• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    2014-07-18 11:56:14康世民,常杰,范娟
    關(guān)鍵詞:世民

    One Step Preparation of Sulfonated Solid Catalyst and Its Effect in Esterification Reaction*

    KANG Shimin (康世民), CHANG Jie (常杰)**and FAN Juan (范娟)
    The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

    A carbon-based sulfonated catalyst was prepared by direct sulfonation and carbonization (in moderate conditions: 200 °C, 12 h) of red liquor solids, a by-product of paper-making process. The prepared sulfonated catalyst (SC) had aromatic structure, composed of carbon enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. The SO3H, COOH, OH groups amounted to 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively. The fresh SC showed much higher catalytic activity than that of the traditional solid acid catalysts (strong-acid 732 cation exchange resin, hydrogen type zeolite socony mobile-five (HZSM-5), sulfated zirconia) in esterification of oleic acid. SC was deactivated during the reactions, through the mechanisms of leaching of sulfonated species and formation of sulfonate esters. Two regeneration methods were developed, and the catalytic activity can be mostly regenerated by regeneration Method 1 and be fully regenerated by regeneration Method 2, respectively.

    red liquor solids, sulfonated solid catalyst, carbonization, esterification

    1 INTRODUCTION

    Carbon-based sulfonated catalyst is becoming a research hotspot recently, which is widely used in biodiesel production [1-4], hydrolysis of cellulose [5], and some other organic synthesis [6, 7]. There are two ways for the synthesis of carbon-based sulfonated catalyst: (1) hydroxyethylsulfonic acid [6], p-toluenesulfonic acid [7] etc. were adapted as the sulfonating agents in hydrothermal conditions, using furaldehyde, glucose etc. as carbon sources; (2) sulfonation of carbon-based precursor with concentrated sulfuric acid (H2SO4), while the precursor was often obtained by carbonization of biomass at high temperatures [3, 4, 8]. However, these sulfonation agents are usually expensive, while the carbonization of biomass for precursor preparation resulted in additional cost. Besides, a few studies on directly incomplete carbonization of low molecular mass compounds (e.g. naphthalene, C10H8) by concentrated H2SO4were reported, but it was found that the sulfonated species on these catalysts were totally lost in the reuse [9]. One possible reason of this instability was due to the low molecular mass of the raw materials, the products of which may be partly dissolved in organic solvents even after carbonization.

    Red liquor solid (RLS) is a papermaking byproduct, which is often considered as a low value added material, and the main organic constituent in red liquor is lignosulfonate, a phenolic macromolecular polymer. Besides, biodiesel has received a great deal of attention as an alternative candidate for conventional fossil fuel, and catalytic esterification synthesis of biodiesel by solid acid (e.g. ion exchange resin, molecular sieve, sulfated zirconia) was widely studied [2, 3, 8, 10-14]. Oleic acid is a free fatty acid, and catalytic esterification of oleic acid can be a model process for biodiesel production. The object of this work was to synthesize sulfonated catalyst from macromolecule RLS by one step: the RLS was directly carbonized and sulfonated by concentrated H2SO4, without a carbon-based precursor preparation process at high temperatures. Catalytic effect of the RLS derived sulfonated catalyst for esterification of oleic acid was tested.

    2 EXPERIMENTAL

    2.1 Materials

    The RLS was dried powders of the red liquor, with magnesium lignosulfonate as the main organic constituent. Methyl oleate (standard reagent, purity of 99%) and oleic acid (purity of 85%) were obtained from Aladdin-Reagent Co., Ltd., Shanghai, China. Concentrated H2SO4(95%-98%, by mass) was obtained from Kaixin Chemical Reagent Co., Ltd. from the market. HZSM-5 molecular sieve was obtained from Tianjin Kaimeisite Technology Co. Strong-acid 732 resin was obtained from Shanghai Lingfeng Chemical Reagent Co., which was a strong acidic styrene type cation exchange resin with a diameter of 0.4-0.6 mm. Sulfated zirconia was synthesized according to Yee et al. [12].

    2.2 Catalyst preparation

    Concentrated H2SO4(100 ml) and 5 g of RLSwere mixed into a 250 ml round-bottomed flask into an oil bath with temperature of 200 °C. The sulfonating reaction was continued for 12 h with a certain mixing speed. After the reaction, the concentrated H2SO4solution was diluted and filtered. The H2SO4recovered after filtration of the solid can be reused for repeated sulfonation. Black precipitate was collected and washed with hot deionized water (~80 °C) until impurities such as sulfate ions were no longer detected in the washing water. The black precipitate was then dried at 75 °C to form the sulfonated catalyst (SC) (about 1.4 g).

