• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of Power Density on Heavy Metal Release During Ultrasonic Sludge Treatment Process*

    2014-07-18 11:56:14張光明,萬甜,高峰
    關(guān)鍵詞:高峰光明

    Impacts of Power Density on Heavy Metal Release During Ultrasonic Sludge Treatment Process*

    ZHANG Guangming (張光明)1,**, WAN Tian (萬甜)2, GAO Feng (高峰)2and DONG Shan (董姍)2
    1School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China
    2State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

    The impact of ultrasonic power density on changes of heavy metals during sludge sonication was investigated. Results showed that ultrasound could release heavy metals from sludge into the supernatant. There existed an effective power density range of 0.8-1.6 W·ml?1for the release of the total heavy metal; there was little release below 0.8 W·ml?1and too high power density was adverse to the release. Furthermore, sonication showed selective release of heavy metal from sludge to the supernatant; copper, cadmium and lead were not released by sonication, while arsenic and nickel were released easily and their release ratio could reach 40%. The effective energy range for each heavy metal was also different that 0.8-1.2 W·ml?1for arsenic, 0.5-1.6 W·ml?1for nickel, and 0.8-1.6 W·ml?1for mercury and chrome. The differences among heavy metal release during sonication might be explained by the different distribution of chemical fractions of each metal in sludge. Such selectivity could be used to control heavy metal release during sludge treatment.

    activated sludge, sonication, metals, power density, chemical fractions

    1 INTRODUCTION

    Large content of excess sludge are generated during biological wastewater treatment processes. The presence of contaminants such as organics, heavy metals and pathogens in excess sludge poses serious environmental risks, and considerably hampers the final sludge disposal, especially in the agricultural use [1, 2]. Over the past decades, many techniques have been developed for sludge treatment and disposal [3]. Among these techniques, ultrasound is of great values [4].

    During ultrasonic sludge treatment process, violent cavitation occurs, which quickly disrupts sludge flocs, breaks cells of sludge bacteria, and thus releases the intracellular and extracellular substances, and inorganic and organic materials trapped in the sludge flocs into the supernatant. Therefore, sludge characteristics such as floc size, viscosity, capillary suction time and soluble organic contents are changed by ultrasound [5, 6]. Those changes are beneficial for improving sludge biodegradability, enhancing the aerobic digestion rate, and cutting down the sludge dewatering time and sludge volume [5-8]. Therefore, sonication can serve as pretreatment of sludge before anaerobic digestion, aerobic fermentation, and mechanical dewatering [7-10]. Alternatively, the sonicated sludge may be recycled into an aeration tank as substances for microorganisms to achieve 60%-100% of sludge reduction in low-sludge wastewater treatment processes [7, 9]. The sonicated sludge may also be used as carbon source for biological nitrogen and phosphorus removal processes [6, 8]. Detailed changes of organic matters and floc morphology during sonication have been reported [7, 9], and change of heavy metals during sonication has also been reported but the details are still unclear [11].

    Heavy metals in sludge are of great concerns due to their health and environment impacts. Sludge heavy metals are most of transition elements, which are easily affected by the environmental conditions, such as pH, oxidation reduction potential, temperatures, organic matters and so on [12, 13]. As sonication effectively changes the physical, chemical and morphological properties of sludge, it is reasonable to suppose significant changes of sludge heavy metals during sonication. Such changes of heavy metals might impact the following processes when sonication was used as sludge pretreatment before anaerobic digestion, aerobic fermentation, sludge recycling in low-sludge wastewater treatment processes, and carbon source provision for nitrogen and phosphorous removal processes. Therefore, it is very important to understand the detailed changes of heavy metals during sludge sonication for safe and efficient sludge treatment.

    This study investigated the detailed changes of heavy metals during sludge sonication. Since ultrasonic power density was the most significant factor for sonication efficiency [14], the impact of ultrasonic power density was examined.

    2 MATERIALS AND METHODS

    2.1 Sludge and reagents

    The studied sludge was collected from a local wastewater treatment plant in Harbin, China. Tables 1 and 2 show the basic properties of the sludge used. Ultra-pure water was used for all experiments andanalysis. All reagents used were of analytical-reagent grade or higher.

    Table 1 Physical-chemical characteristics of the untreated sludge

    Table 2 Heavy metal content in the untreated sludge (mg·kg?1)

    2.2 Experiments

    The sonication equipment was a horn-system (JY90-II, Ningbo Haishu Kesheng Ultrasonic Equipment Co., China) that emitted 25 kHz ultrasound waves through a tip with a surface area of 2.12 cm2. The range of ultrasonic power was from 0 to 250 W. Each time 100 ml sludge was put into a 150 ml beaker for sonication, and the probe was dipped 1 cm below the sludge surface in the center of the beaker. The beaker was then put in a water-bath to prevent over heating of sludge. Sonication duration of 15 min was used according to the previous work [9].

