• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination and Correlation of Solubilities of Four Novel Benzothiazolium Ionic Liquids with6PF?in Six Alcohols*

    2014-07-18 11:56:14何志堅,王小敏,姚田

    Determination and Correlation of Solubilities of Four Novel Benzothiazolium Ionic Liquids with6PF?in Six Alcohols*

    HE Zhijian (何志堅)1,2, WANG Xiaomin (王小敏)2, YAO Tian (姚田)2, SONG Hang (宋航)2and YAO Shun (姚舜)2,**1School of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang 621000, China
    2School of Chemical Engineering, Sichuan University, Chengdu 610065, China

    Four novel benzothiazolium ionic liquids with6PF?([C1Bth][PF6], [C4Bth][PF6], [C5Bth][PF6] and [C6Bth][PF6]) were synthesized, and the rang of their melting points were determined between 358.35 K-424.05 K. The relationship of their melting points and the length of the straight alkyl chain on cation reflected ‘S’ type tendency. Then, the solubilities of the four ionic liquids in six lower alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) were measured in the temperature rang of 253.15-383.15 K at atmospheric pressure with static analytical method, respectively. It was found that [C6Bth][PF6] in all investigated ionic liquids had the largest solubility in six alcohols and the solubility of [C4Bth][PF6] in methanol was very sensitive for temperature in 313.15-333.15 K, which was so-called “temperature-sensitivity”. This feature is of great significance to their application of catalyzing reaction or extraction process, and makes the recovery and reuse of ionic liquids (ILs) become easier. Moreover, the experimental solubility data were correlated with the modified Apelblat equation and λh equation, respectively. It was found that the result of correlation using two divided temperature ranges was better than that of using the whole temperature range.

    ionic liquids, benzothiazolium, alkanol, solubility, temperature-sensitivity, correlation

    1 INTRODUCTION

    Ionic liquids (ILs), as a new class of low temperature organic molten salts composed of an organic cation and an inorganic or organic anion, can remain liquid status over a quite wide temperature range (e.g. 233.15-423.15 K) and low melting point (≤423.15 K) [1, 2]. With their various advantages such as almost non-volatility, non-flammablity, negligible vapor pressure, high thermal and electrochemical stability [3, 4] and strong structural designability [5], ILs have aroused increasing attention and being widely studied in fields like extraction [6, 7], synthesis [8] and electrochemistry [9] and so on.

    Recently, many br?nsted acidic ILs were synthesized by us and other researchers [10-14]. These ILs are not conventional ILs for their higher melting points (some above 373.15 K) under atmospheric pressure and especially for the sharp change of solubility with a small-scale of temperature variation [10-12]. Thus, they can be served as homogeneous catalysts to efficiently catalyze the reactions at higher temperature and solid heterogeneous catalysts to be easily recovered by filtration at lower temperature after reaction. The same result will happen after the high-temperature extraction process with this kind of ILs as extraction auxiliary reagent. With the purpose to lay the foundation for their further applications, the solubility data of these temperature-sensitive ILs are needed to study systematically.

    In this article, four kinds of benzothiazolium ILs with6PF?are synthesized as shown in Table 1. Their solubilities in six lower alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) are measured under atmospheric pressure and correlated with a modified Apelblat equation and λh equation. These results would be beneficial to related process development and design of new ILs.

    2 EXPERIMENTAL

    2.1 Materials

    The sources and purities of the chemicals are presented in Table 2.

    2.2 Synthesis of benzothiazole ionic liquids

    Four kinds of benzothiazole ionic liquids ([C1Bth][PF6], [C4Bth][PF6], [C5Bth][PF6] and [C6Bth][PF6]) were synthesized with “one-pot” method [15]. The synthesis route is shown in Fig. 1.

    The synthesis steps of other three kinds of benzothiazole ionic liquids were similar to those of [C1Bth][PF6] as following:

    (1) 0.05 mol (6.7590 g) benzothiazole, 0.06 mol methyl bromide and 0.06 mol six fluorine sodium phosphate were added to in 50 ml flask successively; (2) After the mixture reacted 6 h at under 100 °C, the yellow paste crude product was obtained. It was mixed with proper amount distilled water and filteredto remove unreacted salts. The filter cake was washed with 10 ml ether for three times, and then washed with distilled water until there was no precipitation formation in the washed water with the silver nitrate test. The filter cake was re-crystallized in anhydrous ethanol and colorless acicular solid [C1Bth][PF6] was finally obtained after vacuum dryness. Their purities were determined by LC-20AT HPLC (Shimadzu Corporation, Japan) with a C18silica column (3.9 mm×150 mm, 5 μm) that were all higher than 99% (by mass). Melting points of four ILs were measured by MPA100 melting point apparatus (Stanford research system, USA, resolution: 0.01 °C).

    Table 1 Basic information of the four benzothiazolium ionic liquids with6PF?