    2.3 Characterization

    The obtained sulfonated carbon catalyst was characterized by X-ray diffraction (XRD) (D8 Advance, Bruker), thermogravimetry (TG) and derivative thermogravimetry (DTG) (TGAQ 5000, TA Instruments Co., USA), Fourier transform infrared spectroscopy (FTIR) (Nexus 670, Nicolet), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) (S-3700N, Hitachi, Japan), X-ray photoelectron spectroscopy (XPS) (Kratos AXis Ultra, Shimadzu, Japan), Brunauer-Emmett-Teller (BET) surface area (ASAP 2020 V3.03 H, Micromeritics), and elemental analyzer (elementar Vario EL III, Germany).

    The total SO3H + COOH and SO3H + COOH + OH contents were estimated from the exchange of Na+in aqueous NaCl and NaOH solutions, respectively. The densities of SO3H groups were estimated based on the sulfur content determined from sample compositions obtained by elemental analysis and XPS analysis [5].

    2.4 Catalytic activity test

    Methyl oleate production was performed in a stirred 25 ml round-bottomed flask at 65 °C for 4 h. 0.05 g of solid acid catalyst was added to 1 g of oleic acid and 8 ml of methanol. The yield of methyl oleate was analyzed by the external method through gas chromatography [Shimadzu QP 2010 Plus equipped, with Rxi-5ms column (30 m×0.25 mm×0.25 μm)]. The temperature of the injector was set at 270 °C, the oven temperature was started at 200 °C for 2 min, heated at a rate of 10 °C·min?1to 275 °C, and then held for 5 min. A standard curve was obtained by correlating the peak area with the concentration of a series of methyl oleate solutions, and then the content of methyl oleate after reaction was calculated according to the peak area and the standard curve.

    2.5 Catalyst regeneration

    Regeneration Method 1: the 3rd time reused catalyst was dipped into 10% H2SO4solution for about 10 h (including sonic oscillation for 1 h) and washed with pure water. Subsequently, the catalyst was dried and resupplied for the next experimental run. The regenerated catalyst was labeled as regenerated SC-1.

    Regeneration Method 2: the 3rd time reused catalyst was regenerated according to Refs. [15, 16]. Briefly, it was dipped into 150 °C concentrated H2SO4for 12 h, and then it was washed and, dried, and resupplied for the next experimental run. This regenerated catalyst was labeled as regenerated SC-2.

    3 RESULTS AND DISCUSSION

    3.1 Characterization of catalyst

    The SC exists as solid particles, and the surface topography is shown by SEM spectra image in Fig. 1. The XRD pattern (Fig. 2) shows a broad diffraction peak in a 2θ range of 20°-30°, and the wide-angle pattern matches well with that previously report for non-graphitic carbon [5]. This indicates that the RLS can not be completely graphitized by concentrated H2SO4carbonization at such a low temperature (200 °C). FT-IR spectrum (Fig. 3) shows that the SC owns the aromatic structure (1610, 1420 cm?1), OH group (3410 cm?1), SO3H group (1170, 1040 cm?1) and C O group (1713 cm?1). Compared with the FT-IR spectrum of SC and RLS, the SO3H group on the SC can be derived from

    Figure 1 SEM spectra of SC

    Figure 2 XRD pattern of SC

    Figure 3 FT-IR spectrum of SC and RLS

    both the RLS and concentrated H2SO4, while the C O group is probably produced by concentrated H2SO4oxidation of OH and CH groups. From the TG and derivative thermogravimetry (DTG) curves (Fig. 4), the sample mass decreased with increasing temperature, and the mass loss before 200 °C is moderate, which maybe caused by the loss of water adsorbed on the SC. As shown in Fig. 5, the results of XPS analysis show the sulphur (S) exists in the forms of SO3H groups and other groups, and the S 2p region in XPS spectrum indicates that about 68% S exists in the form of SO3H group (168 eV). There are two binding energy peaks for the carbon: the peak at 285 eV corresponds to the elemental carbon, which is the substrate of the catalyst; while the small peak at 289 eV corresponds to COOH groups (Fig. 5). Elemental analysis (Table 1), ash test (Table 1), XPS analysis, and cation-exchange experiments (Table 2) reveal that the sample composition is (CH0.68O0.65S0.026)An(A is ash, with a mass content of 0.74%), and the amounts of SO3H, COOH, and phenolic OH groups bonded to the carbon skeleton are 0.74 mmol·g?1, 0.78 mmol·g?1, 2.18 mmol·g?1, respectively.

