• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract*

    2014-07-18 12:09:48Fenfen呂芬芬GAOYixian高藝HUANGJiale黃加樂(lè)SUNDaohua孫道華andLIQingbiao李清彪DepartmentofChemicalandBiochemicalEngineeringCollegeofChemistryandChemicalEngineeringFujianProvincialKeyLaboratoryofChemicalBiologyXiamenUniversityXiamen3610

    Lü Fenfen (呂芬芬), GAO Yixian (高藝), HUANG Jiale (黃加樂(lè)), SUN Daohua (孫道華)** and LI Qingbiao (李清彪)Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China

    Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract*

    Lü Fenfen (呂芬芬), GAO Yixian (高藝), HUANG Jiale (黃加樂(lè)), SUN Daohua (孫道華)** and LI Qingbiao (李清彪)
    Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China

    Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.

    biosynthesis, nanoparticle, nanowire, silver

    1 INTRODUCTION

    Synthesis of nanoparticles is of great importance and interest due to their particular physical and chemical properties, which provide a lot of opportunities for technical advances in the fields of mechanics, optics, electronics, chemical industry, medical science, and catalysis [1-5]. The synthesis of nanoparticles by various physical and chemical methods, such as laser radiation [6], ultrasound irradiation [7], evaporative cooling [8], chemical vapor deposition [9], explosion [10], impregnation [11], co-precipitation [12], sol-gel [13], and deposition-precipitation [14], has been reported extensively. Although these methods have successfully produced well-defined nanoparticles, they are environmental unfriendly and economically unsustainable. To overcome the problems, several studies have used biological resources available in nature, such as bacteria [15, 16], fungi [17], yeast [18], algae [19], and plants [20-22], for the synthesis of a variety of metal nanoparticles. Since the maintenance of cell cultures is elaborate, utilization of plant is well defined and established. Plant-mediated nanoparticle biosynthesis provides an important opportunity for straightforward, rapid and convenient approaches for the formation of metal nanoparticles. Plant-mediated biosynthesis of metal nanostructures only requires mild reaction conditions, and thus has many environmental and economic advantages. More importantly, the as-biosynthesized nanostructures possess high stability, which is one of the key issues for making nanoparticles. Therefore, the rapid development of the plant-mediated method has captured considerable attention in recent years.

    Many kinds of plants have been successfully utilized for synthesizing silver nanoparticles. Important examples include plant leaf/seed extract of alfalfa [23], Capsicum annuum [24], Azadirachta indica [25], Lippia citriodora [26], Polyalthia longifolia [27], Stevia rebaudiana [28], Crossandra infundibuliformis [29] and Ficus benghalensis [30]. In the synthesis process, bioactive components in the plant, such as proteins, polyphenols, flavonoid and reducing sugars, play different roles. For example, Zhou et al. [31] have demonstrated that reducing sugars and flavonoids are important reductants responsible for the formation of gold nanoparticles, and the proteins are not reducing agent but capping agent. Raghunandan et al. [32] have found that flavonoids could be adsorbed on the metal surface by interaction with carbonyl groups or π-electrons, and the internal conversion mechanism of ketone group to carboxylic acid in flavonoids may influence the metal ion reduction. Shankar et al. [33] have reported that the formation of gold nanoparticles by lemongrass plant is a result of reduction of aqueous AuCby the reducing sugars and the aldehydes/ ketones bound to the nascent spherical nanoparticles. Huang et al. [34] have demonstrated that polyol components and water-soluble heterocyclic components are involved in the reduction of silver ions as well as the stabilization of nanoparticles. Bar et al. [35] have reported the roles of cyclic peptides as bio-reducing and encapsulating agents for the synthesis of silver nanoparticles by Jatropha curcas, and hypothesized that smaller particles are mostly stabilized by cyclic octapeptide.

    It is clear that the formation of metal nanoparticles by plants usually involves several active components.In the synthesis process, the plant may act as reducing agent, capping agent or shape directing agent. Nevertheless, due to the complicated nature and enormous diversity of plants, identifying particular roles of different plant components responsible for the formation of silver nanoparticles is challenging. In this study, we obtain silver nanoparticles by using the extract of Gardenia jasminoides Ellis. The role of proteins, flavonoids, reducing sugars, polyphenols, geniposide and chlorogenic acids as the main components in the extract of Gardenia jasminoides Ellis are systematically investigated and clarified.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    Sundried Gardenia jasminoides Ellis was purchased from Xiamen Jiuding Drugstore (China). Silver nitrate (AgNO3), rutin hydrate (C27H30O16·3H2O), gallic acid (C7H6O5), 3,5-dinitrosalicylic acid, phenol (C6H5OH), sulfuric acid (H2SO4), and D-glucose (C6H12O6) were purchased from Sinopharm Chemical Reagent Co. Ltd., China and used as received.