    The sonicated sludge was centrifuged at 4000 r·min?1using a TCL-16G desk centrifuge (Anting Scientific Apparatus plant in Shanghai, China) in order to separate the solid phase and the liquid phase (supernatant). The supernatant was used for the measurement of supernatant chemical oxygen demand (SCOD) and aqueous heavy metal concentrations, and the solid phase was for the analysis of heavy metal and chemical fractions in sludge.

    2.3 Analytical methods

    The SCOD, suspended solid content (TSS), and volatile solid content (VSS) were measured according to APHA standard methods [15]. The pH of samples was monitored with a PHS-3C pH meter (Shanghai Precision Scientific Instrument Co., China). The heavy metal concentrations in the supernatant were directly measured by a PerkinElmer Optima 5300 DV ICP (Perkin Elmer Inc., America) [16]. The chemical fraction of heavy metals in the solid phase was analyzed by a five-step sequential extraction procedure [17].

    All reported values of each index were average values calculated from duplicate samples.

    3 RESULTS AND DISCUSSION

    3.1 Ultrasonic release of sludge organics and total heavy metals

    The shear force generated in sonication breaks down the bacterial cell wall and releases the intracellular and extracellular substances into the aqueous phase including inorganic and organic materials. Fig. 1 shows the release of organic matters and heavy metals during sonication. Organic matters are largely released by sonication (high released SCOD), which might be contributed by the release of extracellular polymeric substances during floc disintegration and the release of cell components during cells lysis. Heavy metals could also be released, but their concentrations in the aqueous phase are thousands times lower than that of organic matters.

    Figure 1 Effect of ultrasonic power density on the release of sludge matters (15 min)

    Ultrasonic power density significantly affects the release of both organic matters and heavy metals during sludge sonication. For organic matters, low power density input could cause their release. SCOD concentration increases steadily till the power density reaches 1.6 W·ml?1, and do not change with further increasing power density. For the total heavy metals, the release by sonication is fall-after-rise with the increase of ultrasonic power density. A certain level of ultrasonic power density is needed for heavy metal release and significant increase of metal concentration is observed beyond 0.8 W·ml?1. However, the concentration of total heavy metal in the aqueous phase descends when the power density increases to 2.0 W·ml?1. Therefore, the effective energy range is 0-1.6 W·ml?1for organics release and 0.8-1.6 W·ml?1for total heavy metal release. Energy increase beyond the range is useless or even adverse.

    The difference between the release of organic matters and the release of heavy metals might be thatthe combination of heavy metals with the sludge was different from that of organic matters. Large quantity of organic matters exited in the extracellular polymeric substances [5, 8, 18], and even low energy input could loose the sludge floc and release them [9]. High ultrasonic power density was needed to cause acoustic cavitation, which then caused the sludge floc disintegration and cell breakage. Therefore, the released organic matters increased stably with power density increased from 0 to 1.6 W·ml?1. However, it was reported that when ultrasound power density increased beyond the most efficient level, the cavitation decreased with the increased power density, and the sludge disintegration thereby became weak [8, 18].

    Heavy metals combined with sludge more complexly [19]. Chemical fractions of heavy metals in the untreated sludge were examined, namely exchangeable (F1), carbonated-bound (F2), Fe/Mn oxides-bound fraction (F3), organically-bound (F4) and residual (F5). According to the determination of the five chemical fractions [17], F1, F2 and F3 are considered to be unsteady forms, while F4 and F5 are considered as stable ones [20]. The results are reported in Fig. 2. The most unsteady fractions (sum of F1 and F2) account for only about 10% in the untreated sludge, and therefore the release of heavy metals by sonication is not obvious at a low power density. With powerful energy inputting, the biting forces between heavy metals and sludge are weakened and more heavy metals could be released. However, sonication with higher power density might greatly disintegrate sludge matrix, and the floc size became smaller, which could supply large surface areas. The released heavy metals in the aqueous phase are then re-adsorbed by the small flocs with huge surface areas. Therefore, beyond 1.6 W·ml?1, the re-adsorption of heavy metal onto flocs exceeds the release of heavy metals from sludge, and the aqueous total heavy metals finally decreases.