    Figure 4 TG and DTG curves of SC

    The element content on and near the surface of fresh SC was detected by EDS analysis (Table 3). Compared with the elemental analysis data in Table 1,the results show that the S, O contents on and near the surface are higher than the contents on the whole fresh SC, while the C content on and near the surface is lower than that on the whole fresh SC. These results indicate that the fresh SC is made up of C enriched inner core, and oxygen-containing (SO3H, COOH, OH) groups enriched surface. According to the above discussion, a schematic structure of SC is proposed as shown in Fig. 6.

    Table 1 Ash content and elementary analysis by elemental analyzer

    Table 2 Cation-exchange values and specific surface area

    3.2 Catalytic activity

    Figure 5 The XPS spectrum of SC

    Table 3 Surface elementary analysis of SCs (fresh, 3rd time reused, and regenerated) by EDS

    Figure 6 The proposed schematic structure of SC

    The catalytic effects for methyl oleate production are shown in Fig. 7. The yield of the control experiments is lower than 1%, while the yield with fresh SC addition reaches about 85%. And the fresh SC shows much higher yield than that of all the other traditional solid acid catalysts (sulfated zirconia, 732 cation exchange resin, and HZSM-5 molecular sieve). Compared with Table 2 and Fig. 7, there seems no relations between catalytic activity and BET specific surface area, cation-exchange capacity for different catalysts. The possible reasons of the strong SC catalytic activity are discussed: (1) The SC possesses three different

    acidic functional groups (OH, COOH, SO3H), there may be synergic action among the three acidic functional groups though the SO3H group is often considered as the major catalytic active sites, while those traditional solid acid catalysts usually contain single acidic functional groups; (2) there was a large content of OH group (2.18 mmol·L?1) in the SC, which can incorporate both the two polar reactants (methanol and oleic acid) to the catalyst surface, and then acceleratethe esterification reaction.

    Figure 7 The yield of methyl oleate produced with or without catalysts

    Figure 8 The proposed sulfonated catalyst deactivation and regeneration mechanism, and the deactivation mechanism were a revision according to Fraile et al. [17]

    However, the SC catalytic activity decreases with more recycles (Fig. 7), which is coincided with the results of catalysts produced by two procedures (high temperature carbonization, and then sulfonation) reported by Chen and Fang [3], Rao et al. [14], and Fraile et al [17]. The SO3H and the COOH contents decreased from 1.52 to 0.65 mmol·g?1after the 3rd time reuse (Table 2). The reuse experiments caused deactivation should be related to the leaching of SO3H groups from polycyclic aromatic hydrocarbons and/or formation of sulfonate esters according to the former reports [3, 14, 17]. The S content on and near the 3rd time reused SC surface (3.25%, by mass) was 11.6% lower than that on the fresh SC (3.68%, by mass), however, the catalytic activity was almost deactivated after the 3rd time reuse, that indicated the small portion leaching of S was not the main deactivation reasons. These results also indicate that the carbon based sulfonated catalysts produced by direct sulfonation and carbonization from macromolecule polymer may own better stabilities than that from low molecular mass compounds, as compared with the results reported by Hara et al [9].

    In regeneration Method 1, 10% H2SO4was used to regenerate the catalyst from the 3rd time reuse. After the catalyst regeneration with 10% H2SO4, the SO3H and COOH contents are back to 1.05 mmol·g?1(Table 2), and more than half of the catalytic activity is recovered, and the catalytic activity is much better than that of 732 cation exchange resin (Fig. 7). On the other hand, the S content on and near the 3rd time reused SC surface after regeneration is only slightly changed (from 3.25% to 3.28%, by mass Table 3). However, few papers on the carbon based sulfonated catalyst regeneration mechanism in this area were reported in the past works. In this paper, the possible SC deactivation and regeneration mechanism are proposed as shown in Fig. 8. Considering the change of cationexchange values (the SO3H and COOH contents) and S contents among different samples (the fresh SC, the 3rd time reused SC, and regenerated SC-1), the main deactivation of the SC should be the formation of sulfonate esters and carbonic esters, similar to the resultsthat reported by Fraile et al [17]. The probable reason for the regeneration results is that the sulfonate methyl esters and carboxylic acid methyl esters on the SC were hydrolyzed, and the SO3H and COOH groups were regained by 10% H2SO4regeneration, as H2SO4is a well know ester hydrolysis catalyst. This deactivation and regeneration mechanism suggests that the carbon based sulfonated catalysts can be deactivated in alcohol involved reactions, e.g. esterification, and these kinds of deactivated catalysts can be simply regenerated by dilute acid treatment.