    2.2 Preparation of extracts of Gardenia jasminoides Ellis

    The Gardenia jasminoides Ellis was ground to powder before use. 1.0 g of such powder was dispersed in 250 ml conical flask with 100 ml deionized water in a water bath shaker for 12 h. The mixture was filtered to obtain the extract for further experiments.

    2.3 Synthesis of silver nanoparticles

    Biosynthesis of silver nanoparticles was carried out by a simple procedure by reducing AgNO3with the extract of Gardenia jasminoides Ellis. Specifically, a certain amount of aqueous AgNO3(100 mmol·L?1) was added into a 100 ml flask with 50 ml of extract. Then, the reaction flask was covered with aluminum foil and incubated in a water bath shaker (30 °C, 150 r·min?1).

    2.4 Characterization of silver nanoparticles

    UV-Vis spectroscopic analyses of silver nanostructures were carried out as a function of bioreduction time at room temperature using TU 1900 UV-Vis spectrophotometer (Pgeneral, China) at a resolution of 1 nm. Samples for scanning electron microscopy (SEM) were prepared by placing drops of silver hydrosol on silicon wafers and allowing water or ethanol to evaporate completely. Then, the silicon wafers with silver nanoparticles were analyzed by a LEO-1530 Electron Microscope (LEO, Germany). Fourier transform infrared spectroscopy (FTIR) analysis was performed in order to identify the biomolecules responsible for the reduction of silver ions in Gardenia jasminoides Ellis extract. Specifically, the extract before reaction and the resulting solution after biosynthesis of silver nanoparticles were dried at 50 °C. The dried samples were ground with KBr (dried at 120 °C) and analyzed by Nicolet IR200 spectrophotometer (Thermo Nicolet, USA).

    2.5 Determination of components of Gardenia jasminoides Ellis

    The contents of proteins, flavonoid, reducing sugar, polyphenol in the Gardenia jasminoides Ellis extract before and after the reaction were determined by the spectrophotometric analysis. The contents of geniposide and chlorogenic acid in samples were obtained by high performance liquid chromatography (HPLC) method.

    The content of proteins was quantified by the coomassie brilliant blue colorimetric method [36]. Coomassie brilliant blue G-250 dye regent shows red color (the maximum UV-Vis absorption at 595 nm) in acidic state, while combined with protein, it shows blue color instead. 10 mg bovine albumin was dissolved in 100 ml water in 100 ml volumetric flask for linear assay to establish the calibration line.

    The content of flavonoid was determined using rutin as a standard [37]. The absorbance at 510 nm was measured against the color-developing blank agent using UV-Vis spectrophotometer. Rutin of 50 mg was dissolved in 20 ml alcohol (95%, by volume) in a 250 ml volumetric flask, and the solution was diluted 10 times with deionized water. The diluted solution was employed to establish the calibration line.

    The 3,5-dinitrosalicylic acid method was used for determination of reducing sugar [38]. Reducing sugar would reduce the nitro on 3,5-dinitrosalicylic acid to amino in the presence of sodium hydroxide and glycerol, and the ammonium compound would appear orange. The absorbance of samples at 540 nm was measured by UV-Vis spectrophotometer. D-Glucose of 3.0 g (dried at 105 °C) was dissolved in 1000 ml deionized water as standard solution to make the calibration line.

    The Prussian blue method was used to determine the total polyphenols content [39]. A combination of 1.0 ml aqueous Prussian blue solution (100 mmol·L?1HCl, 1.6 mmol·L?1K3Fe(CN)6, and 20 mmol·L?1FeCl3) and 3.0 ml adjusted sample solution were vortex-mixed in a test tube of 10 ml. The mixture showed blue color in 15 min after vortex. 3.0 ml of H3PO4was added into the solution, agitated, and kept for 2 min at room temperature. Finally, aqueous Arabic gum (2 ml, 1%) was added into the mixture. The absorbance of mixture at 700 nm was measured with the UV-Vis spectrophotometer.

