• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes*

    2014-07-18 12:09:48WANGLi王麗andSHIHongbo侍洪波SchoolofElectricalandElectronicEngineeringShanghaiInstituteofTechnologyShanghai0030ChinaKeyLaboratoryofAdvancedControlandOptimizationforChemicalProcessesofMinistryofEducationEastChinaUniversityof
    關鍵詞:王麗

    WANG Li (王麗)and SHI Hongbo (侍洪波)**School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 0030, ChinaKey Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 0037, China

    Improved Kernel PLS-based Fault Detection Approach for Nonlinear Chemical Processes*

    WANG Li (王麗)1and SHI Hongbo (侍洪波)2,**
    1School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 200230, China2Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

    In this paper, an improved nonlinear process fault detection method is proposed based on modified kernel partial least squares (KPLS). By integrating the statistical local approach (SLA) into the KPLS framework, two new statistics are established to monitor changes in the underlying model. The new modeling strategy can avoid the Gaussian distribution assumption of KPLS. Besides, advantage of the proposed method is that the kernel latent variables can be obtained directly through the eigen value decomposition instead of the iterative calculation, which can improve the computing speed. The new method is applied to fault detection in the simulation benchmark of the Tennessee Eastman process. The simulation results show superiority on detection sensitivity and accuracy in comparison to KPLS monitoring.

    nonlinear process, fault detection, kernel partial least squares, statistical local approach

    1 INTRODUCTION

    Effective fault detection technology is essential for industrial processes to maintain quality and safety production. Principal component analysis (PCA) and partial least squares (PLS) are traditional multivariate statistical approaches in chemical industry for process monitoring. When product quality data are available, PLS can be performed using both the process data (X) and the product quality data (Y), rather than focusing only on the variance of X as PCA. However, PLS is a linear method and it may be inappropriate when dealing with nonlinear process data since it hardly captures the significant nonlinear characteristics. To tackle the issue of data nonlinearity, two classes of approaches have been proposed earlier. One of the approaches employed a polynomial nonlinear mapping that was formulated on the assumption that the relationship between the predictor and response latent variables can be modeled using a polynomial expansion [1]. Other approaches have fitted the nonlinear inner mapping using artificial neural networks [2, 3].

    Recently, “kernel trick” has been used to develop a nonlinear kernel version of PLS, called kernel PLS (KPLS) [4]. The basic idea of KPLS is that the input data are first mapped into a kernel feature space by a nonlinear mapping function to eliminate nonlinearity and then these mapped data are analyzed via PLS algorithm to extract latent variables in the feature space. Compared to other nonlinear approaches, the main advantage of KPLS is that it avoids nonlinear optimization by utilizing the kernel function corresponding to the inner product in the feature space. T2and squared prediction error (SPE) statistics have been constructed in conventional KPLS-based monitoring method. However, the confidence limit determination of these two statistics is calculated under the assumption that the obtained score variables follow Gaussian distribution [5]. But for nonlinear processes, obtained score variables can hardly follow Gaussian distribution due to the nonlinear transformation. Therefore, the monitoring models constructed using scores variables may give false detection results.

    This paper proposes a novel fault detection method that incorporates the statistical local approach (SLA) [6] into KPLS to define two new univariate statistics. The bases of the SLA is the central limit theorem, which enables the extracted score variables employed to construct statistics can be non-Gaussian, but only have the same distribution function. Recently, SLA has been introduced into PCA [7] and PLS [8] to detect incipient changes in the variable covariance structure, respectively. Furthermore, Ge et al. [5] has extended the new modeling strategy to kernel principal component analysis (KPCA) for nonlinear process monitoring. However, how to incorporate SLA into KPLS-based framework and develop a KPLS version has not been found. To address this problem, this paper introduces the SLA into KPLS for nonlinear process fault detection.

    2 KERNEL PARTIAL LEAST SQUARES (KPLS)

    PLS is a multivariate projection method for modeling a relationship between predictor and response variable sets. It seeks to find a set of latent variables that maximizes the covariance between predictor matrix X∈RK×Nand the response matrix Y∈RK×M. When the algorithm is carried out in the feature space,

    Generally, KPLS algorithm can be directly derived from PLS algorithm with some modifications. More detail of the KPLS algorithm can be found in reference [9]. However, the weight vectors wiused to construct primary residuals cannot be obtained from the conventional KPLS procedure since the nonlinear mapping function ()?Φ is unknown. Recently, a modified KPLS was proposed by Zhang and Teng [10] and adopted here as the basic algorithm to incorporate with the SLA approach.