    However, the regeneration Method 1 was not effective enough though most of the catalytic activity can be recovered, so regeneration Method 2 was developed. As shown in Fig. 7, compared with the fresh SC, the regenerated SC-2 showed almost the same catalytic activity. Compared with regeneration Method 1, the regeneration Method 2 showed efficient recovery of catalytic activity but had complicated process conditions. Since the SC is produced from a low-cost raw material with a simple procedure, and can be regeneratable, it can probably compete with commercial catalysts (such as strong-acid 732 cation exchange resin) for the esterification of fatty acids into biodiesel. Further improvement on catalytic stability and simplify of regeneration Method 2 are required before this SC can be considered on an industrial scale.

    4 CONCLUSIONS

    A carbon based sulfonated catalyst containing SO3H, COOH, OH groups was produced by one step from low value-added RLS in a moderate condition, with a composition of (CH0.68O0.65S0.026)An. Catalytic activity for methyl oleate production was tested, and the fresh catalyst showed higher catalytic activity in esterification of oleic acid compared to traditional solid acid catalysts. The catalyst deactivated gradually after recycles usage, and the catalytic activity of the reused catalyst can be mostly regained by regeneration Method 1 and fully regained by regeneration Method 2, respectively. The deactivation and regeneration mechanisms of catalyst were proposed. Considering the somewhat low leaking degree of the S species from RLS derived sulfonated catalyst, further work on catalyst produced by direct sulfonation and carbonization of some other macromolecular polymers seems promising.

    REFERENCES

    1 Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K., Hara, M., “Biodiesel made with sugar catalyst”, Nature, 480, 178 (2005).

    2 Lou, W.Y., Zong, M.H., Duan, Z.Q., “Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts”, Bioresour. Technol., 99 (18), 8752-8758 (2008).

    3 Chen, G., Fang, B., “Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production”, Bioresour. Technol., 102 (3), 2635-2640 (2011).

    4 Shu, Q., Gao, J., Liao, Y., Wang, J., “Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst”, Chin. J. Chem. Eng., 19 (1), 163-168 (2011).

    5 Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M., “Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups”, J. Am. Chem. Soc., 130 (38), 12787-12793 (2008).

    6 Liang, X., Zeng, M., Qi, C., “One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization”, Carbon, 48 (6), 1844-1848 (2010).

    7 Zhang, W., Tao, H., Zhang, B., Ren, J., Lu, G., Wang, Y., “One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation”, Carbon, 49 (6), 1811-1820 (2011).

    8 Shu, Q., Nawaz, Z., Liao, Y., Zhang, Q., Wang, D., Wang, J., “Synthesis of biodiesel from a model waste oil feedstock using a carbon-based solid acid catalyst: Reaction and separation”, Bioresour. Technol., 101 (3), 5374-5384 (2010).

    9 Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N., Hayashi, S., Domen, K., “A carbon material as a strong protonic acid”, Angew Chem. Int. Ed., 43 (22), 2955-2958 (2004).

    10 Gan, M., Pan, D., Ma, L., Yue, E., Hong, J. “The kinetics of the esterification of free fatty acids in waste cooking oil using Fe2(SO4)3/C Catalyst”, Chin. J. Chem. Eng., 17 (1), 83-87 (2009)

    11 Li, J., Fu, Y.J., Qu, X.J., Wang, W., Luo, M., Zhao, C.J., Zu, Y.G.,“Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge) seed oil using ion exchange resin as heterogeneous catalyst”, Bioresour. Technol., 108, 112-118 (2012).

    12 Yee, K.F., Lee, K.T., Ceccato, R., Abdullah, A.Z., “Production of biodiesel from Jatropha curcas L. oil catalyzed by SO42- /ZrO2 catalyst: Effect of interaction between process variables”, Bioresour. Technol., 102 (5), 4285-4289 (2011).

    13 Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., “Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst”, Bioresour. Technol., 98 (2), 416-421 (2007).

    14 Rao, B.V.S.K., Mouli, K.C., Rambabu, N., Dalai, A.K., Prasad, R.B.N., “Carbon-based solid acid catalyst from de-oiled canola meal for biodiesel production”, Catal. Commun., 14 (1), 20-26 (2011).

    15 Yang, X., Wan, J., “Preparation of carbon- based solid acid catalyst and its catalytic performance”, Modern Chemical Industry, 31 (10), 34-37 (2011). (in Chinese)

    16 Zhao, Y., Wan, J., “Hydrolysis saccharification of OCC by a sulfonated carbon solid-acid catalyst”, Modern Chemical Industry, 30 (9), 40-44 (2010). (in Chinese)

    17 Fraile, J.M., García-Bordejé, E., Roldán, L., “Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation”, J. Catal., 289, 73-79 (2012).

    2012-11-27, accepted 2013-04-17.

