| 亚洲欧美日韩东京热| 69精品国产乱码久久久| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 老司机影院毛片| 99久久精品热视频| 国产亚洲精品久久久com| 少妇精品久久久久久久| 男女啪啪激烈高潮av片| 天堂8中文在线网| 建设人人有责人人尽责人人享有的| 另类亚洲欧美激情| 日日啪夜夜撸| 亚洲色图综合在线观看| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 多毛熟女@视频| 欧美精品亚洲一区二区| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 精品卡一卡二卡四卡免费| 亚洲不卡免费看| 色94色欧美一区二区| 美女国产视频在线观看| 热99国产精品久久久久久7| 亚洲第一av免费看| 亚洲国产精品一区二区三区在线| 91久久精品国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 少妇被粗大猛烈的视频| 亚洲精品国产av成人精品| 少妇精品久久久久久久| 国产黄色免费在线视频| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 26uuu在线亚洲综合色| 午夜福利视频精品| 中文在线观看免费www的网站| 国产有黄有色有爽视频| 一级片'在线观看视频| 国产精品一区www在线观看| 两个人免费观看高清视频 | 国产成人aa在线观看| a级一级毛片免费在线观看| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 内地一区二区视频在线| 午夜福利在线观看免费完整高清在| 亚洲精品色激情综合| 国产老妇伦熟女老妇高清| 亚洲丝袜综合中文字幕| 日本av免费视频播放| 久久精品久久精品一区二区三区| 日本91视频免费播放| 天天操日日干夜夜撸| 免费av中文字幕在线| 少妇熟女欧美另类| 国产精品一区二区三区四区免费观看| 99久久精品热视频| 日韩亚洲欧美综合| 人妻一区二区av| 五月伊人婷婷丁香| 免费观看的影片在线观看| 男人添女人高潮全过程视频| 91aial.com中文字幕在线观看| 国产高清有码在线观看视频| 一个人免费看片子| 亚洲av欧美aⅴ国产| 精品一区在线观看国产| 香蕉精品网在线| 黄色日韩在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 日韩熟女老妇一区二区性免费视频| 少妇人妻久久综合中文| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 97超视频在线观看视频| 国产69精品久久久久777片| 欧美激情极品国产一区二区三区 | 69精品国产乱码久久久| 在线 av 中文字幕| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 久久6这里有精品| 丝瓜视频免费看黄片| 夜夜看夜夜爽夜夜摸| 九色成人免费人妻av| 在线观看www视频免费| 免费看光身美女| 草草在线视频免费看| 久久久久网色| 国产在线免费精品| 大片电影免费在线观看免费| 晚上一个人看的免费电影| 黑丝袜美女国产一区| 中文精品一卡2卡3卡4更新| 一本久久精品| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 国产成人免费观看mmmm| 在现免费观看毛片| 大香蕉久久网| 亚洲伊人久久精品综合| 国产亚洲一区二区精品| 黄色日韩在线| 18禁在线播放成人免费| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 亚洲,一卡二卡三卡| 中文在线观看免费www的网站| 国产永久视频网站| 国精品久久久久久国模美| 久久久a久久爽久久v久久| 这个男人来自地球电影免费观看 | 自线自在国产av| 国产免费一级a男人的天堂| 亚洲国产精品一区三区| 国产深夜福利视频在线观看| 这个男人来自地球电影免费观看 | 精品亚洲成国产av| av在线观看视频网站免费| 精品国产国语对白av| 男女无遮挡免费网站观看| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 日韩中字成人| 久久精品夜色国产| 欧美三级亚洲精品| av在线播放精品| 少妇精品久久久久久久| 一区二区三区精品91| 18禁在线无遮挡免费观看视频| 免费人成在线观看视频色| 午夜av观看不卡| 国产在视频线精品| 亚洲国产精品999| 99久久精品热视频| 另类精品久久| 亚洲电影在线观看av| 狂野欧美激情性xxxx在线观看| 国产爽快片一区二区三区| 久久99一区二区三区| 一级毛片久久久久久久久女| av黄色大香蕉| 少妇被粗大猛烈的视频| 亚洲成人免费电影在线观看| 男女免费视频国产| 精品高清国产在线一区| 免费在线观看完整版高清| 国产精品亚洲av一区麻豆| 国产亚洲av高清不卡| 大陆偷拍与自拍| 一级毛片电影观看| 丝袜喷水一区| 黄片大片在线免费观看| 人妻人人澡人人爽人人| 日本精品一区二区三区蜜桃| 女人精品久久久久毛片| 成年av动漫网址| av网站免费在线观看视频| 国产成人免费无遮挡视频| 国产av一区二区精品久久| 日本av免费视频播放| 欧美精品啪啪一区二区三区 | 国产精品 欧美亚洲| 少妇粗大呻吟视频| a在线观看视频网站| 无限看片的www在线观看| 欧美黄色片欧美黄色片| 成人国语在线视频| 午夜视频精品福利| 午夜福利在线观看吧| 午夜日韩欧美国产| 99re6热这里在线精品视频| 欧美黄色淫秽网站| 欧美日韩亚洲高清精品| 日韩人妻精品一区2区三区| 国产99久久九九免费精品| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品古装| 99精国产麻豆久久婷婷| 久久午夜综合久久蜜桃| 一个人免费看片子| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区激情视频| 