    A straightforward, sensitive and specific HPLC method was employed to determined the content of geniposide and chlorogenic acid [40, 41], with anAgilent 1200 liquid chromatography system (Agilent Technologies, USA). For chromatographic analysis, a Hypersil ODS C18 column was used at a temperature of 30 °C. The mobile phase consisted of 100% methanol and 2% glacial acetic acid. The flow rate was 0.8 ml·min?1and the injection volume was 10 μl. Absorbance at 239 nm for geniposide and at 327 nm for chlorogenic acid was measured for quantification of the two compounds. The mixture solution of geniposide (100 mg·L?1) and chlorogenic acid (100 mg·L?1) was employed to establish the calibration line. The sample to be measured was filtered through a 0.45 μm membrane before injection for HPLC analysis.

    Figure 1 UV-Vis spectra of silver nanoparticles by reducing AgNO3with Gardenia jasminoides Ellis extract a—1d; b—2d; c—3d; d—4d; e—6d; f—7d; g—14d

    3 RESULTS AND DISCUSSION

    3.1 Preparation of silver nanoparticles with Gardenia jasminoides Ellis extract

    The formation of silver nanoparticles was primarily characterized by UV-visible spectroscopy analysis, which is generally considered to be a reliable way to examine size and shape of nanoparticles in aqueous solution [33, 42]. Herein, reduction of aqueous AgNO3during exposure to the extract of Gardenia jasminoides Ellis could be easily monitored by UV-Vis spectroscopy. Generally, the surface plasmon band of silver nanoplates falls in the range of 450-870 nm, with nanoparticles in the range of 400-450 nm and nanowires in the range of 350-390 nm in aqueous solutions [43-46]. Fig. 1 shows the UV-Vis spectra recorded from the reaction mixture of aqueous AgNO3and Gardenia jasminoides Ellis extract as a function of reaction time. It clearly demonstrates that the maximum absorbance wavelength red shifts and the absorbance increases with time from one day to two weeks. The red shifts also indicate the increasing size of silver nanoparticles, which is confirmed by the SEM images (Fig. 2). It is worth to note that the peak on the 14th day is broadened, due to the formation of

    O stretching vibration in aldehydes and cyclic compounds, respectively. The peaks at 1384 and 2927 cm?1is due to the bending vibration and stretching vibration of C silver nanowires [Fig. 2 (F)].

    FTIR analysis was carried out to identify possible functional groups responsible for the formation of silver nanoparticles. The peaks at 1045, 1075, 1158, 1284, 1384, 1440, 1514, 1630, 1701, 1756, 2927, and 3410 cm?1are identified [Fig. 3 (a)] before the reaction. Specifically, the peaks at 1075 and 1045 cm?1correspond to the hemiacetal in carbohydrate; the peaks at 1158 and 1284 cm?1can be attributed to the C

    C in aromatic compounds; the peaks at 1630 cm?1is attributed to the C H in alkanes; the peaks of 1440 and 1514 cm?1are associated with C

    O stretching vibration in carbonyl compounds or carboxylic acids; and the peak at 3410 cm?1was assigned to O

    O in carboxylates; the peaks at 1756 and 1701 cm?1are associated with C

    H stretching vibration in alcohols and phenolic compounds. Through the peak identification, we are able to show that the compounds responsible for the formation of silver nanoparticles in Gardenia jasminoides Ellis extract may includesaccharides, polyphenols, aldehydes, alcohol ketones, and carbonyl compounds.

    Figure 2 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with Gardenia jasminoides Ellis extract A—1d; B—2d; C—4d; D—6d; E—7d; F—14 d

    The FTIR spectra of the extract with AgNO3solution at 7 d and 14 d are presented as curves b and c. The peak at 1075 cm?1after reaction appears weaker than that before reaction, due to the reduction process with hemiacetal in carbohydrate [20]. The disappearance of the peaks at 1284 and 1514 cm?1is because of the reduction of silver ions by aldehydes and cyclic compounds. The peaks at 1756 and 1701 cm?1disappear after reaction. Earlier studies have demonstrated that polyvinyl pyrrolidone (PVP) protects palladium nanoparticles via the coordination of the C O group with particle surface [47]. Therefore, we speculate that the formation of silver nanoparticles is due to the reduction of aqueous AgNO3by the saccharides, carbonyl compounds or phenolic hydroxyl group, and the aldehydes ketones binding to silver nanoparticles act as protective group.