    Figure 2 Chemical fractions of total heavy metals in the untreated sludge

    3.2 Ultrasonic release of individual heavy metals from sludge

    Figure 3 Release of each heavy metal by sonication (15 min)

    Ultrasonic power density greatly affects the release of each heavy metal during sonication (Fig. 3). Seven typical heavy metals are detected in the untreated sludge, namely copper, nickel, chrome, mercury, lead, arsenic and cadmium. After sonication, arsenic, nickel, chrome and mercury can be released, and all their release curves show fall-after-rise pattern. Other metals such as copper, lead and cadmium are released little during sonication with power density of 0-2.0 W·ml?1. Therefore, sonication can selectively release heavy metal from the sludge.

    Furthermore, for the four heavy metals that could be released by sonication, the effective energy range of each metal release is also different. For arsenic, low power density (lower than 0.8 W·ml?1) sonication has no effect on the release from sludge, and the release is naught. Power density of 1.2 W·ml?1is the most efficient for the release of arsenic and about 40% of arsenic is released from sludge. Therefore, the effective energy range for arsenic release is 0.8-1.2 W·ml?1.

    For nickel, it can be released at low power density (0.5 W·ml?1) in spite that vary low concentration is detected. With increased power density, the released concentration increases sharply. When power density reaches 1.6 W·ml?1, the release of nickel increases to 38%. The energy work range for nickel release is 0.5-1.6 W·ml?1.

    For chrome and mercury, the released concentration increases slowly at low power density, then increases sharply and finally decreases when power density reaches 1.6 W·ml?1. The work range for release of these two metals is 0.8-1.6 W·ml?1. The highest release ratio for chrome and mercury is 21% and 26%, respectively.

    The possible explanation for the different changes of heavy metals is that each metal showed different characteristics and chemical forms. The five chemical fractions of each heavy metal in the untreated sludge are examined and the distributions are reported in Fig. 4. For arsenic and nickel, unsteady fractions are high, resulting in the high release ratio from sludge and the wide energy work range as well. For chrome, fractions of F3 and F4 are the main forms with 55% and 42%, respectively. Therefore, the energy work range for release of chrome is narrower than nickel and arsenic. For mercury, fraction of F5 is the major fraction, however, mercury is a metalloid and its characteristics are relatively unstable [11]. The combination between mercury and sludge may be torn apart by the shear force during sonication. Besides,strong stirring during sonication also increased the sludge temperature by 10-20 °C [18], which may also contribute to mercury release. For cadmium, copper and lead, the stable fractions are high, and the combination force of these metals with sludge may be stronger than other metals. Therefore, little change can be observed during sonication.

    Figure 4 Heavy metals chemical fraction distributions in the untreated sludge

    3.3 Potential applications

    According to the investigation of heavy metal release during sonication, an energy work range of heavy metal release by sonication with power density of 0.8-1.6 W·ml?1was found. Too low or too high power density was not effective for heavy metal release. This new finding that the heavy metals can be removed from sludge within an energy range is useful for sludge treatment. For example, carbon source is normally insufficient in the biological nitrogen and phosphorus removal processes. As a counter measure, sonicated sludge can be put into the aeration tank as carbon source supplement. If the power density is controlled lower than the energy work range of heavy metal release, the sonicated sludge would supplement carbon source without heavy metals.

    Furthermore, as it was shown in the results, different heavy metals could be selectively released by sonication. Therefore, the power density of ultrasound could be adjusted for separating metals in a multi-metal system, which is beneficial for heavy metals recovery.

    4 CONCLUSIONS

    This study investigated the impact of ultrasonic power density on release of heavy metals in sludge during ultrasonic treatment. Several conclusions could be obtained as follows:

    Sonication released the organic matter and heavy metals. The released amount of the total heavy metals was far less than that of organic matter within power density range of 0-2.0 W·ml?1. The release of total heavy metals showed a pattern of fall-after-rise with the increased power density.

    There was an effective energy range of 0.8-1.6 W·ml?1for heavy metals release. The heavy metals in sludge could be effectively removed if power density was adjusted in the work range. Beyond the work range, more energy inputs were not good. Besides, the sonicated sludge could be safely recycled to wastewater treatment process as carbon source if the power density was adjusted lower than the work range.

    The release of each heavy metal had its individual energy work range, and the mechanism might be determined by the chemical fractions of each heavy metal in sludge. Nickel and arsenic had a wide energy work range since their unsteady fractions were high. Mercury and chrome could be released but the energy range was narrow. Other metals could not be released during sonication.