    Table 2 The sources and purities of the chemicals

    Figure 1 Synthesis route of benzothiazolium ionic liquids

    2.3 Apparatus and procedure

    The solubilities of ILs in alcohols were measured by

    static method. Saturated solution was prepared by mixing solvent and excess IL in a three-neck flask at certain temperature with temperature stability of ±0.05 K. The temperature was controlled by constant-temperature water and oil bath pot (Yuhua Instrument Co., Ltd., Gongyi, China) or by the refrigeration cycle apparatus (Yuhua Instrument Co., Ltd., Gongyi, China) when below room temperature. The mixture was stirred for at least 2 h to reach dissolution equilibrium. After the mixture was placed for at least 1 h, about 1 ml of solution was sampled and the mass and concentration of the solution were measured by AL104 electronic balance (±0.0001 g, Mettler Toledo International, Inc., Zurich, Switzerland) and TU-1810 UV-Vis spectrophotometer (Purkinje General Instrument Co., Ltd, Beijing, China). Comprehensive standard uncertainty Uc(χ) of UV measurement was 1.12×10?3μg·ml?1and the reproducibility of concentration measurement was better than ±0.001 mass fraction. The temperature of the system was measured by a digital thermometer (±0.05K), which was directly inserted into the mixture. The mole fraction solubility (χ) was calculated with Eq. (1).

    where m and m1represent the mass of solution and solute. M1and M2are the molar mass of solute and solvent, respectively. m1was calculated by the measured concentration and the volume of the diluted solution. Each measurement was repeated three times and the expanded uncertainty of the mole fraction solubility was 0.003×10?4.

    To verify the measurement, the solubility of benzoic acid in 2-propanol was measured and a comparison between the experiment and the literature values [16] is shown in Fig. 2. It shows that the measured data are well consistent with the literature ones. Thus, it is proved that the measurement operation is reliable and accurate.

    Figure 2 Comparison between the experimental and the literature values□ literature value; ■ experiment value

    3 RESULTS AND DISCUSSION

    3.1 Solubilities of four ILs in alcohols

    The experimental values (χ) of mole fraction solubilities of [C1Bth][PF6], [C4Bth][PF6], [C5Bth][PF6] and [C6Bth][PF6] in six alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) at 253.15-333.15 K are listed in Tables 3-6, respectively.

    3.2 Effect of temperature and “temperaturesensitivity”

    The solubilities (χ) of the four ILs in six alcohols increase with rising temperature and vary with different alcohols. [C6Bth][PF6] among four ILs has the largest solubility in six alcohols within whole temperature ranges. In the same alcohol, the increasing level of solubility of ILs is different in different temperature ranges. Tables 3-6 showed that the solubility of [C6Bth][PF6], [C5Bth][PF6], [C4Bth][PF6] and [C1Bth][PF6] increases 7.0, 3.0, 2.9 and 2.6 times in methanol from 253.15 K to 293.15 K, respectively. From 293.15 K to 333.15 K, they increase 6.0, 16.2, 25.8 and 8.2 times in the same condition according to the order of the foregoing, respectively. From the results, it could be found that the growth of solubility of [C6Bth][PF6] is the largest when temperature is below 293.15 K, but the growth of solubility of [C4Bth][PF6] becomes the largest in four ILs from 293.15 K to 333.15 K, which is far greater than that of other three ILs. In other words, temperature-sensitive behavior of [C4Bth][PF6] is most obvious in all of six alcohols above normal temperature, and the temperature-sensitive region (TSR) of the solubility behavior varies apparently in different alcohols (as shown in Fig. 3). This behavior or property refers to “temperature-sensitivity” of solubility and means that its solubility can be greatly changed with a small-scale variation of temperature.

    The temperature-sensitive behavior makes these ILs can be easily dissolved in solution as homogeneous catalyst or extraction auxiliary reagent at high working temperature. After reaction or extraction process, they can crystallize or precipitate from the mixtures at low temperature. That means the ILs can be easily recovered by simple filtration for cycling use.

    3.3 Effect of alkyl chain length of alcohols

    As a result, the solubilities in the alcohols decrease along with increase of the straight chain alkyl length or carbon number of alcohol for all four ILs in 258.15-303.15 K, which is similar to that reported by previous researcher [17]. However, the variation pattern was not all valid, especially in the higher temperature range. Normally, solvent polarity will decrease with the increase of the alkyl straight chain length or carbon number of alcohol, which is not beneficial for IL dissolution. On the other hand, the increasing temperature can prompt the dissolution and the promotion could be superior to the effect of solvent polarity for these ILs when temperature is higher than 303.15 K.