    3 NONLINEAR PROCESS MONITORING STRATEGY

    3.1 Incorporating the SLA into KPLS

    The statistical local approach (SLA) monitors changes in the model parameters of a given function describing the behavior of a system, and is well depicted in reference [6]. SLA is first utilized by Basseville [6] for on-board component fault detection and isolation, then is used in linear PCA [7] and PLS [8] method for incipient fault monitoring, respectively. The method proposed in this paper focuses on the change of weight vectors wiand vi. The crucial problem is to choose a monitoring function that could derive sufficient primary residuals. For linear PLS, monitoring functions for weight vectors changes have been proposed and sufficiency of the primary residual constructed from these monitoring functions has also been proved by Kruger and Dimitriadis [8]. This section shows how to detect fault conditions by integrating SLA into a modified KPLS-based process monitoring.

    SLA requires a monitoring function that has an expected value of zero under normal operation as the primary residuals. To derive such monitoring function, a modified KPLS algorithm is adopted. Similar to PLS, the objective of KPLS is to extract weight vectors wiand viin feature space decided by the following optimization function: Subjecting to Eqs. (2) and (3), where E(wTΦ(x)yTv) represents the variance of the ith kernel score variables, λi1, λi2are Lagrangian multipliers, and exist K-dimensional column vector α [10], Eq. (6) can be obtained:

    where n is the number of chosen kernel score variables. The subscript R denotes primary residuals constructed from retained variables and D denotes those constructed from discarded latent variables, and the subscript 0 represent normal operating conditions.iα, viand λiin Eq. (17) can be determined by the following procedure.

    The modified KPLS [10] is aimed at solving parameter vector α and v using the classical optimization problem solution. TakeTKYvα in Eq. (1) as the optimization objective and compute the partial derivatives of α and v for it, respectively. Make them equal to 0

    3.2 Construct new statistics

    For KPLS-based nonlinear process monitoring method, two statistics T2and SPE are developed on kernel score variables and modeling error, which is similar to the KPCA-based method. However, as mentioned in the introduction, the Gaussian distribution of score variables cannot be ensured for nonlinear processes. Hence, if the T2and SPE are still used for monitoring changes of the systematic and noisy part respectively, the performance will be deteriorated [5]. The advantage of combining SLA with KPLS is the loosening up limitation of the Gaussian distribution of variables used to construct statistics.

    According to SLA, two new statistics for KPLS-based nonlinear process monitoring is developed as follows. Improved residuals can now be calculated based on the primary residual functions detailed in the previous subsection. Denoting the time instance by j, the improved residuals are given by

    For large K, however, the values ofR0ζ andD0ζ become stabilized and are less sensitive to incipient changes in the behavior of the process. To handle this, a moving window approach can be used to increase the sensitivity of these two improved residuals and also to loss computation burden [5, 7]. By performing the averaging not over the entire data record but over a shorter window of w data-points, the above equations become

    where w is the length of the moving window and k denotes the current sampling instance. However, how to choose an appropriate length of moving window is still an open question, which means that the width can only be selected by experience. Large width may result in low false alarms rate; while too small width may produce an increased level of false alarms.

    Next, two univariate monitoring statistics using the improved residuals can be constructed as

    4 SIMULATION RESULTS

    In this section, the monitoring performance of method proposed here is demonstrated over theTennessee Eastman (TE) process data set and is compared with KPLS-based monitoring method. The Tennessee Eastman process is a nonlinear process widely used to compare various monitoring methods. The process consists of five major unit operations: a reactor, a condenser, a compressor, a separator, and a stripper. The four reactants A, C, D and E and the inert B are fed to the reactor where the products G and H are formed and a by product F is also produced. The control structure is shown schematically in Fig. 1. The process has 22 continuous process measurements, 19 composition measurements and 12 manipulated variables. The TE process simulation contains 21 preprogrammed faults. Sixteen of these faults are known and five are unknown. The table of process monitoring variables and process faults are not listed here, and the details on the process description are well explained by Chiang et al [12].