    * Supported by the State Key Development Program for Basic Research of China (2013CB228104, 2010CB732205), Ph. D Programs Foundation of Ministry of Education of China (20120172110011), and the National High Technology Research and Development Program of China (2012AA051801).

    ** To whom correspondence should be addressed. E-mail: changjie@scut.edu.cn

    猜你喜歡
    世民
    “石頭表哥”尹世民
    8年前的“小姨托孤”,如今有了最暖的結(jié)局
    A multilayer network diffusion-based model for reviewer recommendation
    濺蝕過程中紅壤團聚體周轉(zhuǎn)路徑的定量表征
    黃科院田世民、呂錫芝、張雷入選水利青年拔尖人才
    人民黃河(2022年4期)2022-04-07 09:03:16
    理發(fā)師
    科教新報(2021年21期)2021-07-21 15:38:12
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年23期)2020-07-21 22:49:18
    清華大學(xué)有所神秘學(xué)院
    科教新報(2020年22期)2020-06-11 08:48:29
    最后的麥子
    小說月刊(2016年5期)2016-05-06 16:42:27
    倫敦塔世民酒店 不走尋常路
    酒店精品(2016年4期)2016-04-29 00:44:03
    美女高潮到喷水免费观看| 中文字幕高清在线视频| 啦啦啦在线免费观看视频4| 欧美精品啪啪一区二区三区| 国产又爽黄色视频| 69av精品久久久久久| 久久香蕉激情| 黄色毛片三级朝国网站| 超碰97精品在线观看| 国产真人三级小视频在线观看| 国产av精品麻豆| 香蕉国产在线看| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠躁躁| 在线天堂中文资源库| 国产精华一区二区三区| xxx96com| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密| 波多野结衣一区麻豆| 黄色女人牲交| 午夜福利,免费看| 欧美日韩乱码在线| 国产精品偷伦视频观看了| 国产单亲对白刺激| 麻豆一二三区av精品| 一级a爱视频在线免费观看| 久久人人精品亚洲av| 丰满的人妻完整版| 欧美激情高清一区二区三区| 久久精品亚洲av国产电影网| 国产成人欧美在线观看| 免费久久久久久久精品成人欧美视频| 一本综合久久免费| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 成人特级黄色片久久久久久久| 精品国产美女av久久久久小说| 久久中文字幕一级| 这个男人来自地球电影免费观看| 亚洲人成电影观看| 免费观看精品视频网站| 老司机在亚洲福利影院| 激情视频va一区二区三区| 日本免费一区二区三区高清不卡 | 久久狼人影院| 在线观看午夜福利视频| 精品久久久久久成人av| xxxhd国产人妻xxx| 国产成+人综合+亚洲专区| 精品人妻1区二区| 亚洲av成人av| 久久久精品欧美日韩精品| 亚洲中文av在线| 欧美激情极品国产一区二区三区| 黄色女人牲交| 午夜a级毛片| 岛国视频午夜一区免费看| 国内毛片毛片毛片毛片毛片| 成年女人毛片免费观看观看9| 午夜福利影视在线免费观看| 一a级毛片在线观看| 久久久久久久精品吃奶| 国产精品永久免费网站| 午夜两性在线视频| 一a级毛片在线观看| 久久精品影院6| 最近最新中文字幕大全免费视频| 国产高清videossex| 一级黄色大片毛片| 亚洲精品一二三| 十八禁人妻一区二区| 久久热在线av| 国产欧美日韩一区二区三区在线| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 黄色成人免费大全| 亚洲激情在线av| 丝袜人妻中文字幕| 窝窝影院91人妻| 亚洲全国av大片| 91成年电影在线观看| 日本vs欧美在线观看视频| 精品卡一卡二卡四卡免费| 欧美日本亚洲视频在线播放| 交换朋友夫妻互换小说| 久久热在线av| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 老司机福利观看| 国产精品98久久久久久宅男小说| 美女高潮喷水抽搐中文字幕| 精品国产一区二区久久| 日韩国内少妇激情av| 国产真人三级小视频在线观看| 国产精品久久久久久人妻精品电影| 国产激情久久老熟女| 精品福利观看| 久久精品影院6| 热99re8久久精品国产| 91在线观看av| 国产成人系列免费观看| 黄片大片在线免费观看| 丝袜美足系列| avwww免费| 日韩大码丰满熟妇| 精品高清国产在线一区| 国产不卡一卡二| 国产精品久久视频播放| 我的亚洲天堂| 最好的美女福利视频网| 国产成人精品久久二区二区91| 久久伊人香网站| 夜夜看夜夜爽夜夜摸 | 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸 | 国产日韩一区二区三区精品不卡| 999久久久国产精品视频| 午夜福利在线免费观看网站| www.