    Table 3 Mole fraction solubility of [C1Bth] [PF6] in alkanols [(solid + liquid) equilibrium]

    Table 4 Mole fraction solubility of [C4Bth] [PF6] in alkanols [(solid + liquid) equilibrium]

    Table 5 Mole fraction solubility of [C5Bth] [PF6] in alkanols[(solid + liquid) equilibrium]

    Table 6 Mole fraction solubility of [C6Bth] [PF6] in alkanols [(solid + liquid) equilibrium]

    Figure 3 Solubility of [C4Bth][PF6] in six alcohols under various temperatures◆ methanol; ■ ethanol; ▲ 1-propanol;2-propanol;1-butanol;○ 2-methyl-1-propanol

    3.4 Effect of the cations of ILs

    The cation of ILs possesses two structural fragments including benzothiazole group area and alkyl chain area. The relationship of their melting points and the length of the straight alkyl chain on cation reflects “S” type tendency, which is similar to that of [C5Bth][PF6] reported by other researchers [18-20]. For ILs, if the volume of cation becomes larger, its structural asymmetry will be strengthened and the degree of close packing will decrease. As the result, the melting point will decrease. It is possible that when carbon atom number of straight-chain alkyl increases from C1to C4, the space stack effect of both the anions and cations will decrease with the increase of cationic space steric hindrance, and thus the melting points of ILs decline. When carbon chain is C5(N-amyl), the charged ring of thiazole is the hydrophilic region and the carbon chain is the lipophilic end, and the regions with same property will assemble and the degree of close packing will increase. Thus, the melting point of [C5Bth][PF6] rises. When carbon chain became C6(N-hexyl), volume of cationic increases, which leads to decrease of symmetry of the crystal structure. Therefore, the melting point of [C6Bth][PF6] drops.

    Actually, solubility is comprehensive result of interactions between solute and solvent. Besides the effect of solvent and temperature as external cause, the structure of IL (including anion and cation) is the important internal cause, which could determine its solubility behaviors. In this case, the benzothiazolium cations of the four ILs are of different alkyls. The alkyl chain length or volume of the ILs should increase following the order of CH3, C4H9(N-butyl) and C6H13(N-hexyl). The variation tendency of solubilities of ILs seems roughly accord with that of the alkyl chain length of cation in the range of 313.15-333.15 K except [C5Bth][PF6].

    3.5 Correlation of the experimental data

    A variety of correlation methods of solubilities has been developed and discussed [21-25]. Supposing that the enthalpy of solution varies with temperature linearly, the experimental solubility data could be correlated as a function of temperature with one of the two non-ideal solution models. Among them the modified Apelblat equation [26] is described as

    where χ is the mole fraction solubility of ILs in alcohols, T is solution temperature, Tmis fusion point of IL, and A, B, C, λ and h are correlation parameters. The absolute deviations (AD) between the experimental solubility (χi) and the calculated solubility of IL i is calculated by Eq. (4).

    Moreover, the root-mean-square deviation (RMSD) is defined as Eq. (5),

    where N is the number of experimental points. The average relative deviation is defined as

    where ARD is the average relative deviation between the calculated value on different patterns and the experimental solubility, i is the ith experimental point, and n is sum total of experimental points.

    ADaand ADλfor each measurement are shown in Tables 3-6. In order to directly compare the correlations, the solubility correlation is primarily performed in the same temperature period. The values of parameters, square of correlation coefficients (R2), the average absolute deviations (AAD) and the average relative deviation (ARD) together with RMSD in 253.15-333.15 K are all listed in Tables 7-8.

    From the result, total average RMSD, AAD and R2are 0.001077, 0.000816, and 0.9989 for the modified Apelblat equation and 0.008515, 0.006656, and 0.9922 for the λh equation, respectively. Parameters of Apelblat equation A, B, C together with R2and ARD are listed in Table 7. Parameters of λh equation λ, h with R2and ARD are shown in Table 8.

    On the whole, average value of ARD of correlation of 18 binary systems is 28.6%. The calculated values by Apelblat equation and λh equation are not in good accordance with the experimental solubility data. But correlation effect of the modified Apelblat equation is better than that of λh equation for most systems.

    Table 7 Parameters of Apelblat equation for four ILs in alcohols in 253.15-333.15 K

    Table 8 Parameters of λh equation for four ILs in alcohols in 253.15-333.15 K

    Optimization method was employed for the improvement of previous result. First, the modified Apelblat equation with the smaller ARD was selected for correlation, and then, a piecewise correlation method was employed according to the different characteristics of graphic of solubility along with temperature varying in low and high temperature range. That means the temperature range was divided into two sections in which related solubility data were correlated. Particular temperature range for the system was determined when ARD of two sections was minimal. As shown in Table 9, average value of ARD of the piecewise correlation of18 binary systems is 7.28%, decreasing 74.4% than that of the non-piecewise correlation.

    Table 9 ARD and parameters of Apelblat equation for solubility of four ILs in alcohols by the piecewise correlation

    Table 9 (Continued)

    4 CONCLUSIONS

    The solubilities of four benzothiazolium ILs in 6 kinds of lower alcohols were measured in different temperatures under atmospheric pressure. The “temperature-sensitivity” of solubility of benzothiazolium IL could be of great significance to their easy recovery and reuse. Main variation tendency and influence factors for the solubility of these ILs have been investigated. The experimental solubility data could be correlated by the modified Apelblat equation in the piecewise correlation with acceptable accuracy. The results are expected to be helpful for related process development and design of new ILs.