    In our case, the composition of G in Stream 9 is chosen as the quality variable Y. 22 process measurements and 11 manipulated variables are chosen as X as the same as reference [13, 14]. The simulation time for each variable is 48 h, and the sampling interval to collect the simulated data for the training and testing sets is 3 min. The training and testing data set for each fault consist of 480 and 960 observations. All faults in the data set are introduced from sample 160 and all the data are scaled prior to the application. For monitoring of TE process, the dimension of feature space is chosen as 50, which means a total of 50 eigenvalues are calculated. 27 kernel latent variables are selected according to experience. Based on the training dataset, two monitoring statistics of KPLS and the new method are developed. Their corresponding 99% confidence limits are also determined. The width of moving window is selected as 90w=. For testing the proposed method firstly, monitoring results of the normal process are given in Fig. 2, which shows a good result with the new method.

    The monitoring results are shown in the following figures. As to some faults like Fault 1, 2, 5, 7, 8 and 13, both methods give good monitoring results. However, the Faults 3 and 21 are known to be difficult to detect. Thus, both are selected to illustrate the superiority of the new method to KPLS techniques.

    The monitoring results in the case of Fault 3 are shown in Figs. 3 and 4. The 99% confidence limits are calculated as the control limits. In the case of Fault 3, component D feed temperature (Stream 2) is step changed. However, the fault 3 is difficult to detect and many statistical monitoring approaches invalidate with Fault 3. The2

    T and SPE charts for KPLS monitoring of the fault are shown in Fig. 3. None of them can detect this fault. However, applying the proposed method to the same fault gives the results in Fig. 4. The monitoring performance is greatly improved, especially by the new statistic Tr2. The fault is successfully detected after the step change occurre2d in feed temperature of component D since the Trstatistic value of the proposed method keep above the confidence limit.However, most T2statistic value of KPLS stay below its corresponding confidence limit, which means the fault cannot be detected effectively. The difference between the proposed method and KPLS may result from the distribution of the score variables. The new strategy for constructing statistics required by the statistical local approach improves the normality of the score variables.

    Figure 2 Monitoring results of normal process with the new method

    Figure 3 Monitoring results of Fault 3 with KPLS

    Figure 4 Monitoring results of Fault 3 with new method

    The monitoring results in the case of Fault 21 are shown in Figs. 5 and 6. Fault 21 is an unknown fault related to the sticking valve. The fault is detected at about sample 400 by KPLS, and it cannot be continuously detected until about sample 550 in2T statistic chart and sample 600 in SPE statistic chart, respectively. Both of them have a significant delay after the fault is introduced into the process. However, the performance is greatly improved by the new method. The fault is immediat2ely detected from sample 160 in Fig. 6. Although the Tdstatistic value has a fall below the control limit between samples 330 and 340, such a fault detection statistic will inform the operator that a process abnormality is present in the process. Therefore, this fault can be detected much earlier 240 sample number by the new method proposed here. The results demonstrate that the new two monitoring statistics can reflect more fault information and the newmethod is more sensitive than KPLS.

    Figure 5 Monitoring results of Fault 21 with KPLS

    Figure 6 Monitoring results of Fault 21 with new method

    5 CONCLUSIONS

    In this article an improved KPLS based nonlinear process fault detection method has been proposed. When KPLS is used for nonlinear process monitoring, the extracted kernel latent variables derived for establishing statistics in feature space may not follow Gaussian distribution, which violates the assumption of this method. By incorporating the statistical local approach, the Gaussian assumption of KPLS is avoided. It is shown that two new statistics constructed can be used for process monitoring. The success of these statistics is demonstrated by applying to the Tennessee Eastman process. The new method seems to offer a more sensitive and effective fault detection ability than KPLS. The key idea of the proposed method is to derive primary residuals functions according to the statistical local approach within KPLS algorithm. An improved version of KPLS is used to extract latent variables in this paper. However, there are still some problems to be noted. First, how to decide the number of kernel eigenvalues and the number of retained latent variables are very important for process monitoring. Second, how to choose an appropriate width of moving window is still an open question. Therefore, the future work on selecting these parameters more effectively may be meaningful for the proposed method for nonlinear process monitoring.