    REFERENCES

    1 Brisolara, K.F., Qi, Y.N., “Biosolids and sludge management”, Water Environ. Res., 82 (10), 1311-1326 (2010).

    2 Mungray, A.K., Murthy, Z.V.P., Tirpude, A.J., “Post treatment of up-flow anaerobic sludge blanket based sewage treatment plant effluents: A review”, Desal. Wat. Treat., 22 (1-3), 220-237 (2010).

    3 Dogan, I., Sanin, F.D., “Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method”, Water Res., 43, 2139-2148 (2009).

    4 Bougrier, C., Albasi, C., Delgenès, J.P., Carrère, H., “Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilization and anaerobic biodegradability”, Chem. Eng. Process., 45 (8), 711-718 (2006).

    5 Erden, G., Filibeli, A., “Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability”, J. Chem. Technol. Biotechnol., 85, 145-150 (2010).

    6 Na, S., Kim, Y.U., Khim, J., “Physiochemical properties of digested sewage sludge with ultrasonic treatment”, Ultrason. Sonochem. 14 (3), 281-285 (2007).

    7 Yoon, S., Kim, H., Lee, S., “Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production”, Process Biochem., 39 (12), 1923-1929 (2004).

    8 Wang, F., Lu, S., Ji, M., “Components of released liquid from ultrasonic waste activated sludge disintegration”, Ultrason. Sonochem., 13, 334-338 (2006).

    9 Zhang, G., Zhang, P., Yang, J., Chen, Y., “Ultrasonic reduction of excess sludge from the activated sludge system”, J. Hazard. Mater., 145 (3), 515-519 (2007).

    10 Muller, C.D., Abu-Orf, M., Blumenschein, C.D., Novak, J.T., “A comparative study of ultrasonic pretreatment and an internal recycle for the enhancement of mesophilic anaerobic digestion”, Water Environ. Res., 81 (12), 2398-2410 (2009).

    11 Laurent, J., Pierra, M., Casellas, M., Dagot, C., “The fate of heavy metals during thermal and ultrasound treatment of activated sludge”, Environ. Prot. Eng., 35 (3), 5-15 (2009).

    12 Sauvé, S., Hendershot, H., Allen, H.E., “Solid-solution partitioning of metals in contaminated soils: dependence on pH total metal burden and organic matter”, Environ. Sci. Technol., 34 (7), 1125-1131 (2000).

    13 Masood, F., Malik, A., “Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1”, J. Environ. Sci. Health. Part A: Toxic/Hazard. Subst. Environ. Eng., 46 (14),1667-1674 (2011).

    14 Zhang, G., Zhang, P., Yang, J., Liu, H., “Energy-efficient sludge sonication: Power and sludge characteristics”, Bioresour. Technol., 99, 9029-9031 (2008).

    15 Clesceri, L., Greenberg, A., Eaton, A., Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, D.C. (1998).

    16 Dewil, R., Baeyens, J., Roelandt, F., Peereman, M., “The analysis of the total sulphur content of wastewater treatment sludge by ICP-OES”, Environ. Sci. Tech., 23, 904-907 (2007).

    17 Tessier, A., Compbell, P.G., Bisson, M., “Sequential extraction procedure for the speciation of particulate trace metals”, Anal. Chem., 51 (7), 844-850 (1979).

    18 Dewil, R., Baeyens, J., Goutvrind, R. “The use of ultrasonics in the treatment of waste activated sludge”, Chin. J. Chem. Eng., 14 (1), 105-113 (2006).

    19 Fuents, A., Llorens, M., Saez, J., Aguilar, M.I., Ortuno, J.F., Meseguer, V.F., “Comparative study of six different sludges by sequential speciation of heavy metals”, Bioresour. Technol., 99, 517-525 (2008).

    20 Zorpas, A.A., Inglezakis, V.J., Loizidou, M., “Heavy metals fractionation before, during and after composting of sewage sludge with natural zeolite”, Waste Manage., 28, 2054-2060 (2008).

    2012-08-25, accepted 2013-01-25.

    * Supported by the Basic Research Funds in Renmin University of China from the center government (12XNL101).