精品福利永久在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 91老司机精品| 1024香蕉在线观看| 亚洲avbb在线观看| 免费少妇av软件| 69精品国产乱码久久久| 另类精品久久| 久久精品成人免费网站| 久久99热这里只频精品6学生| 好男人电影高清在线观看| 电影成人av| 精品一区在线观看国产| 日本91视频免费播放| 美女主播在线视频| 韩国高清视频一区二区三区| av超薄肉色丝袜交足视频| 精品卡一卡二卡四卡免费| 人人妻人人爽人人添夜夜欢视频| av天堂久久9| 日韩视频在线欧美| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 欧美精品av麻豆av| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| 美女大奶头黄色视频| 欧美日韩国产mv在线观看视频| 日本精品一区二区三区蜜桃| 亚洲国产精品一区三区| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 视频在线观看一区二区三区| 欧美日韩av久久| 最近中文字幕2019免费版| 啦啦啦在线免费观看视频4| 日韩欧美一区二区三区在线观看 | 伊人亚洲综合成人网| 大片免费播放器 马上看| 亚洲av美国av| 欧美日韩亚洲国产一区二区在线观看 | 美女主播在线视频| 悠悠久久av| av在线app专区| 欧美人与性动交α欧美精品济南到| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费| 国产亚洲精品一区二区www | www.av在线官网国产| 国产一区二区 视频在线| 精品人妻在线不人妻| 可以免费在线观看a视频的电影网站| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 亚洲一区中文字幕在线| 满18在线观看网站| 欧美性长视频在线观看| 男女免费视频国产| 欧美激情久久久久久爽电影 | av网站在线播放免费| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 999久久久国产精品视频| 久久九九热精品免费| 精品少妇一区二区三区视频日本电影| 1024视频免费在线观看| 99热全是精品| 日韩大码丰满熟妇| 久久人人爽人人片av| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 视频区欧美日本亚洲| 色视频在线一区二区三区| 久久中文看片网| 高清在线国产一区| 亚洲精品一二三| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 亚洲国产欧美在线一区| 国产在线观看jvid| 精品久久蜜臀av无| 午夜影院在线不卡| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 高清av免费在线| 巨乳人妻的诱惑在线观看| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 日韩制服骚丝袜av| 午夜免费成人在线视频| 亚洲免费av在线视频| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 男人舔女人的私密视频| 国产成人av教育| 伊人久久大香线蕉亚洲五| 国产欧美日韩综合在线一区二区| 18禁观看日本| 日本撒尿小便嘘嘘汇集6| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 欧美日韩视频精品一区| 每晚都被弄得嗷嗷叫到高潮| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区三区在线| 日本wwww免费看| 亚洲专区中文字幕在线| 99久久精品国产亚洲精品| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区 | a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 日韩精品免费视频一区二区三区| 高清在线国产一区| 高清视频免费观看一区二区| 一级毛片女人18水好多| 色94色欧美一区二区| 亚洲国产欧美网| 天天添夜夜摸| 无限看片的www在线观看| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久成人av| 日本a在线网址| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 又黄又粗又硬又大视频| 满18在线观看网站| 一级黄色大片毛片| tocl精华| 老熟女久久久| 成人国语在线视频| av欧美777| www.熟女人妻精品国产| 亚洲第一青青草原| 一级毛片女人18水好多| 国产一区二区三区在线臀色熟女 | 最新的欧美精品一区二区| 国产精品一二三区在线看| 日本av免费视频播放| 12—13女人毛片做爰片一| 国产熟女午夜一区二区三区| 国产精品影院久久| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 丰满迷人的少妇在线观看| www.999成人在线观看| 中文字幕av电影在线播放| 国产免费现黄频在线看| 一区二区三区乱码不卡18| 欧美日韩亚洲综合一区二区三区_| 女人爽到高潮嗷嗷叫在线视频| 久久中文字幕一级| 岛国在线观看网站| 麻豆av在线久日| 一边摸一边做爽爽视频免费| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 日韩视频在线欧美| 制服人妻中文乱码| 十八禁网站网址无遮挡| xxxhd国产人妻xxx| 五月开心婷婷网| 王馨瑶露胸无遮挡在线观看| 在线看a的网站| 亚洲午夜精品一区,二区,三区| 俄罗斯特黄特色一大片| 丝袜脚勾引网站| 1024视频免费在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲免费av在线视频| 