    REFERENCES

    1 Wold, S., “Nonlinear partial least squares modeling: II. Spline inner relation”, Chemometrics and Intelligent Laboratory Systems, 14, 71-84 (1992).

    2 Qin, S.J., McAvoy, T.J., “Nolinear PLS modeling using neural networks”, Computers and Chemical Engineering, 16, 379-391 (1992).

    3 Malthouse, E.C., Tamhane, A.C., Mah, R.S.H., “Nonlinear partial least squares”, Computers and Chemical Engineering, 21, 875-890 (1997).

    4 Rosipal, R., Trejo, L.J., “Kernel partial least squares regression in reproducing kernel Hilbert space”, Journal of Machine Learning Research, 2, 97-123 (2001).

    5 Ge, Z.Q., Yang, C.J., Song, Z.H., “Improved kernel PCA-based monitoring approach for nonlinear processes”, Chemical Engineering Science, 64, 2245-2255 (2009).

    6 Basseville, M., “On-board component fault detection and isolation using the statistical local approach”, Automatic, 34 (11), 1391-1415 (1998).

    7 Kruger, U., Kumar, S., Littler, T., “Improved principal component monitoring using the local approach”, Automatic, 43, 1532-1542 (2007).

    8 Kruger, U., Dimitriadis, G., “Diagnosis of process faults in chemicalsystems using a local partial least squares approach”, AIChE Journal, 54, 2581-2596 (2008).

    9 Hu, Y., Ma, H.H., Shi, H.B., “Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares”, Chemometrics and Intelligent Laboratory Systems, 123, 15-27 (2013).

    10 Zhang, Y.W., Teng, Y.D., “Process data modeling using modified kernel partial least squares”, Chemical Engineering Science, 65, 6353-6361 (2010).

    11 Wang, L., Shi, H.B., “Multivariate statistical process monitoring using an improved independent component analysis”, Chemical Engineering Research and Design, 88, 403-414 (2010).

    12 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, London, 175-281 (2001).

    13 Li, G., Qin, S.J., Zhou, D.H., “Geometric properties of partial least squares for process monitoring”, Automatica, 46, 204-210 (2010).

    14 Xie, X., Shi, H.B., “Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace”, Chin. J. Chem. Eng., 20 (6), 1174-1179 (2012).

    2013-06-10, accepted 2013-08-26.

    * Supported by the Special Scientific Research of Selection and Cultivation of Excellent Young Teachers in Shanghai Universities (YYY11076).