    NOMENCLATURE

    A, B, C parameters of modified Apelblat equation

    ADathe deviation between the calculated value by Eq. (2) and the measured value of solubility

    ADλthe deviation between the calculated value by Eq. (3) and the measured value of solubility

    h parameters of λh equation

    M1, M2the molar mass of solute and solvent, respectively

    N totality of experimental points

    RMSD root-mean-square deviation

    Tmfusion point of ILs, K

    T temperature, K

    U uncertainty

    χiexperimental solubility of IL at ith temperature point cal i

    χ the solubility of IL at ith temperature point by calculated based on the Eqs. (2) or Eq. (3)

    λ parameters of λh equation

    Superscript

    cal calculative

    Subscripts

    a represent Eq. (2)

    i ith temperature point

    m abbreviation of fusion point

    λ represent Eq. (3)

    1 represent solute

    2 represent solvent

    REFERENCES

    1 Young, G., Nippen, F., Titterbrandt, S., Cooney, M.J., “Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules”, J. Sep. Purif. Technol., 72 (1), 118-121 (2010).

    2 Huddleston, J.G., Visse, A.E., Reiehert, W.R., Willauer, H.D., Broker, G.A., Rogers, R.D., “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation”, J. Green Chem., 3 (4), 156-164 (2001).

    3 Hu, Y.S., Wang, Z.X., Huang, X.J., Chen, L.Q., “Physical and electrochemical properties of new binary room-temperature molten salt electrolyte based on LiBETI and acetamide”, J. Solid State Ionics., 175 (14), 277-280 (2004).

    4 Sun, J., Forsyth, M., Macfarlane, D.R., “Room-temperature molten salts based on the quaternary ammonium ion”, J. Phys. Chem. B., 102 (44), 8858-8864 (1998).

    5 Plechkova, N.V., Seddon, K. R., “Applications of ionic liquids in the chemical industry”, J. Chem. Soc. Rev., 2008 (37), 123-150 (2008).

    6 Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Shikotra, P.,“Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids”, J. Inorg. Chem., 44 (19), 6497-6499 (2005).

    7 De Los Ríos, A.P., Heández-Ferández, F.J., Lozano, L.J., Sánchez, S., Moreno, J.I., Godínez, C., “Removal of metal ions from aqueous solutions by extraction with ionic liquids”, J. Chem. Eng. Data., 55 (2), 605-608 (2010).

    8 Parvulescu, V.I., Hardacre, C., “Catalysis in ionic liquids”, J. Chem. Rev., 107 (6), 2615-2665 (2007).

    9 Abedin, S.Z.E., Endres, F., “Electrodeposition of metals and semiconductors in air and water stable ionic liquids”, J. Chem. Phys. Chem., 7 (1), 58-61 (2006).

    10 Cole, A.C., Jensen, J.L., Ntai, I., Tran, K.L., Weaver, K.T., Forbes, D.C., Davis, J.H., “Novel br?nsted acidic ionic liquids and their use as dual solvent catalysts”, J. Am. Chem. Soc., 124 (21), 5962-5963 (2002).

    11 Leng, Y., Wang, J., Zhu, D., Ren, X.Q., Ge, H.Q., Shen, L., “Heteropolyanion-based ionic liquids: reaction induced self separation catalysts for esterification”, Angew. Chem., 121 (1), 174-177 (2008).

    12 Zhang, W.H., Leng, Y., Zhu, D.R., Wu, Y.J., Wang, J., “Phosphotungstic acid salt of triphenyl (3-sulfopropyl)phosphonium: an efficient and reusable solid catalyst for esterification”, Catal. Commun., 11 (3), 151-154 (2009).

    13 Zhou, X.S., Liu, J.B., Luo, W.F., Zhang, Y.W., Song, H., “Novel br?nsted-acidic ionic liquids based on benzothiazolium cations as catalysts for esterification reactions”, J. Serb Chem. Soc., 76 (12), 1607-1615 (2011).

    14 Li, X., Gu, Y.Q., Yang, Y., Song, H., Yao, S., “Novel br?nsted-acidic ionic liquids based on benzothiazolium cations as catalysts for the acetalization reactions”, J. Adv. Mater. Res., 396-398, 1969-1974 (2012).

    15 Peng, Q., Zhang, Y.W., Wang, X.M., Wang, Z.D., Yao, S., Song, H.,“Synthesis of novel ionic liquid with benzothiazolium and research on their physical chemical property”, Chin. J. Synth. Chem., 20 (1), 28-31( 2012).

    16 Long, B.W., Li, J., Zhang, R.R., Li, W., “Solubility of benzoic acid in acetone, 2-propanol, acetic acid and cyclohexane: Experimental measurement and thermodynamic modeling”, Fluid Phase Equilib., 297 (1), 113-120 (2010).

    17 Chokradjaroen, C., Li, X.L., Tamura, K., “Mutual solubility measurements and correlations of imidazolium-based ionic liquid mixtures with alcohols”, J. Chem. Thermodyn., 46, 72-79 (2012).