精华液| 午夜两性在线视频| 黄色视频,在线免费观看| 欧美一级毛片孕妇| 亚洲精品在线美女| 免费观看人在逋| 午夜久久久在线观看| 一边摸一边做爽爽视频免费| 视频区欧美日本亚洲| 女人被狂操c到高潮| 一边摸一边抽搐一进一出视频| 欧美午夜高清在线| 国产精品秋霞免费鲁丝片| 香蕉久久夜色| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 成人永久免费在线观看视频| 精品人妻在线不人妻| 精品乱码久久久久久99久播| 在线十欧美十亚洲十日本专区| 欧美人与性动交α欧美软件| 日本黄色视频三级网站网址| 午夜a级毛片| 国产一区二区激情短视频| 老鸭窝网址在线观看| aaaaa片日本免费| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 可以免费在线观看a视频的电影网站| 成人三级做爰电影| 两性午夜刺激爽爽歪歪视频在线观看 | 无人区码免费观看不卡| 亚洲一区中文字幕在线| 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 色尼玛亚洲综合影院| 婷婷丁香在线五月| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 欧美激情极品国产一区二区三区| 91麻豆av在线| 999久久久国产精品视频| 性色av乱码一区二区三区2| www.精华液| 老汉色∧v一级毛片| 黄色视频,在线免费观看| 夫妻午夜视频| 神马国产精品三级电影在线观看 | 成人特级黄色片久久久久久久| 色综合站精品国产| 亚洲欧洲精品一区二区精品久久久| 免费在线观看影片大全网站| 免费观看人在逋| 成人影院久久| 国产成人系列免费观看| 99精品久久久久人妻精品| 精品国产国语对白av| 久热这里只有精品99| 99精品久久久久人妻精品| 欧美性长视频在线观看| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 精品人妻1区二区| 中国美女看黄片| 免费一级毛片在线播放高清视频 | 日韩av在线大香蕉| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 精品午夜福利视频在线观看一区| 亚洲一区二区三区色噜噜 | 日日摸夜夜添夜夜添小说| 国产在线观看jvid| 麻豆国产av国片精品| 中文字幕精品免费在线观看视频| 午夜福利,免费看| e午夜精品久久久久久久| 亚洲欧美精品综合一区二区三区| 19禁男女啪啪无遮挡网站| 色综合欧美亚洲国产小说| 精品国产超薄肉色丝袜足j| 叶爱在线成人免费视频播放| 亚洲色图综合在线观看| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇的丰满在线观看| 日韩中文字幕欧美一区二区| 久久中文字幕人妻熟女| 亚洲精品久久午夜乱码| 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 久久香蕉精品热| 亚洲九九香蕉| 9色porny在线观看| 欧美黑人精品巨大| 女人被狂操c到高潮| 999久久久精品免费观看国产| 少妇裸体淫交视频免费看高清 | 日本三级黄在线观看| www日本在线高清视频| 涩涩av久久男人的天堂| 99在线视频只有这里精品首页| 免费日韩欧美在线观看| av有码第一页| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月| 国产精品秋霞免费鲁丝片| 精品少妇一区二区三区视频日本电影| 日日干狠狠操夜夜爽| 看免费av毛片| 1024香蕉在线观看| 熟女少妇亚洲综合色aaa.| 亚洲专区中文字幕在线| 一个人观看的视频www高清免费观看 | 国产精品一区二区在线不卡| 久久狼人影院| 老司机午夜十八禁免费视频| 夜夜看夜夜爽夜夜摸 | 丝袜美足系列| 日韩三级视频一区二区三区| 搡老乐熟女国产| 久久人人精品亚洲av| 欧美日韩视频精品一区| 亚洲一区中文字幕在线| 中文字幕人妻丝袜制服| 丝袜美足系列| 国产一区二区三区综合在线观看| 伦理电影免费视频| 日本 av在线| 精品久久久久久电影网| 每晚都被弄得嗷嗷叫到高潮| 青草久久国产| 在线观看66精品国产| 国产精品日韩av在线免费观看 | 一进一出抽搐动态| 亚洲欧美一区二区三区久久| 精品国产国语对白av| 亚洲色图综合在线观看| 女人被躁到高潮嗷嗷叫费观| a级片在线免费高清观看视频| 国产成年人精品一区二区 | 久久香蕉激情| 9热在线视频观看99| 亚洲片人在线观看| 国产极品粉嫩免费观看在线| 日韩精品中文字幕看吧| 国产精品一区二区三区四区久久 | 亚洲 国产 在线| 久久人妻福利社区极品人妻图片| 欧美久久黑人一区二区| 国产深夜福利视频在线观看| 天堂中文最新版在线下载| 国产精品 欧美亚洲| 精品一区二区三区视频在线观看免费 | 免费高清在线观看日韩| 久久久久国产一级毛片高清牌| 一级a爱视频在线免费观看| a级片在线免费高清观看视频| 精品福利永久在线观看| 中文字幕最新亚洲高清| 悠悠久久av| 久久人妻福利社区极品人妻图片| 精品久久久久久成人av| 丰满饥渴人妻一区二区三| 亚洲中文av在线| 成年女人毛片免费观看观看9| 一级a爱视频在线免费观看| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 