    ** To whom correspondence should be addressed. E-mail: hbshi@ecust.edu.cn

    猜你喜歡
    王麗
    王麗攝影作品欣賞(二)
    參花(下)(2023年12期)2023-12-12 13:30:40
    請移走麻木對我的傷害(下篇)
    黃偉芬:中國航天員的“女教頭”
    做人與處世(2022年6期)2022-05-26 10:26:35
    慢性非傳染性疾病的預防醫(yī)學診療服務研究
    THE VON NEUMANN PARADOX FOR THE EULER EQUATIONS?
    淺析中小企業(yè)應收賬款存在的問題及對策
    踏實
    上海故事(2018年10期)2018-11-13 02:28:52
    想象出來的“問題”
    和老師同名
    多嘴的后果
    故事林(2011年2期)2011-05-14 17:29:44
    在现免费观看毛片| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩东京热| 国产精品人妻久久久久久| 欧美+日韩+精品| 中国美白少妇内射xxxbb| 欧美97在线视频| tube8黄色片| 极品少妇高潮喷水抽搐| 精品亚洲成a人片在线观看 | 国产精品偷伦视频观看了| 国产极品天堂在线| 交换朋友夫妻互换小说| 国产成人精品久久久久久| 国产免费福利视频在线观看| 老司机影院毛片| 国产高清不卡午夜福利| 国产一区二区三区综合在线观看 | 内射极品少妇av片p| 伦精品一区二区三区| 尾随美女入室| 欧美日本视频| kizo精华| 中文资源天堂在线| 日本黄色日本黄色录像| 黄色一级大片看看| 日本黄色日本黄色录像| 成人亚洲精品一区在线观看 | 亚洲怡红院男人天堂| 色吧在线观看| 高清av免费在线| 色哟哟·www| 中国国产av一级| 青青草视频在线视频观看| 丰满迷人的少妇在线观看| 观看美女的网站| 日日摸夜夜添夜夜爱| 另类亚洲欧美激情| 另类亚洲欧美激情| 91狼人影院| 性高湖久久久久久久久免费观看| 亚洲成人av在线免费| 免费观看av网站的网址| 成人亚洲欧美一区二区av| 91精品一卡2卡3卡4卡| 精品亚洲成a人片在线观看 | 深夜a级毛片| 欧美日韩精品成人综合77777| 久久久久久伊人网av| 国产成人91sexporn| 成人国产麻豆网| 99久久中文字幕三级久久日本| 亚洲自偷自拍三级| 国产亚洲最大av| 久久青草综合色| 一区二区三区免费毛片| 六月丁香七月| 春色校园在线视频观看| 国产精品99久久99久久久不卡 | 国产伦在线观看视频一区| 国产成人精品福利久久| 熟女电影av网| 男女边摸边吃奶| 黄片无遮挡物在线观看| 久久精品国产自在天天线| 我的女老师完整版在线观看| 高清av免费在线| 免费大片18禁| 卡戴珊不雅视频在线播放| 最近手机中文字幕大全| 最近的中文字幕免费完整| 嘟嘟电影网在线观看| 成人美女网站在线观看视频| 美女中出高潮动态图| www.av在线官网国产| 国产精品一区二区性色av| 久久精品人妻少妇| 黄片无遮挡物在线观看| 亚洲伊人久久精品综合| 日本猛色少妇xxxxx猛交久久| 丰满迷人的少妇在线观看| 嫩草影院入口| 国产老妇伦熟女老妇高清| 免费黄色在线免费观看| 国产精品蜜桃在线观看| 精品亚洲成a人片在线观看 | 亚洲怡红院男人天堂| 少妇的逼好多水| 久久综合国产亚洲精品| 久久午夜福利片| 在线免费十八禁| 韩国高清视频一区二区三区| av线在线观看网站| 成人美女网站在线观看视频| 亚洲性久久影院| 在线天堂最新版资源| 久久精品人妻少妇| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| xxx大片免费视频| 美女xxoo啪啪120秒动态图| 18禁在线无遮挡免费观看视频| 熟女人妻精品中文字幕| 欧美日韩亚洲高清精品| 青春草视频在线免费观看| 亚洲在久久综合| av在线蜜桃| 国产一区二区三区av在线| 国产欧美另类精品又又久久亚洲欧美| 成人影院久久| 性色avwww在线观看| 国产 精品1| 精品99又大又爽又粗少妇毛片| 国产日韩欧美在线精品| 尾随美女入室| 夜夜看夜夜爽夜夜摸| 日韩av不卡免费在线播放| 精品久久久久久久久亚洲| 自拍欧美九色日韩亚洲蝌蚪91 | 激情 狠狠 欧美| 欧美成人一区二区免费高清观看| 国产人妻一区二区三区在| 91精品国产九色| 精品久久久噜噜| 人妻制服诱惑在线中文字幕| 高清黄色对白视频在线免费看 | 精品一区二区免费观看| 亚洲精品国产色婷婷电影| 亚洲欧美日韩卡通动漫| 久久久色成人| 亚洲av不卡在线观看| 99热这里只有是精品50| 99re6热这里在线精品视频| 国产有黄有色有爽视频| 亚洲av中文av极速乱| 美女国产视频在线观看| av一本久久久久| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻一区二区| 