    18 Jiang, D., Wang, Y.Y., Liu J., Dai, L.L., “Structure-activity relationship and essential rule of the structure and melting point of imidazolium ionic liquids”, Chem., 70 (5), 371-375 (2007).

    19 Tian, G.C., Li, Y.D., Jiao, Z.L., “On the structure and properties of 1-alkyl-3-methylimidazolium hexafluorophosphates [Cnmim] PF6ionic liquids”, Nonferr. Met. Sci. Eng., 1 (2), 3-9 (2010).

    20 Gao, Y., Zhao, J.Y., “Discuss on the relationship between melting points of symmetric ionic liquids and molecular structure”, J. Jiangsu Inst. Edu. (Nat. Sci.), 26 (3), 9-12 (2009).

    21 Shi, X.H., Li, M., Zhou, C.R., “Measurement and correlation for solubility of 2-chloro-5-chloromethyl pyridine in different solvents”, Chin. J. Chem. Eng., 18 (4), 654-658 (2010).

    22 Li, Y., Lu, X.Y., “Solubilities of nizatidine in methanol + water, ethanol + water and i-propanol + water from 273.15 to 303.15 K*”, Chin. J. Chem. Eng., 20 (5), 937-941(2012).

    23 Liu, Q.S., Yao, S., Zhu, T.F., Zeng, H., Song, H., “Vapor pressure measurement and Correlation of 2-methyl-butanol acetate containing calcium chloride”, Chin. J. Chem. Eng., 19 (1), 97-100 (2011).

    24 Cai, S.F., Wang, L.S., Yan, G.Q., Li, Y., “Solubilities of 1-methyl-3-(3-sulfopropyl)-imidazolium hydrogen sulfate in selected solvents”, Chin. J. Chem. Eng., 18 (6), 1008-1012 (2010).

    25 Lu, Y.C., Lin, Q., Luo, G.S., Dai, Q.Y., “Solubility of emodin in alcohols”, Chin. J. Chem. Eng., 17 (2), 251-253 (2009).

    26 Apelblat, A., Manzurola, E., “Solubility of o-acetylsalicylic, 4-aminosalicylic, 3, 5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T=(278 to 348) K”, J. Chem. Thermodyn., 31 (1), 85-91 (1999).

    27 Buchowskl, H., Kslazcak, A., Pletrzyk, S., Pletrzyk, S., “Solvent activity along a saturation line and solubility of hydrogen-bonding Solids”, J. Phys. Chem., 84 (9), 975-979 (1980).

    2013-08-06, accepted 2013-12-22.

    * Supported by the National Natural Science Foundation of China (81102344), the Scientific Research Fund of Sichuan Province Education Department (12ZA080), Mianyang Normal University for Excellent Plan Fund (QD2012A06) and the Project of Mianyang Science and Technology Bureau (10Y003-8).