    Figure 3 FTIR spectra of Gardenia jasminoides Ellis extract before bioreduction (a), after bioreduction for 7 days (b) and 14 days (c) of silver nitrate

    3.2 Variance of main components in the extract before and after reaction

    In order to identify the active biomolecules responsible for the formation of silver nanoparticles, the major biomolecule components [41, 48] of the extract before and after the reaction were tested and the results are showed in Table 1. It is clear that proteins, flavonoid, geniposide and chlorogenic acid presents noticeable changes after reaction among all the biomolecules, revealing that they should be responsible for the formation of silver nanoparticles. This result is consistent with that of the FTIR analysis.

    To further confirm the role (reducing agent, capping agent, and shape-directing agent) of the biomolecule components in the Gardenia jasminoides Ellis extract during the biosynthesis of silver nanoparticles, six pure chemicals of these active components (bovine albumin, rutin, glucose, gallic acid, geniposide and chlorogenic acid) are employed for the following evaluation. Notably, bovine albumin, rutin, glucose and gallic acid are chosen to represent the protein, flavonoid, reducing sugars and polyphenols in the Gardenia jasminoides Ellis extract, respectively, since each of them includes a wide range of constituents.

    Table 1 Components of Gardenia jasminoides Ellis extract before and after the reaction

    3.3 Identification of reducing agent in Gardenia jasminoides Ellis extract

    Given constant amount of aqueous AgNO3(50 ml, 1 mmol·L?1), with PVP as typical capping agent, comparative amounts of six components were added to carry out possible reducing reaction in Gardenia jasminoides Ellis extract. The results are shown in Fig. 4. The fairly sharp absorbance at 400-450 nm is responsible for the formation of spherical silver nanoparticles [49]. No peak is observed with deionized water as a reference. Curves c, e and g show the resulting silver nanoparticles by the reactions of AgNO3with rutin, gallic acid and chlorogenic acid, respectively, which reveal that these three components have the reducing ability. Specially, the absorption peak intensity of silver nanoparticles by adding gallic acid is stronger than theother two, indicating that gallic acid is a stronger reducing agent.

    Figure 4 UV-Vis spectra of silver nanostructures synthesized by aqueous silver nitrate reacted with different components with PVP as protectant a—reference; b—bovine albumin; c—rutin; d—glucose; e—gallic acid; f—geniposide; g—chlorogenic acid

    3.4 Identification of capping agent in Gardenia jasminoides Ellis extract

    To confirm the potential capping agents in Gardenia jasminoides Ellis extract, the reactions of AgNO3with six components are presented in Fig. 5, with NaBH4added as typical reducing agent. No absorbance peak appears in the blank control sample and glucose (curves a and d), while geniposide (curve f) show minimal capping capacity in biosynthesis of silver nanoparticles. Obviously, bovine albumin, rutin, gallic acid and chlorogenic acid display peculiar capping capacity.

    3.5 Identification of shape-directing agent in Gardenia jasminoides Ellis extract

    Figure 5 UV-Vis spectra of silver nanostructures synthesized by aqueous silver nitrate reacted with components with NaBH4as reductanta—reference; b—bovine albumin; c—rutin; d—glucose; e—gallic acid; f—geniposide; g—chlorogenic acid

    Figure 6 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with different components with PVP as protectant and NaBH4as reductant A—bovine albumin; B—rutin; C—glucose; D—gallic acid; E—geniposide; F—chlorogenic acid

    In order to identify possible shape-directing agents, NaBH4and PVP were added to the aqueous mixture of AgNO3and six components separately. Fig. 6 shows the SEM images of silver nanoparticles synthesized by aqueous AgNO3reduced by different components with PVP as a protectant and NaBH4as a reductant. Clearly, silver nanoparticles are present in all the samples. Especially, Fig. 6 (E) illustrates silver nanoparticles with different morphologies obtained through adding geniposide into the initial solution. The formation of as-synthesized silver nanorods indicates the shape-directing capacity of geniposide. The addition of geniposide in chemical reduction systems results in the appearance of silver nanorods, since NaBH4has strong deoxidizing ability, which may impose restriction on shape-directing capacity of geniposide. In order to further confirm the role of geniposide in the process of synthesizing silver nanoparticles, a milder agent, the extract of Cinnamomum camphora leaf, was used as the reducing and protecting agent. Fig. 7 (C, D) shows typical SEM image of silver nanowires, while spherical and plate-like silver nanoparticles, without any silver nanowires, are observed in Fig. 7 (A, B). This further indicates thatgeniposide serves as a shape-directing agent in this system to promote the formation of silver nanowires.