婷婷色麻豆天堂久久| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久大av| 99九九线精品视频在线观看视频| 美女福利国产在线 | 国产色婷婷99| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 最黄视频免费看| 大码成人一级视频| 日韩成人av中文字幕在线观看| 热99国产精品久久久久久7| 特大巨黑吊av在线直播| 国产av一区二区精品久久 | 久久精品国产自在天天线| 国产精品人妻久久久影院| 免费观看性生交大片5| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 97超碰精品成人国产| 欧美三级亚洲精品| 欧美bdsm另类| 噜噜噜噜噜久久久久久91| 我要看黄色一级片免费的| 国产v大片淫在线免费观看| 精品一区二区三卡| av福利片在线观看| 久久99蜜桃精品久久| 精品久久国产蜜桃| 精品久久久精品久久久| 色视频www国产| 欧美97在线视频| 大陆偷拍与自拍| 少妇人妻一区二区三区视频| 国产精品三级大全| 婷婷色综合www| 亚洲美女搞黄在线观看| 十八禁网站网址无遮挡 | 国产乱人视频| 中国三级夫妇交换| 一区二区三区四区激情视频| 51国产日韩欧美| 中文字幕久久专区| 久久国产精品大桥未久av | 成人国产麻豆网| 欧美日韩视频高清一区二区三区二| 国产精品熟女久久久久浪| 久久久久久久久久久丰满| www.av在线官网国产| 日本与韩国留学比较| 亚洲欧洲日产国产| 一区二区三区免费毛片| 嘟嘟电影网在线观看| 人人妻人人看人人澡| 欧美精品一区二区大全| 亚洲一级一片aⅴ在线观看| 国产免费视频播放在线视频| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99| 最黄视频免费看| 色视频在线一区二区三区| 少妇熟女欧美另类| 亚洲av成人精品一区久久| 国产欧美亚洲国产| 中文欧美无线码| 日韩强制内射视频| 男人和女人高潮做爰伦理| 精品人妻一区二区三区麻豆| 精品酒店卫生间| 久久国产乱子免费精品| 免费大片18禁| 韩国高清视频一区二区三区| 美女中出高潮动态图| 免费观看av网站的网址| 日韩不卡一区二区三区视频在线| 免费大片18禁| 色视频www国产| 国产精品人妻久久久久久| 亚洲国产高清在线一区二区三| 精品久久久久久电影网| av国产精品久久久久影院| a级毛色黄片| 亚洲精品一二三| 男女边摸边吃奶| a级毛片免费高清观看在线播放| 中文乱码字字幕精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 男女下面进入的视频免费午夜| 青春草亚洲视频在线观看| 国产黄色视频一区二区在线观看| 男女无遮挡免费网站观看| 国产精品一区二区性色av| 各种免费的搞黄视频| 国产亚洲精品久久久com| 少妇精品久久久久久久| 色网站视频免费| 七月丁香在线播放| 欧美日韩国产mv在线观看视频 | 欧美日韩精品成人综合77777| 欧美性感艳星| 99热6这里只有精品| 国产精品国产av在线观看| 91午夜精品亚洲一区二区三区| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 中文字幕亚洲精品专区| 国产成人一区二区在线| 亚洲精品自拍成人| 亚洲内射少妇av| 夜夜骑夜夜射夜夜干| 久久精品国产鲁丝片午夜精品| 性高湖久久久久久久久免费观看| av免费观看日本| 久久青草综合色| 国产v大片淫在线免费观看| 伦精品一区二区三区| 久久久午夜欧美精品| 亚洲精品国产成人久久av| 亚洲欧美成人综合另类久久久| 色哟哟·www| 国产精品一区www在线观看| 黄色欧美视频在线观看| 寂寞人妻少妇视频99o| 久久久久久久久大av| 成人无遮挡网站| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 国产精品一二三区在线看| 午夜视频国产福利| 日本黄大片高清| 亚洲自偷自拍三级| 一本一本综合久久| 水蜜桃什么品种好| 国产高清三级在线| 久久国产精品大桥未久av | 欧美日韩精品成人综合77777| 校园人妻丝袜中文字幕| 亚洲成人一二三区av| 免费看不卡的av| 男女边摸边吃奶| 丰满迷人的少妇在线观看| 三级国产精品片| 精品少妇黑人巨大在线播放| 日日啪夜夜撸| 亚洲av电影在线观看一区二区三区| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 国内少妇人妻偷人精品xxx网站| 少妇的逼好多水| 狂野欧美激情性bbbbbb| 精品一品国产午夜福利视频| 男的添女的下面高潮视频| 激情 狠狠 欧美| 美女高潮的动态| 久久久久久久久久成人| freevideosex欧美| 日韩成人av中文字幕在线观看| 亚洲精品中文字幕在线视频 | 丝瓜视频免费看黄片| 波野结衣二区三区在线| 久久久久久伊人网av| 