    ** To whom correspondence should be addressed. E-mail: zgm200@126.com

    猜你喜歡
    高峰光明
    遇見光明
    病毒病將迎“小高峰”全方位布控巧應(yīng)對
    黑暗中的光明
    黑暗中的光明
    石慶云
    書香兩岸(2020年3期)2020-06-29 12:33:45
    秋天 一個絢麗、光明的季節(jié)
    文苑(2019年22期)2019-12-07 05:28:58
    僑愛執(zhí)燈 復(fù)刻光明
    華人時刊(2019年23期)2019-05-21 03:31:32
    努力攀登文藝高峰
    中華詩詞(2017年1期)2017-07-21 13:49:54
    求真務(wù)實 開拓創(chuàng)新 不忘初心 再攀高峰
    中國核電(2017年1期)2017-05-17 06:09:54
    走向光明
    在线免费观看不下载黄p国产| 高清在线视频一区二区三区| 国产精品一二三区在线看| 97人妻天天添夜夜摸| 水蜜桃什么品种好| 国产一级毛片在线| 涩涩av久久男人的天堂| 在线观看一区二区三区激情| 一区福利在线观看| 91久久精品国产一区二区三区| 丝袜美腿诱惑在线| 两个人免费观看高清视频| 国产精品麻豆人妻色哟哟久久| 老女人水多毛片| 亚洲第一av免费看| 久热这里只有精品99| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 亚洲精品自拍成人| 国产精品无大码| 精品久久久久久电影网| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 亚洲色图综合在线观看| 亚洲四区av| 在线观看www视频免费| 97在线人人人人妻| 国产探花极品一区二区| 国产麻豆69| 少妇猛男粗大的猛烈进出视频| 飞空精品影院首页| 欧美最新免费一区二区三区| 亚洲成国产人片在线观看| 午夜老司机福利剧场| 久久人人97超碰香蕉20202| 在线精品无人区一区二区三| 看非洲黑人一级黄片| 精品少妇久久久久久888优播| 99热全是精品| 日本黄色日本黄色录像| 国产精品秋霞免费鲁丝片| 91在线精品国自产拍蜜月| 国产日韩欧美视频二区| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 99久久精品国产国产毛片| 一个人免费看片子| 男女免费视频国产| 男女国产视频网站| 性色av一级| 热99久久久久精品小说推荐| 久久精品亚洲av国产电影网| 久久精品久久精品一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲经典国产精华液单| 成人国语在线视频| 在现免费观看毛片| 赤兔流量卡办理| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 春色校园在线视频观看| 日韩精品免费视频一区二区三区| 超色免费av| 久久久久人妻精品一区果冻| 在线亚洲精品国产二区图片欧美| 黄片无遮挡物在线观看| 日韩成人av中文字幕在线观看| 超碰97精品在线观看| 深夜精品福利| 日韩制服骚丝袜av| 精品国产国语对白av| 亚洲伊人色综图| 欧美最新免费一区二区三区| 日韩中文字幕视频在线看片| www日本在线高清视频| 妹子高潮喷水视频| 精品99又大又爽又粗少妇毛片| 18禁裸乳无遮挡动漫免费视频| 久久久久视频综合| 亚洲欧洲精品一区二区精品久久久 | 97精品久久久久久久久久精品| 天堂俺去俺来也www色官网| 亚洲精品一区蜜桃| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 亚洲精品第二区| 少妇的逼水好多| 满18在线观看网站| av在线观看视频网站免费| 日本猛色少妇xxxxx猛交久久| 日本av手机在线免费观看| 国产精品熟女久久久久浪| 熟妇人妻不卡中文字幕| 国产精品二区激情视频| 纵有疾风起免费观看全集完整版| 亚洲精品美女久久久久99蜜臀 | 女人高潮潮喷娇喘18禁视频| 亚洲少妇的诱惑av| 亚洲精品美女久久av网站| kizo精华| 99精国产麻豆久久婷婷| 成人黄色视频免费在线看| √禁漫天堂资源中文www| 好男人视频免费观看在线| 免费黄色在线免费观看| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 91午夜精品亚洲一区二区三区| 午夜av观看不卡| 99re6热这里在线精品视频| 久久人妻熟女aⅴ| 又大又黄又爽视频免费| 国产精品三级大全| 欧美国产精品一级二级三级| 久久久久网色| 女人高潮潮喷娇喘18禁视频| 伦精品一区二区三区| 国产av一区二区精品久久| 人人妻人人澡人人爽人人夜夜| 美女高潮到喷水免费观看| 免费观看av网站的网址| 日韩伦理黄色片| 国产片内射在线| 国产精品嫩草影院av在线观看| 国产乱来视频区| 久久97久久精品| 侵犯人妻中文字幕一二三四区| 欧美精品亚洲一区二区| 国产日韩欧美在线精品| 五月开心婷婷网| videosex国产| 国产成人精品无人区| 国产精品 国内视频| 最近最新中文字幕免费大全7| 久久ye,这里只有精品| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 9色porny在线观看| 国产精品久久久久成人av| 熟妇人妻不卡中文字幕| 欧美av亚洲av综合av国产av | 狠狠婷婷综合久久久久久88av| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 激情五月婷婷亚洲| 制服人妻中文乱码| 99久久综合免费| 久久精品夜色国产| 欧美av亚洲av综合av国产av | 亚洲精品美女久久久久99蜜臀 | 国产精品蜜桃在线观看| 亚洲,欧美精品.