    ** To whom correspondence should be addressed. E-mail: cusack@scu.edu.cn

    国产精品女同一区二区软件| a 毛片基地| 国产爽快片一区二区三区| 精品亚洲乱码少妇综合久久| 国产精品.久久久| 一区二区三区精品91| 一本—道久久a久久精品蜜桃钙片| 视频中文字幕在线观看| 国产日韩欧美视频二区| 亚洲精品一二三| 九九在线视频观看精品| 日韩制服骚丝袜av| 嫩草影院新地址| 大香蕉97超碰在线| 一级av片app| 午夜影院在线不卡| 国产有黄有色有爽视频| 日韩精品有码人妻一区| 狂野欧美激情性xxxx在线观看| 亚洲综合精品二区| 97在线人人人人妻| 不卡视频在线观看欧美| 亚洲av国产av综合av卡| 美女国产视频在线观看| 国产高清有码在线观看视频| 在线免费观看不下载黄p国产| 国产无遮挡羞羞视频在线观看| 亚洲图色成人| 黄色一级大片看看| 久久99蜜桃精品久久| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 插阴视频在线观看视频| 国产欧美日韩一区二区三区在线 | 乱人伦中国视频| 国产欧美日韩精品一区二区| kizo精华| 亚洲欧美一区二区三区黑人 | 嫩草影院新地址| 亚洲精品第二区| 伊人久久国产一区二区| av有码第一页| 极品人妻少妇av视频| 亚洲情色 制服丝袜| 日本欧美国产在线视频| 十八禁高潮呻吟视频 | 免费大片18禁| 乱系列少妇在线播放| 高清在线视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 日本爱情动作片www.在线观看| 久久久久精品性色| 国产免费又黄又爽又色| 亚洲国产精品一区二区三区在线| www.色视频.com| 色视频在线一区二区三区| 51国产日韩欧美| 免费黄网站久久成人精品| 久久av网站| 久久热精品热| 国产亚洲91精品色在线| 亚洲精品国产av成人精品| 亚洲国产成人一精品久久久| 免费av不卡在线播放| 日本色播在线视频| 中文字幕av电影在线播放| 久久精品夜色国产| 男女无遮挡免费网站观看| 全区人妻精品视频| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 国产亚洲av片在线观看秒播厂| 欧美日韩综合久久久久久| 亚洲怡红院男人天堂| 毛片一级片免费看久久久久| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 在线观看三级黄色| 色婷婷久久久亚洲欧美| 99热这里只有是精品50| 日本黄大片高清| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 国产精品国产三级专区第一集| 99九九线精品视频在线观看视频| 欧美丝袜亚洲另类| 亚洲中文av在线| 亚洲美女视频黄频| 日本欧美国产在线视频| 男女无遮挡免费网站观看| 天天躁夜夜躁狠狠久久av| 男女国产视频网站| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| 成人亚洲欧美一区二区av| 国产一区二区三区av在线| 欧美日韩视频精品一区| 午夜精品国产一区二区电影| 国产精品一区www在线观看| 日本欧美国产在线视频| 免费看av在线观看网站| 国产色爽女视频免费观看| 国产又色又爽无遮挡免| 久久久久久久久久人人人人人人| 日韩av在线免费看完整版不卡| 亚洲欧洲国产日韩| 久久久精品94久久精品| 在线观看免费高清a一片| 精品一区二区三区视频在线| 亚洲av综合色区一区| 精品亚洲成a人片在线观看| 亚洲国产精品999| 国产男女超爽视频在线观看| 欧美精品人与动牲交sv欧美| 各种免费的搞黄视频| 99久久综合免费| 亚洲av成人精品一区久久| 边亲边吃奶的免费视频| 久久久精品94久久精品| 国产深夜福利视频在线观看| 国产免费一级a男人的天堂| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 黑丝袜美女国产一区| 免费不卡的大黄色大毛片视频在线观看| 在现免费观看毛片| 日韩一区二区视频免费看| 亚洲av国产av综合av卡| 亚洲高清免费不卡视频| 久热这里只有精品99| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 欧美成人午夜免费资源| 边亲边吃奶的免费视频| 亚洲欧美日韩卡通动漫| av专区在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲色图综合在线观看| 亚洲三级黄色毛片| 日本色播在线视频| 在现免费观看毛片| www.av在线官网国产| 美女国产视频在线观看| 在线 av 中文字幕| 日本黄色日本黄色录像| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 波野结衣二区三区在线| 男女国产视频网站| 涩涩av久久男人的天堂| 蜜臀久久99精品久久宅男| av国产精品久久久久影院| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 视频中文字幕在线观看| 久久国产精品男人的天堂亚洲 | 少妇被粗大的猛进出69影院 | 黄色一级大片看看| 97超视频在线观看视频| 99热这里只有是精品在线观看| 少妇高潮的动态图| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| av天堂中文字幕网| 久久影院123| 国产91av在线免费观看| 伊人亚洲综合成人网| 欧美性感艳星| av在线app专区| 伊人亚洲综合成人网| 日本av手机在线免费观看| 97在线人人人人妻| 国产精品无大码| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 国产精品成人在线| 热re99久久国产66热| 精品一品国产午夜福利视频| 国产熟女午夜一区二区三区 | 又黄又爽又刺激的免费视频.