一级毛片我不卡| 国产色爽女视频免费观看| 天堂中文最新版在线下载| 久久人人爽人人爽人人片va| 乱系列少妇在线播放| 成年女人在线观看亚洲视频| 亚洲av欧美aⅴ国产| 国产精品免费大片| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 午夜福利在线在线| 免费大片18禁| 极品教师在线视频| 久久久久国产网址| 国产精品秋霞免费鲁丝片| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 日本黄大片高清| 色哟哟·www| 久久精品久久久久久久性| 日韩国内少妇激情av| 国内揄拍国产精品人妻在线| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 自拍偷自拍亚洲精品老妇| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲av片在线观看秒播厂| 人妻夜夜爽99麻豆av| 丰满迷人的少妇在线观看| 内地一区二区视频在线| 免费观看在线日韩| 激情五月婷婷亚洲| 妹子高潮喷水视频| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 日韩亚洲欧美综合| 欧美变态另类bdsm刘玥| 黄片无遮挡物在线观看| 嫩草影院入口| 久久婷婷青草| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 国产色婷婷99| 亚洲美女黄色视频免费看| 亚洲成人手机| 日本欧美视频一区| 男女边摸边吃奶| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 男女边摸边吃奶| 国产av国产精品国产| 亚洲人成网站高清观看| 2022亚洲国产成人精品| 欧美zozozo另类| 欧美97在线视频| 日本av免费视频播放| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 免费高清在线观看视频在线观看| av在线播放精品| 免费黄频网站在线观看国产| 人妻夜夜爽99麻豆av| 丰满迷人的少妇在线观看| 日日啪夜夜爽| 中文字幕av成人在线电影| 国精品久久久久久国模美| 国产色婷婷99| av免费观看日本| 毛片女人毛片| 91精品一卡2卡3卡4卡| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 免费大片黄手机在线观看| 亚洲精品色激情综合| 青春草国产在线视频| 国产高清不卡午夜福利| 黑人猛操日本美女一级片| 女的被弄到高潮叫床怎么办| 免费观看在线日韩| 国产精品欧美亚洲77777| 中文字幕制服av| 午夜福利网站1000一区二区三区| 免费大片18禁| 亚洲国产毛片av蜜桃av| 国产精品无大码| 大香蕉97超碰在线| 欧美人与善性xxx| 丰满人妻一区二区三区视频av| 久久久久性生活片| 美女脱内裤让男人舔精品视频| 久久久久人妻精品一区果冻| 丝瓜视频免费看黄片| 午夜日本视频在线| 国产精品久久久久久av不卡| av国产精品久久久久影院| 亚洲三级黄色毛片| 欧美日韩视频精品一区| 99久久精品国产国产毛片| 尾随美女入室| 99久久中文字幕三级久久日本| 99热全是精品| 国产av精品麻豆| 天堂8中文在线网| 中文字幕免费在线视频6| 欧美精品人与动牲交sv欧美| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 国产成人91sexporn| 久久久久性生活片| 全区人妻精品视频| 免费大片18禁| 乱码一卡2卡4卡精品| 亚洲精品,欧美精品| 亚洲综合精品二区| 免费看光身美女| 久久久久久久久大av| 国产视频内射| 国产av精品麻豆| 日本爱情动作片www.在线观看| 久久婷婷青草| 久久99热这里只有精品18| 国产精品久久久久久精品古装| 全区人妻精品视频| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 国产精品一及| 国产v大片淫在线免费观看| 男的添女的下面高潮视频| 欧美日韩国产mv在线观看视频 | 日韩大片免费观看网站| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 男男h啪啪无遮挡| 中文资源天堂在线| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 国产亚洲5aaaaa淫片| 毛片女人毛片| 亚洲中文av在线| 久久久久人妻精品一区果冻| 99热这里只有是精品50| 日韩中字成人| 午夜激情福利司机影院| 全区人妻精品视频| 偷拍熟女少妇极品色| 久久精品熟女亚洲av麻豆精品| www.