久久精品亚洲熟妇少妇任你| 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 国产免费男女视频| 黄片小视频在线播放| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 深夜精品福利| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 精品国产乱码久久久久久男人| 老司机福利观看| 天堂俺去俺来也www色官网| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 精品福利观看| 久久久水蜜桃国产精品网| aaaaa片日本免费| 每晚都被弄得嗷嗷叫到高潮| 欧美人与性动交α欧美精品济南到| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 国产精品1区2区在线观看.| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 级片在线观看| 午夜免费观看网址| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| av网站在线播放免费| 涩涩av久久男人的天堂| 美女 人体艺术 gogo| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 日韩免费av在线播放| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 成年版毛片免费区| 老鸭窝网址在线观看| 久久久久国产精品人妻aⅴ院| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区视频在线观看免费 | 国产激情久久老熟女| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 成人三级做爰电影| 久久人人97超碰香蕉20202| 这个男人来自地球电影免费观看| 99国产精品99久久久久| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 最新美女视频免费是黄的| 嫩草影视91久久| 高清黄色对白视频在线免费看| 9色porny在线观看| 亚洲国产精品999在线| 国产精华一区二区三区| 久久 成人 亚洲| 一a级毛片在线观看| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 欧美激情极品国产一区二区三区| 欧美黄色淫秽网站| 久久婷婷成人综合色麻豆| 老鸭窝网址在线观看| 日日夜夜操网爽| 国产不卡一卡二| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 久久精品影院6| 人妻久久中文字幕网| 热re99久久精品国产66热6| 黄色视频,在线免费观看| 制服人妻中文乱码| 亚洲少妇的诱惑av| 国产精品成人在线| 欧美人与性动交α欧美软件| 国产精品免费一区二区三区在线| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 国产av在哪里看| 丝袜人妻中文字幕| 99国产精品一区二区三区| 亚洲精品美女久久av网站| 午夜久久久在线观看| 亚洲三区欧美一区| 欧美日韩亚洲高清精品| 久久精品国产亚洲av高清一级| 欧美最黄视频在线播放免费 | 欧美黑人精品巨大| av福利片在线| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 国产成人啪精品午夜网站| 亚洲av成人不卡在线观看播放网| 后天国语完整版免费观看| 亚洲成人久久性| 在线观看免费午夜福利视频| 新久久久久国产一级毛片| 国产亚洲欧美98| 国产成人系列免费观看| √禁漫天堂资源中文www| 国产xxxxx性猛交| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 曰老女人黄片| 久久久久久久午夜电影 | 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 免费av中文字幕在线| 亚洲伊人色综图| 在线观看免费日韩欧美大片| 免费日韩欧美在线观看| 久久久久久久午夜电影 | 岛国视频午夜一区免费看| 熟女少妇亚洲综合色aaa.| 久热这里只有精品99| 91大片在线观看| 亚洲av成人av| 在线观看舔阴道视频| 国产亚洲精品久久久久5区| 女性被躁到高潮视频| 亚洲五月天丁香| 日本黄色视频三级网站网址| 女警被强在线播放| 成人三级黄色视频| 日本三级黄在线观看| a级片在线免费高清观看视频| 人妻丰满熟妇av一区二区三区| 美女高潮到喷水免费观看| 在线观看舔阴道视频| 日日干狠狠操夜夜爽| 黄色成人免费大全| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区蜜桃| 中文字幕色久视频| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 黄频高清免费视频| 一级黄色大片毛片| 精品熟女少妇八av免费久了| 嫩草影视91久久| 桃色一区二区三区在线观看| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 成年人免费黄色播放视频| 一区二区三区国产精品乱码| 