亚洲国产看品久久| 国产精品一区二区免费欧美 | www日本在线高清视频| 久久免费观看电影| 亚洲精品在线美女| 精品一区二区三区四区五区乱码| 日韩视频在线欧美| 中国国产av一级| 久久精品熟女亚洲av麻豆精品| 亚洲av男天堂| 久久精品熟女亚洲av麻豆精品| 多毛熟女@视频| 天天影视国产精品| 夜夜夜夜夜久久久久| 美女午夜性视频免费| 国产精品欧美亚洲77777| 美女高潮喷水抽搐中文字幕| 在线观看免费高清a一片| 91av网站免费观看| 精品少妇一区二区三区视频日本电影| 岛国在线观看网站| 俄罗斯特黄特色一大片| 国产在视频线精品| 免费看十八禁软件| 欧美 日韩 精品 国产| 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 大片电影免费在线观看免费| 深夜精品福利| 丰满少妇做爰视频| 男女边摸边吃奶| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 天堂8中文在线网| 久久女婷五月综合色啪小说| 9热在线视频观看99| 嫁个100分男人电影在线观看| 飞空精品影院首页| 女人精品久久久久毛片| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| 欧美日韩亚洲综合一区二区三区_| 在线 av 中文字幕| 国产一区二区三区av在线| 人人妻,人人澡人人爽秒播| 亚洲avbb在线观看| 欧美日本中文国产一区发布| 欧美人与性动交α欧美软件| 黄片大片在线免费观看| 97在线人人人人妻| 精品一区在线观看国产| 国产免费现黄频在线看| 黄色视频在线播放观看不卡| 久久久久国内视频| 蜜桃国产av成人99| 国产成人欧美在线观看 | 精品一区二区三卡| 午夜免费鲁丝| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 久久精品成人免费网站| 国产深夜福利视频在线观看| 国产成人啪精品午夜网站| 高清视频免费观看一区二区| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 午夜精品国产一区二区电影| 美女扒开内裤让男人捅视频| 啦啦啦 在线观看视频| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 自线自在国产av| 国产男女内射视频| 美女高潮到喷水免费观看| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 国产成人精品久久二区二区免费| 日本精品一区二区三区蜜桃| 91大片在线观看| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 国产有黄有色有爽视频| 国产亚洲一区二区精品| 首页视频小说图片口味搜索| 人人妻人人爽人人添夜夜欢视频| 亚洲专区字幕在线| 中文欧美无线码| 新久久久久国产一级毛片| 男女高潮啪啪啪动态图| 国产亚洲欧美在线一区二区| 欧美日韩av久久| 国产欧美日韩综合在线一区二区| 国产一区有黄有色的免费视频| 黑人欧美特级aaaaaa片| 肉色欧美久久久久久久蜜桃| 黄网站色视频无遮挡免费观看| 久久久精品国产亚洲av高清涩受| 国产精品久久久人人做人人爽| 热re99久久国产66热| 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品欧美亚洲77777| 亚洲av日韩精品久久久久久密| 高清欧美精品videossex| 久久免费观看电影| 伊人久久大香线蕉亚洲五| 国产精品欧美亚洲77777| 999精品在线视频| 亚洲性夜色夜夜综合| 午夜免费鲁丝| 国产精品av久久久久免费| 黄网站色视频无遮挡免费观看| 十分钟在线观看高清视频www| 亚洲国产精品999| 一本大道久久a久久精品| 日本av免费视频播放| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 各种免费的搞黄视频| 一二三四社区在线视频社区8| www日本在线高清视频| 99香蕉大伊视频| 日韩 欧美 亚洲 中文字幕| 日日爽夜夜爽网站| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 91大片在线观看| 肉色欧美久久久久久久蜜桃| 老司机靠b影院| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 国产精品1区2区在线观看. | 午夜福利,免费看| 国产亚洲精品一区二区www | 成年人黄色毛片网站| 日韩 欧美 亚洲 中文字幕| 爱豆传媒免费全集在线观看| 五月开心婷婷网| 午夜日韩欧美国产| 精品免费久久久久久久清纯 | 高清欧美精品videossex| 国产真人三级小视频在线观看| bbb黄色大片| 国产精品久久久久成人av| 亚洲国产精品成人久久小说| 五月开心婷婷网| 窝窝影院91人妻| 久久精品国产亚洲av香蕉五月 | 自拍欧美九色日韩亚洲蝌蚪91| 曰老女人黄片| 国产免费现黄频在线看| √禁漫天堂资源中文www| 男人舔女人的私密视频| 亚洲av欧美aⅴ国产| 精品少妇内射三级| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 欧美日韩亚洲国产一区二区在线观看 | 50天的宝宝边吃奶边哭怎么回事| 久久久久久久大尺度免费视频| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 少妇 在线观看| 成年动漫av网址| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 青青草视频在线视频观看| 国产精品香港三级国产av潘金莲| bbb黄色大片| 久久久久国产精品人妻一区二区| 成年美女黄网站色视频大全免费| 91精品伊人久久大香线蕉| 久久av网站| 欧美精品av麻豆av| 欧美黑人精品巨大| 可以免费在线观看a视频的电影网站| 国产日韩欧美亚洲二区|