色视频.com| 蜜桃亚洲精品一区二区三区| av网站免费在线观看视频| 午夜老司机福利剧场| 高清视频免费观看一区二区| 国产精品三级大全| 老师上课跳d突然被开到最大视频| 哪个播放器可以免费观看大片| 秋霞在线观看毛片| 在线看a的网站| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 国产高清国产精品国产三级 | 日本vs欧美在线观看视频 | 亚洲成人一二三区av| 91午夜精品亚洲一区二区三区| 久久久久网色| 99精国产麻豆久久婷婷| 亚洲,一卡二卡三卡| 国产精品不卡视频一区二区| 亚洲av福利一区| av线在线观看网站| 亚洲欧美精品自产自拍| 成人影院久久| 99热这里只有是精品50| 亚洲欧美成人综合另类久久久| 热re99久久精品国产66热6| 中文字幕av成人在线电影| 日本欧美国产在线视频| 老司机影院毛片| 日本爱情动作片www.在线观看| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级 | 久久久精品免费免费高清| 日韩大片免费观看网站| 亚洲国产精品国产精品| 日本色播在线视频| 最近2019中文字幕mv第一页| 在线看a的网站| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 日韩一区二区三区影片| av网站免费在线观看视频| 国产精品嫩草影院av在线观看| 色网站视频免费| 嫩草影院入口| 亚洲中文av在线| 久久97久久精品| 一个人看视频在线观看www免费| 中国国产av一级| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 亚洲av中文字字幕乱码综合| 中文精品一卡2卡3卡4更新| videos熟女内射| 又大又黄又爽视频免费| 成人二区视频| 亚洲精品,欧美精品| 免费黄色在线免费观看| av网站免费在线观看视频| 下体分泌物呈黄色| 永久网站在线| 国内精品宾馆在线| 精品国产一区二区三区久久久樱花 | 日韩制服骚丝袜av| 下体分泌物呈黄色| 亚洲欧美日韩东京热| 久久久久久伊人网av| 日韩欧美精品免费久久| 亚洲av在线观看美女高潮| 精品国产露脸久久av麻豆| 一本色道久久久久久精品综合| 国产免费一区二区三区四区乱码| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 高清欧美精品videossex| 一个人看的www免费观看视频| 美女福利国产在线 | 免费观看a级毛片全部| 国产亚洲一区二区精品| av播播在线观看一区| 久久精品久久久久久久性| 日本av免费视频播放| 香蕉精品网在线| 在线观看一区二区三区| 亚洲av不卡在线观看| 欧美bdsm另类| 欧美成人午夜免费资源| 久久99热这里只有精品18| 尤物成人国产欧美一区二区三区| 七月丁香在线播放| 国产成人a区在线观看| 日韩中文字幕视频在线看片 | 亚洲国产欧美在线一区| 国产高清三级在线| 一级片'在线观看视频| 午夜免费观看性视频| 精品午夜福利在线看| 久久99精品国语久久久| 亚洲成人一二三区av| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 一区二区av电影网| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 亚洲三级黄色毛片| 国产精品欧美亚洲77777| 18+在线观看网站| 午夜免费鲁丝| 亚洲欧美日韩东京热| 高清不卡的av网站| 黄色日韩在线| 亚洲国产最新在线播放| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 少妇人妻一区二区三区视频| 狠狠精品人妻久久久久久综合| 国产伦精品一区二区三区视频9| 精品亚洲成国产av| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 18禁在线播放成人免费| 久久鲁丝午夜福利片| 日韩欧美精品免费久久| 永久网站在线| 王馨瑶露胸无遮挡在线观看| 伦理电影大哥的女人| 欧美xxxx黑人xx丫x性爽| 日本-黄色视频高清免费观看| 国产精品99久久99久久久不卡 | 嫩草影院新地址| 亚洲欧美日韩东京热| 六月丁香七月| 肉色欧美久久久久久久蜜桃| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说| 国产无遮挡羞羞视频在线观看| 精华霜和精华液先用哪个| 国产在线一区二区三区精| 黑人高潮一二区| 国产av一区二区精品久久 | 欧美 日韩 精品 国产| 菩萨蛮人人尽说江南好唐韦庄| 黄色欧美视频在线观看| 国产高清国产精品国产三级 | 校园人妻丝袜中文字幕| 黄色日韩在线| 五月天丁香电影| 免费人妻精品一区二区三区视频| 嘟嘟电影网在线观看| 99热网站在线观看| 久久久精品免费免费高清| 午夜免费鲁丝| av福利片在线观看| 久久久久网色| 亚洲精品,欧美精品| 成年av动漫网址| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 国产精品久久久久久av不卡| 免费观看在线日韩|