| 国产永久视频网站| 亚洲高清免费不卡视频| 色5月婷婷丁香| av免费在线看不卡| 国产精品伦人一区二区| 永久网站在线| 亚洲欧美日韩卡通动漫| 久久久久久久亚洲中文字幕| 国产免费一级a男人的天堂| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 欧美激情极品国产一区二区三区 | 久久精品国产自在天天线| 欧美 亚洲 国产 日韩一| 亚洲精华国产精华液的使用体验| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 久久99一区二区三区| 嫩草影院新地址| 国产成人精品一,二区| 亚洲欧美精品专区久久| 中文乱码字字幕精品一区二区三区| 欧美+日韩+精品| 久久久久久伊人网av| 少妇 在线观看| www.av在线官网国产| 国产成人精品婷婷| videos熟女内射| 这个男人来自地球电影免费观看 | videos熟女内射| freevideosex欧美| 女性被躁到高潮视频| 国产探花极品一区二区| 激情五月婷婷亚洲| videos熟女内射| 欧美精品一区二区免费开放| 国产精品熟女久久久久浪| 亚洲在久久综合| 各种免费的搞黄视频| 热re99久久精品国产66热6| 日本免费在线观看一区| 久久97久久精品| 精品视频人人做人人爽| 我的女老师完整版在线观看| 特大巨黑吊av在线直播| 这个男人来自地球电影免费观看 | 亚洲欧洲国产日韩| 国产精品一区www在线观看| 久久久久久久久久久免费av| 黄色怎么调成土黄色| 黄色欧美视频在线观看| 少妇人妻久久综合中文| 亚洲av不卡在线观看| 国产成人精品无人区| 久久6这里有精品| av专区在线播放| 一区在线观看完整版| 国产精品熟女久久久久浪| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 如日韩欧美国产精品一区二区三区 | 成年美女黄网站色视频大全免费 | 欧美xxxx性猛交bbbb| 亚洲经典国产精华液单| 精品少妇久久久久久888优播| 久久国产精品男人的天堂亚洲 | 国产精品偷伦视频观看了| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| 多毛熟女@视频| 又爽又黄a免费视频| 亚洲精品,欧美精品| 日韩亚洲欧美综合| 黑丝袜美女国产一区| 综合色丁香网| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 成人二区视频| 只有这里有精品99| 曰老女人黄片| 永久网站在线| 一区二区三区乱码不卡18| 国产探花极品一区二区| 一级毛片电影观看| 国产色婷婷99| 色吧在线观看| 久久精品国产亚洲av天美| 国产极品天堂在线| 欧美xxxx性猛交bbbb| 欧美日韩一区二区视频在线观看视频在线| 国产成人免费无遮挡视频| 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 男人舔奶头视频| 国产精品久久久久成人av| 伦理电影大哥的女人| 国产日韩一区二区三区精品不卡 | 亚洲久久久国产精品| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 最新中文字幕久久久久| 亚洲国产欧美日韩在线播放 | 国产欧美日韩一区二区三区在线 | 日本av手机在线免费观看| 久久久精品免费免费高清| 久久久久久久久大av| 美女视频免费永久观看网站| 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区| 黄色日韩在线| 久久 成人 亚洲| 欧美高清成人免费视频www| 97超视频在线观看视频| 久久久国产欧美日韩av| 最近最新中文字幕免费大全7| 婷婷色综合大香蕉| 久久精品夜色国产| 天天操日日干夜夜撸| 国产在视频线精品| 最近中文字幕2019免费版| 国产高清有码在线观看视频| 国产一区二区三区综合在线观看 | 777米奇影视久久| 国产一级毛片在线| 深夜a级毛片| 狂野欧美白嫩少妇大欣赏| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| h日本视频在线播放| 天堂8中文在线网| av视频免费观看在线观看| 在线观看三级黄色| 精品久久久噜噜| 日日撸夜夜添| 丝袜喷水一区| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 自拍欧美九色日韩亚洲蝌蚪91 | 黑人猛操日本美女一级片| 少妇精品久久久久久久| 女人精品久久久久毛片| 国产日韩欧美亚洲二区| 久久久久久伊人网av| 自线自在国产av| 国产 一区精品| 国产精品一二三区在线看| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 国产av码专区亚洲av| 亚洲高清免费不卡视频| 久久国产精品大桥未久av | 亚洲av日韩在线播放| 一本久久精品| 99re6热这里在线精品视频| 久久久久久伊人网av| 欧美成人午夜免费资源| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 精品人妻熟女毛片av久久网站| 天堂8中文在线网| 午夜福利,免费看| 成人漫画全彩无遮挡| kizo精华| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频 | av专区在线播放| 国产精品免费大片| 国产在线男女| 黑人猛操日本美女一级片| a级一级毛片免费在线观看| 精品久久久久久久久av| 久久毛片免费看一区二区三区| 大码成人一级视频| 国产色婷婷99| 欧美另类一区| 国产毛片在线视频| 嫩草影院新地址| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 女人久久www免费人成看片| 久久97久久精品| 国产成人精品福利久久| 久久午夜福利片| 亚洲成色77777| 国产精品久久久久久av不卡| .国产精品久久| 午夜91福利影院| 欧美日韩综合久久久久久| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 春色校园在线视频观看| 日韩欧美 国产精品| 男人爽女人下面视频在线观看| 欧美精品一区二区大全| 在线免费观看不下载黄p国产| 中文天堂在线官网| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 久久精品国产亚洲网站| 亚洲天堂av无毛| 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 老熟女久久久| 五月玫瑰六月丁香| 男女无遮挡免费网站观看| 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 精品少妇久久久久久888优播| 国产一区二区三区综合在线观看 | 久久综合国产亚洲精品| 免费大片黄手机在线观看| 免费观看无遮挡的男女| 欧美日韩综合久久久久久| 