日韩欧美免费精品| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 在线观看免费日韩欧美大片| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 国产一卡二卡三卡精品| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 精品无人区乱码1区二区| 国产成人欧美| a在线观看视频网站| 手机成人av网站| 99精国产麻豆久久婷婷| 国产精品电影一区二区三区| 在线免费观看的www视频| 精品久久久久久成人av| 亚洲美女黄片视频| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| a级毛片黄视频| 国产有黄有色有爽视频| 丁香六月欧美| 亚洲熟妇中文字幕五十中出 | 亚洲精品国产区一区二| 在线观看午夜福利视频| av免费在线观看网站| 午夜精品在线福利| 午夜免费成人在线视频| 法律面前人人平等表现在哪些方面| 国产成年人精品一区二区 | 日韩人妻精品一区2区三区| 身体一侧抽搐| 成人国语在线视频| 国产一卡二卡三卡精品| 亚洲av成人一区二区三| 亚洲五月天丁香| 国产精品亚洲一级av第二区| www.www免费av| 一边摸一边做爽爽视频免费| 一个人观看的视频www高清免费观看 | 精品一区二区三区av网在线观看| 午夜福利在线免费观看网站| 欧美不卡视频在线免费观看 | 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 91在线观看av| 香蕉丝袜av| 一本综合久久免费| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 一a级毛片在线观看| 亚洲精品美女久久av网站| 正在播放国产对白刺激| 久久精品aⅴ一区二区三区四区| svipshipincom国产片| 80岁老熟妇乱子伦牲交| 国产精品永久免费网站| 国产又色又爽无遮挡免费看| 欧美一级毛片孕妇| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 自线自在国产av| 国产国语露脸激情在线看| 亚洲精品国产区一区二| 久久香蕉激情| 一进一出抽搐gif免费好疼 | 欧美日韩av久久| 久久精品91无色码中文字幕| 水蜜桃什么品种好| 精品免费久久久久久久清纯| 久久精品亚洲熟妇少妇任你| 俄罗斯特黄特色一大片| 国产高清videossex| 日日爽夜夜爽网站| 亚洲成人国产一区在线观看| 国产高清videossex| 久久中文看片网| 久久热在线av| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 日本黄色日本黄色录像| 丁香六月欧美| 成在线人永久免费视频| 国产免费男女视频| 高清黄色对白视频在线免费看| 国产精品一区二区精品视频观看| 一个人观看的视频www高清免费观看 | 午夜免费鲁丝| 久久99一区二区三区| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 男女床上黄色一级片免费看| 日韩国内少妇激情av| 成人黄色视频免费在线看| 啦啦啦免费观看视频1| 脱女人内裤的视频| av网站免费在线观看视频| 亚洲 国产 在线| 丰满人妻熟妇乱又伦精品不卡| 久久久久久大精品| 亚洲五月色婷婷综合| 日本vs欧美在线观看视频| 宅男免费午夜| 无限看片的www在线观看| 成人手机av| 亚洲第一av免费看| 丁香六月欧美| 午夜福利在线观看吧| 久久欧美精品欧美久久欧美| 级片在线观看| 午夜亚洲福利在线播放| 女人被躁到高潮嗷嗷叫费观| 日韩欧美在线二视频| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点 | av超薄肉色丝袜交足视频| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| e午夜精品久久久久久久| 亚洲国产精品sss在线观看 | 无限看片的www在线观看| 后天国语完整版免费观看| 一a级毛片在线观看| 美女福利国产在线| 高清毛片免费观看视频网站 | 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三| 午夜91福利影院| 欧美乱妇无乱码| 免费少妇av软件| 一级毛片精品| 一边摸一边抽搐一进一小说| 久久久国产欧美日韩av| 久久青草综合色| 日韩人妻精品一区2区三区| 女人高潮潮喷娇喘18禁视频| 久久人人爽av亚洲精品天堂| 亚洲av熟女| 久久欧美精品欧美久久欧美| 欧美久久黑人一区二区| 大型av网站在线播放| 国产深夜福利视频在线观看| 黑人欧美特级aaaaaa片| 国产成人精品久久二区二区91| 97碰自拍视频| 久久人人爽av亚洲精品天堂| 亚洲av熟女| 日韩免费av在线播放| 欧美大码av| 欧美成人性av电影在线观看| 韩国精品一区二区三区| 久久人妻av系列| 亚洲av熟女| 99国产极品粉嫩在线观看| 我的亚洲天堂| av超薄肉色丝袜交足视频| 亚洲成人免费av在线播放| 怎么达到女性高潮| 国产精品久久视频播放| 亚洲国产精品999在线| 一级毛片高清免费大全| 国产精品偷伦视频观看了| 国产又色又爽无遮挡免费看| 9191精品国产免费久久| 欧美色视频一区免费| 亚洲片人在线观看| 亚洲专区国产一区二区| 国产区一区二久久| 亚洲熟妇熟女久久| 国产视频一区二区在线看| 欧美成人免费av一区二区三区|