    The above results are summarized in Table 2, which clearly shows that only geniposide in Gardenia jasminoides Ellis extract exhibits good shape-directing ability for plant-mediated biosynthesis of silver nanowires, but it barely shows any reducing and capping capacity. Rutin, gallic acid and chlorogenic acid possess both reducing and capping capacity, and gallic acid exhibits the strongest reducing capacity for synthesizing silver nanoparticles. Bovine albumin has the capping capacity, and early study has also proved that proteins might be protection agents in biosynthesis of gold nanoparticles [31].

    Figure 7 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with water extract of Cinnamomum camphora leaf (A, B) and with 16 mg·L?1geniposide added (C, D)

    Table 2 Summary of the effect of biomolecule components in the Gardenia jasminoides Ellis

    4 CONCLUSIONS

    Biosynthesis of silver nanoparticles by Gardenia jasminoides Ellis extract is used as a showcase to systematically study the specific roles of different plant components in the formation of nanoparticles. The component analysis shows that proteins, flavonoid, reducing sugar, polyphenol, geniposide and chlorogenic acid are important for the formation of silver nanoparticles. Especially, the content of flavonoid, polyphenols and chlorogenic acid has a significant drop after reaction. To further ascertain the role of the components in Gardenia jasminoides Ellis extract, pure chemicals of these active components are utilized and corresponding identifying experiments show that rutin, gallic acid and chlorogenic acid have reducing and protecting capacities. It is worth to note that geniposide exhibits good shape-directing capacity for the formation of silver nanowires.

    REFERENCES

    1 Iravani, S., “Green synthesis of metal nanoparticles using plants”, Green Chemistry, 13 (10), 2638-2650 (2011).

    2 Schmid, G., “Large clusters and colloids metals in the embryonic state”, Chemical Reviews, 92, 1709-1727 (1992).

    3 Colvin, V.L., Schlamp, M.C., Allvlsatos, A.P., “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer”, Nature, 370 (4), 354-357 (1994).

    4 Wang, R., Hashimoto, K., Fujishima, A., “Light-induced amphiphilic surfaces”, Nature, 388, 431-432 (1997).

    5 Medintz, I.L., Uyeda, H.T., Goldman, E.R., mattoussi, H., “Quantum dot bioconjugates for imaging, labelling and sensing”, Nature Materials, 4, 435-446 (2005).

    6 Sivakumar, M., Venkatakrishnan, K., Tan, B., “Synthesis of nanoscale tips using femtosecond laser radiation under ambient condition”, Nanoscale Research Letters, 5 (2), 438-441 (2009).

    7 Kundu, S., Panigrahi, S., Praharaj, S., Basu, S., Ghosh, S.K., Pal, A., Pal, T., “Anisotropic growth of gold clusters to gold nanocubes under UV irradiation”, Nanotechnology, 18 (7), 075712 (2007).

    8 Fisenko, S.P., Khodyko, J.A., “Low pressure evaporative cooling of micron-sized droplets of solutions and its novel applications”, Int. J. Heat and Mass Transfer, 52 (15-16), 3842-3849 (2009).

    9 Li, Y.L., Kinloch, I.A., Windle, A.H., “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis”, Science, 304 (5668), 276-278 (2004).

    10 Wu, W., Zhu, Z., Liu, Z., Xie, Y., Zhang, J., Hu, T., “Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method”, Carbon, 41, 317-321 (2003).

    11 Tsoncheva, T., Rosenholm, J., Linden, M., Kleitz, F., Tiemann, M., Ivanova, L., Dimitrov, M., Paneva, D., Mitov, I., Minchev, C.,“Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method”, Microporous and Mesoporous Materials, 112 (1-3), 327-337 (2008).

    12 Yang, H., Song, X., Zhang, X., Ao, W., Qiu, G., “Synthesis of vanadium-doped SnO2nanoparticles by chemical co-precipitation method”, Materials Letters, 57 (20), 3124-3127 (2003).

    13 Lu, Y., Yin, Y., Mayers, B.T., Xia, Y., “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach”, Nano Letters, 2 (3), 183-186 (2002).

    14 You, X., Chen, F., Zhang, J., Anpo, M., “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Catalysis Letters, 102 (3-4), 247-250 (2005).