国语对白做爰xxxⅹ性视频网站| 你懂的网址亚洲精品在线观看| av不卡在线播放| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 欧美丝袜亚洲另类| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 有码 亚洲区| 国产午夜精品一二区理论片| 黄色怎么调成土黄色| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 九草在线视频观看| 精品卡一卡二卡四卡免费| 夫妻性生交免费视频一级片| 春色校园在线视频观看| 中文天堂在线官网| 久久99热6这里只有精品| 亚洲精品,欧美精品| 丝袜在线中文字幕| 99久久精品热视频| 黑人巨大精品欧美一区二区蜜桃 | h视频一区二区三区| 精品久久久久久电影网| 午夜福利,免费看| 欧美日韩一区二区视频在线观看视频在线| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 成人18禁高潮啪啪吃奶动态图 | 欧美成人午夜免费资源| 最黄视频免费看| 色视频www国产| 男人舔奶头视频| 亚洲欧美一区二区三区国产| 日本黄大片高清| 国模一区二区三区四区视频| 免费看光身美女| 噜噜噜噜噜久久久久久91| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 久热久热在线精品观看| 亚洲精品aⅴ在线观看| 毛片一级片免费看久久久久| 国产精品不卡视频一区二区| 国产男人的电影天堂91| 久久久久久久久久久丰满| 国产精品无大码| 国产美女午夜福利| 国产有黄有色有爽视频| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 777米奇影视久久| 91成人精品电影| 国产极品粉嫩免费观看在线 | 99久久精品国产国产毛片| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| 久久狼人影院| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 婷婷色麻豆天堂久久| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 亚洲国产最新在线播放| 国产成人精品福利久久| 男男h啪啪无遮挡| 精品酒店卫生间| 黄色毛片三级朝国网站 | 精品久久久久久电影网| 国产深夜福利视频在线观看| 亚洲天堂av无毛| 久久99热6这里只有精品| 伊人亚洲综合成人网| 精品一区二区三区视频在线| 99精国产麻豆久久婷婷| 热re99久久国产66热| 伦理电影大哥的女人| 啦啦啦视频在线资源免费观看| 国产探花极品一区二区| 国产综合精华液| 国产成人一区二区在线| 青春草亚洲视频在线观看| 午夜视频国产福利| 欧美另类一区| 午夜视频国产福利| 精品一区在线观看国产| 日韩欧美一区视频在线观看 | 美女中出高潮动态图| 五月玫瑰六月丁香| 成人美女网站在线观看视频| 国产男人的电影天堂91| 亚洲久久久国产精品| 日韩免费高清中文字幕av| 亚洲精品日韩在线中文字幕| av线在线观看网站| 精品久久国产蜜桃| 国产精品.久久久| 麻豆成人午夜福利视频| 日本午夜av视频| 午夜影院在线不卡| 色视频在线一区二区三区| 你懂的网址亚洲精品在线观看| 一级黄片播放器| 精品国产一区二区久久| 国产午夜精品一二区理论片| 好男人视频免费观看在线| 男女边摸边吃奶| 丝瓜视频免费看黄片| 亚洲欧洲日产国产| 五月开心婷婷网| 亚洲国产色片| 国产极品粉嫩免费观看在线 | 日本黄色日本黄色录像| 色婷婷久久久亚洲欧美| 3wmmmm亚洲av在线观看| 欧美97在线视频| 久久精品久久精品一区二区三区| 在线看a的网站| 亚洲国产欧美日韩在线播放 | 伊人久久精品亚洲午夜| 五月天丁香电影| 五月伊人婷婷丁香| 日韩电影二区| 日日爽夜夜爽网站| av网站免费在线观看视频| 纯流量卡能插随身wifi吗| 高清av免费在线| 国产精品一区二区三区四区免费观看| 国产精品熟女久久久久浪| 成人黄色视频免费在线看| 精品久久久噜噜| 黄色怎么调成土黄色| 午夜福利在线观看免费完整高清在| 婷婷色av中文字幕| 欧美精品国产亚洲| 国产精品99久久久久久久久| 99九九在线精品视频 | 免费大片黄手机在线观看| 国产毛片在线视频| 午夜激情久久久久久久| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 一级av片app| 久久久午夜欧美精品| 男女国产视频网站| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 午夜视频国产福利| 免费av中文字幕在线| 中文资源天堂在线| 丰满少妇做爰视频| 国产黄片美女视频| 国产成人aa在线观看| 少妇丰满av| 在线亚洲精品国产二区图片欧美 | 日日摸夜夜添夜夜爱| 一级毛片我不卡| 久久久国产欧美日韩av| 久久精品国产亚洲av涩爱| 亚洲欧美精品专区久久| 下体分泌物呈黄色| 新久久久久国产一级毛片| 在线天堂最新版资源| 男人舔奶头视频| 简卡轻食公司| 插逼视频在线观看| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 欧美精品亚洲一区二区| 国产精品无大码| 亚洲国产成人一精品久久久| 精品一区二区免费观看| 中文字幕亚洲精品专区| 亚洲国产毛片av蜜桃av| 久久精品国产自在天天线| 另类精品久久| 亚洲激情五月婷婷啪啪| 卡戴珊不雅视频在线播放| 少妇精品久久久久久久| 免费播放大片免费观看视频在线观看| 在现免费观看毛片| 不卡视频在线观看欧美| 日日撸夜夜添| 久久久久久人妻| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 亚洲三级黄色毛片| 免费观看a级毛片全部| 建设人人有责人人尽责人人享有的| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| 午夜福利视频精品| 黄色日韩在线| 丰满少妇做爰视频| 国产成人freesex在线| 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| 国产视频首页在线观看| 日日摸夜夜添夜夜添av毛片| 国产高清国产精品国产三级| 午夜免费男女啪啪视频观看| 一级片'在线观看视频| 一级毛片aaaaaa免费看小| 免费观看的影片在线观看|