| 日本免费在线观看一区| 日本av免费视频播放| 久久精品久久久久久噜噜老黄| 99九九在线精品视频| videos熟女内射| 熟女电影av网| 大陆偷拍与自拍| 少妇人妻 视频| 色哟哟·www| 侵犯人妻中文字幕一二三四区| 精品一区二区三卡| videosex国产| 亚洲av欧美aⅴ国产| xxx大片免费视频| 热99国产精品久久久久久7| 999精品在线视频| 午夜福利视频在线观看免费| 美女脱内裤让男人舔精品视频| 亚洲精品日韩在线中文字幕| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区久久| 亚洲av综合色区一区| 国产精品不卡视频一区二区| 人成视频在线观看免费观看| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 中文字幕亚洲精品专区| 久热这里只有精品99| 久久精品亚洲av国产电影网| 久久久国产一区二区| av国产久精品久网站免费入址| 亚洲伊人色综图| 波野结衣二区三区在线| 少妇人妻 视频| 久久午夜福利片| 男女午夜视频在线观看| 成人午夜精彩视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人免费观看mmmm| 欧美国产精品va在线观看不卡| 在线观看免费视频网站a站| 亚洲第一青青草原| 亚洲欧美精品自产自拍| 亚洲国产av影院在线观看| 亚洲成人手机| 自线自在国产av| 久久久国产精品麻豆| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| av视频免费观看在线观看| 汤姆久久久久久久影院中文字幕| 久久影院123| 欧美亚洲日本最大视频资源| 国产精品二区激情视频| 这个男人来自地球电影免费观看 | 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 午夜日本视频在线| 色哟哟·www| 热99国产精品久久久久久7| 精品亚洲乱码少妇综合久久| 性高湖久久久久久久久免费观看| 婷婷色综合大香蕉| 久久久久久久精品精品| 蜜桃国产av成人99| 99国产精品免费福利视频| 国产黄频视频在线观看| 男女国产视频网站| 免费黄色在线免费观看| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| 下体分泌物呈黄色| 高清在线视频一区二区三区| 国产一区二区三区综合在线观看| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 最近的中文字幕免费完整| av视频免费观看在线观看| 国产av精品麻豆| 日韩不卡一区二区三区视频在线| 丝袜美足系列| 涩涩av久久男人的天堂| 欧美日韩一区二区视频在线观看视频在线| 久久久久久伊人网av| 一本大道久久a久久精品| 一级爰片在线观看| 成人毛片60女人毛片免费| 啦啦啦在线观看免费高清www| 午夜激情av网站| 国产精品国产av在线观看| 国产黄频视频在线观看| 我的亚洲天堂| 欧美成人午夜免费资源| av.在线天堂| √禁漫天堂资源中文www| 久久人人爽人人片av| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av| 哪个播放器可以免费观看大片| 色视频在线一区二区三区| 欧美人与性动交α欧美软件| 国产爽快片一区二区三区| 在线天堂中文资源库| 99热国产这里只有精品6| 国产精品久久久久久av不卡| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 国产精品秋霞免费鲁丝片| 一本大道久久a久久精品| 精品99又大又爽又粗少妇毛片| 国产成人精品在线电影| 国产一区二区在线观看av| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品男人的天堂亚洲| 伊人亚洲综合成人网| 精品少妇久久久久久888优播| 狠狠精品人妻久久久久久综合| 国产精品.