    15 Taheri Otaqsara, S.M., “Biosynthesis of quasi-spherical Ag nanoparticle by Pseudomonas aeruginosa as a bio-reducing agent”, The European Physical Journal Applied Physics, 56 (3), 30402 (2011).

    16 Fu, M.X., Li, Q.B., Sun, D.H., Lu, Y.H., He, N., Deng, X., Wang, H.X., Huang, J.L., “Rapid preparation process of silver nanoparticles by bioreduction and their characterizations”, Chin. J. Chem. Eng., 14 (1), 114-117 (2006).

    17 Du, L.W., Xian, L.A., Feng, J.X., “Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp”, Journal of Nanoparticle Research, 13 (3), 921-930 (2011).

    18 Subramanian, M., Alikunhi, N.M., Kandasamy, K., “In vitro synthesisof silver nanoparticles by marine yeasts from coastal mangrove sediment”, Advanced Science Letters, 3 (4), 428-433 (2010).

    19 Sicard, C., Brayner, R., Margueritat, J., Hemadi, M., Coute, A., Yepremian, C., Djediat, C., Aubard, J., Fievet, F., Livage, J., Coradin, T., “Nano-gold biosynthesis by silica-encapsulated micro-algae: a‘living’ bio-hybrid material”, J. Mater. Chem., 20 (42), 9342-9347 (2010).

    20 Zhang, G., Du, M., Li, Q., Li, X., Huang, J., Jiang, X., Sun, D.,“Green synthesis of Au-Ag alloy nanoparticles using Cacumen platycladi extract”, RSC Advances, 3 (6), 1878 (2013).

    21 Lin, L., Wang, W., Huang, J., Li, Q., Sun, D., Yang, X., Wang, H., He, N., Wang, Y., “Nature factory of silver nanowires: plant-mediated synthesis using broth of Cassia fistula leaf”, Chem. Eng. J., 162 (2), 852-858 (2010).

    22 Chang, X., Yang, Z., Zeng, R., Yang, G., Yan, J., “Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst”, Chin. J. Chem. Eng., 18 (6), 1029-1033 (2010).

    23 Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles”, Langmuir, 19 (4), 1357-1361 (2003).

    24 Li, S.K., Shen, Y.H., Xie, A.J., Yu, X.R., Qiu, L.G., Zhang, L., Zhang, Q.F., “Green synthesis of silver nanoparticles using Capsicum annuum L. extract”, Green Chemistry, 9 (8), 852-858 (2007).

    25 Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T.C., Mukherjee, A., “Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves”, Journal of Nanoparticle Research, 12 (1), 237-246 (2009).

    26 Cruz, D., Fale, P.L., Mourato, A., Vaz, P.D., Serralheiro, M.L., Lino, A.R.L., “Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena)”, Colloids and Surfaces B—Biointerfaces, 81 (1), 67-73 (2010).

    27 Kaviya, S., Santhanalakshmi, J., Viswanathan, B., “Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity”, Journal of Nanotechnology, 2011, 1-5 (2011).

    28 Yilmaz, M., Turkdemir, H., Kilic, M.A., Bayram, E., Cicek, A., Mete, A., Ulug, B., “Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana”, Materials Chemistry and Physics, 130 (3), 1195-1202 (2011).

    29 Kaviya, S., Santhanalakshmi, J., Viswanathan, B., “Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract”, Materials Letters, 67 (1), 64-66 (2012).

    30 Saxena, A., Tripathi, R.M., Zafar, F., Singh, P., “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity”, Materials Letters, 67 (1), 91-94 (2012).

    31 Zhou, Y., Lin, W.S., Huang, J.L., Wang, W.T., Gao, Y.X., Lin, L.Q., Li, Q.B., Lin, L., Du, M.M., “Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts”, Nanoscale Research Letters, 5 (8), 1351-1359 (2010).

    32 Raghunandan, D., Basavaraja, S., Mahesh, B., Balaji, S., Manjunath, S.Y., Venkataraman, A., “Biosynthesis of stable poly-shaped gold nanoparticles from microwave-exposed aqueous extracellular antimalignant guava (Psidium guajava) leaf extract”, NanobioTechnology, 5 (1-4), 34-41 (2009).

    33 Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M., “Biological synthesis of triangular gold nanoprisms”, Nature Materials, 3 (7), 482-488 (2004).