久久久| av网站在线播放免费| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 满18在线观看网站| 天美传媒精品一区二区| 久久久久久久亚洲中文字幕| 国产有黄有色有爽视频| 国产日韩一区二区三区精品不卡| 免费黄色在线免费观看| 久久av网站| 精品久久久久久电影网| 亚洲综合精品二区| 巨乳人妻的诱惑在线观看| 亚洲精品美女久久av网站| 国产麻豆69| 色播在线永久视频| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 午夜久久久在线观看| 国产成人aa在线观看| 亚洲中文av在线| 色哟哟·www| 亚洲成人一二三区av| 男的添女的下面高潮视频| 天美传媒精品一区二区| 日韩视频在线欧美| 亚洲婷婷狠狠爱综合网| 丝瓜视频免费看黄片| 国产一区二区激情短视频 | 中文字幕最新亚洲高清| 少妇熟女欧美另类| 色网站视频免费| 亚洲av福利一区| 久久久久国产精品人妻一区二区| 免费看不卡的av| 制服诱惑二区| 丝袜美足系列| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 亚洲国产最新在线播放| 热99久久久久精品小说推荐| 日韩制服骚丝袜av| 久久人人爽人人片av| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 久久久a久久爽久久v久久| 欧美精品一区二区免费开放| 看免费av毛片| 久久久a久久爽久久v久久| 男女啪啪激烈高潮av片| 热re99久久国产66热| 精品人妻在线不人妻| 男人操女人黄网站| av不卡在线播放| 黄色配什么色好看| av一本久久久久| 97在线人人人人妻| 电影成人av| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 中文字幕色久视频| 亚洲美女搞黄在线观看| 中文欧美无线码| 国产 精品1| 成人亚洲欧美一区二区av| 国产人伦9x9x在线观看 | 日韩中字成人| 国产片特级美女逼逼视频| 少妇被粗大的猛进出69影院| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 宅男免费午夜| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 叶爱在线成人免费视频播放| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 街头女战士在线观看网站| 99久久精品国产国产毛片| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 黄色毛片三级朝国网站| 观看美女的网站| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| 久久久久久久精品精品| 少妇被粗大的猛进出69影院| 亚洲av.av天堂| 黄色视频在线播放观看不卡| 成人亚洲欧美一区二区av| 少妇 在线观看| 一个人免费看片子| 99热网站在线观看| 热re99久久精品国产66热6| 久久久亚洲精品成人影院| 99九九在线精品视频| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 国产一级毛片在线| 国产女主播在线喷水免费视频网站| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 日本色播在线视频| a 毛片基地| 黑丝袜美女国产一区| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 最黄视频免费看| 五月天丁香电影| 中文字幕人妻丝袜制服| 啦啦啦在线免费观看视频4| 在线观看一区二区三区激情| 国产麻豆69| 日日啪夜夜爽| 亚洲综合色网址| 久久这里有精品视频免费| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 精品第一国产精品| 国产一区二区激情短视频 | 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 国产一区二区激情短视频 | 亚洲激情五月婷婷啪啪| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 国产深夜福利视频在线观看| 可以免费在线观看a视频的电影网站 | 久久这里有精品视频免费| 伦理电影免费视频| 久久久久精品人妻al黑| 9191精品国产免费久久| 高清黄色对白视频在线免费看| 午夜激情av网站| 国产精品国产三级专区第一集| 另类精品久久| 日韩伦理黄色片| 亚洲伊人色综图| 日韩三级伦理在线观看| av视频免费观看在线观看| 亚洲国产精品一区三区| 女性生殖器流出的白浆| 超碰成人久久| freevideosex欧美| 在线亚洲精品国产二区图片欧美| 色吧在线观看| 80岁老熟妇乱子伦牲交| 看免费av毛片| 精品国产露脸久久av麻豆| 在线 av 中文字幕| 男女啪啪激烈高潮av片| 香蕉精品网在线| 亚洲国产av新网站| 亚洲三级黄色毛片| 两个人看的免费小视频| 亚洲经典国产精华液单| 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 妹子高潮喷水视频| 少妇人妻久久综合中文| 在线观看免费视频网站a站| 中国国产av一级| 久久久久国产网址| 一本大道久久a久久精品| 人成视频在线观看免费观看| 青春草国产在线视频| av福利片在线| 亚洲欧美色中文字幕在线| 国产精品 欧美亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日韩电影二区| 青青草视频在线视频观看| 性高湖久久久久久久久免费观看| 热99国产精品久久久久久7| 1024视频免费在线观看| 在线亚洲精品国产二区图片欧美| 18禁裸乳无遮挡动漫免费视频| 亚洲人成电影观看| 黄色视频在线播放观看不卡| 制服诱惑二区| 国产亚洲av片在线观看秒播厂| 久久久久视频综合| 两个人免费观看高清视频| 综合色丁香网| 在线天堂最新版资源| 水蜜桃什么品种好| 最黄视频免费看| 久久久a久久爽久久v久久| 97在线视频观看| 国产在线视频一区二区| 99久久精品国产国产毛片| 亚洲精品自拍成人| 国产精品蜜桃在线观看| www.自偷自拍.com| 久久久久视频综合| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 成年美女黄网站色视频大全免费| 人妻系列 视频| 成人国产麻豆网| 国产xxxxx性猛交| 丰满迷人的少妇在线观看| 亚洲成色77777| 美女国产高潮福利片在线看| 欧美日韩视频精品一区| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 亚洲成av片中文字幕在线观看 | 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 午夜福利在线观看免费完整高清在| 一级黄片播放器| 波多野结衣一区麻豆| 乱人伦中国视频| 一级片'在线观看视频| 深夜精品福利| 又黄又粗又硬又大视频| 久久精品亚洲av国产电影网| 精品亚洲成a人片在线观看| 男女高潮啪啪啪动态图| 成人亚洲精品一区在线观看| 欧美日韩精品网址| 日韩伦理黄色片| 欧美97在线视频| 色视频在线一区二区三区| 国产有黄有色有爽视频| 三级国产精品片| 性少妇av在线| 蜜桃在线观看..| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 老熟女久久久| 国产视频首页在线观看| 久久国产精品大桥未久av| 最近的中文字幕免费完整| 免费播放大片免费观看视频在线观看| 国产免费又黄又爽又色| 日本爱情动作片www.在线观看| 日本-黄色视频高清免费观看| 天堂俺去俺来也www色官网| 亚洲综合色惰| 久久亚洲国产成人精品v| 亚洲欧美一区二区三区久久| 丝袜人妻中文字幕| av在线app专区| 制服人妻中文乱码| 国产av码专区亚洲av| 国产精品国产三级国产专区5o| 日韩一卡2卡3卡4卡2021年| 国产午夜精品一二区理论片| 久久韩国三级中文字幕| 日韩av不卡免费在线播放| 久久久久久人妻| 欧美中文综合在线视频| 性高湖久久久久久久久免费观看| 777久久人妻少妇嫩草av网站| 日韩伦理黄色片| 午夜福利乱码中文字幕| 久久青草综合色| 国产福利在线免费观看视频| 久久久久久久大尺度免费视频| 欧美日韩亚洲国产一区二区在线观看 | 久久韩国三级中文字幕| 天天躁夜夜躁狠狠久久av| 熟妇人妻不卡中文字幕| av一本久久久久| 亚洲成人av在线免费| 国产精品国产三级国产专区5o| 一级毛片 在线播放| 国产不卡av网站在线观看| 一级毛片我不卡| 久久99蜜桃精品久久| 亚洲欧美色中文字幕在线| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 女的被弄到高潮叫床怎么办| 国产亚洲午夜精品一区二区久久| 90打野战视频偷拍视频| 国产乱来视频区| 一本色道久久久久久精品综合| 91精品三级在线观看| 在线 av 中文字幕| 免费播放大片免费观看视频在线观看| 久久毛片免费看一区二区三区| 一级毛片我不卡| 国产精品无大码| 男人添女人高潮全过程视频| 日日摸夜夜添夜夜爱| 91午夜精品亚洲一区二区三区| 97在线人人人人妻| 综合色丁香网| 精品福利永久在线观看| 久久精品国产a三级三级三级| 成人18禁高潮啪啪吃奶动态图| 肉色欧美久久久久久久蜜桃| 欧美成人精品欧美一级黄| 国产精品三级大全| 欧美日韩综合久久久久久| 亚洲精品在线美女| 啦啦啦在线观看免费高清www| 女性生殖器流出的白浆| 99热全是精品| 国产精品亚洲av一区麻豆 | 又大又黄又爽视频免费| 18+在线观看网站| 欧美人与性动交α欧美软件| 最黄视频免费看| 久久毛片免费看一区二区三区| 亚洲欧美清纯卡通| 亚洲熟女精品中文字幕| 久热这里只有精品99| 人妻人人澡人人爽人人| 免费观看a级毛片全部| 精品视频人人做人人爽| 国产免费一区二区三区四区乱码| 青草久久国产| 成年动漫av网址| 咕卡用的链子| av免费观看日本| 亚洲人成网站在线观看播放| 又黄又粗又硬又大视频| 国产欧美日韩综合在线一区二区| 1024香蕉在线观看| 久久国内精品自在自线图片| 最新中文字幕久久久久| 亚洲,欧美精品.| 亚洲国产色片| 亚洲国产av新网站| 99国产精品免费福利视频| 国产精品99久久99久久久不卡 | 免费日韩欧美在线观看| 一区二区av电影网| 亚洲成av片中文字幕在线观看 | 久久人妻熟女aⅴ| 国产爽快片一区二区三区| 丰满迷人的少妇在线观看| 欧美精品一区二区大全| videos熟女内射| 黄色毛片三级朝国网站|