    34 Huang, J.L., Li, Q.B., Sun, D.H., Lu, Y.H., Su, Y.B., Yang, X., Wang, H.X., Wang, Y.P., Shao, W.Y., He, N., Hong, J.Q., Chen, C.X., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf”, Nanotechnology, 18 (10), 105104 (2007).

    35 Bar, H., Bhui, D.K., Sahoo, G.R., Sarkar, P., De, S.R., Misra, A.,“Green synthesis of silver nanoparticles using latex of Jatropha curcas”, Colloids and Surfaces A—Physicochemical and Engineering Aspects, 339 (1-3), 134-139 (2009).

    36 Hou, M., Food Anlysis, Chemical Industry Press, Beijing (2004). (in Chinese)

    37 Sun, C., Huang, K., Chen, C., Zhang, D., “Extraction of flavonoids from Cinnamomum camphora leaves”, Appl. Chem. Ind., 35 (2), 142-143 (2006).

    38 Wang, J., Zhang, S., Yang, B., Cheng, P., Wu, Z., Hu, J., “Application of 3,5-dinitrosalicylic acid (DNS) method to test the reducing sugar and water-soluble total sugar content in sugarcane internodes”, Sugarcane and Canesugar, 5, 45-49 (2008).

    39 Graham, H.D., “Stabilization of the Prussian blue color in the determination of polyphenols”, Journal of Agricultural and Food Chemistry, 40 (5), 801-805 (1992).

    40 He, M.L., Cheng, X.W., Chen, J.K., Zhou, T.S., “Simultaneous determination of five major biologically active ingredients in different parts of Gardenia jasminoides fruits by HPLC with diode-array detection”, Chromatographia, 64 (11-12), 713-717 (2006).

    41 Ji, X., Bi, K., Wang, Y., Chen, X., “Simultaneous HPLC determination of chlorogenic acid, jasminoidin and puerarin in Kanggan Jiedu granules”, Chinese Journal of Pharmaceutical Analysis, 30 (1), 56-58 (2010).

    42 Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes”, J. Mater. Chem., 13 (7), 1822-1826 (2003).

    43 Sun, Y., Gates, B., Mayers, B., Xia, Y., “Crystalline silver nanowires by soft solution processing”, Nano Letters, 2 (2), 165-168 (2002).

    44 Zhang, W.C., Wu, X.L., Chen, H.T., Gao, Y.J., Zhu, J., Huang, G.S., Chu, P.K., “Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method”, Acta Materialia, 56 (11), 2508-2513 (2008).

    45 Kottmann, J., Martin, O., Smith, D., Schultz, S., “Plasmon resonances of silver nanowires with a nonregular cross section”, Physical Review B, 64, 235402 (2001).

    46 Zhang, Q., Ge, J., Pham, T., Goebl, J., Hu, Y., Lu, Z., Yin, Y., “Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability”, Angewandte Chemie, 48 (19), 3516-3519 (2009).

    47 Nemamcha, A., Rehspringer, J.L., Khatmi, D., “Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution”, Journal of Physical Chemestry B, 110 (1), 383-387 (2006).

    48 Kim, H.J., Kim, E.J., Seo, S.H., Shin, C.G., Jin, C., Lee, Y.S., “Vanillic acid glycoside and quinic acid derivatives from Gardeniae fructus”, Journal of Natural Products, 69 (4), 600-603 (2006).

    49 Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U., Madhankumar, D.,“Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum”, Materials Letters, 75, 33-35 (2012).

    2013-07-30, accepted 2013-10-22.

    * Supported by the National Natural Science Foundation of China (21036004, 21206140) and Science and Technology Program of Xiamen of Fujian Province, China (3502Z20133006).

    ** To whom correspondence should be addressed. E-mail: sdaohua@xmu.edu.cn

    啪啪无遮挡十八禁网站| 成人高潮视频无遮挡免费网站| e午夜精品久久久久久久| 日本a在线网址| 男女下面进入的视频免费午夜| 国产免费男女视频| 99热这里只有精品一区 | 国产精品永久免费网站| 一夜夜www| 国产三级在线视频| 国产精品免费视频内射| 午夜久久久久精精品| 欧美日韩福利视频一区二区| 久久人妻福利社区极品人妻图片| 亚洲国产看品久久| 黄色 视频免费看| 无限看片的www在线观看| 成人18禁在线播放| 亚洲人与动物交配视频| 18禁美女被吸乳视频| 五月玫瑰六月丁香| 国产三级在线视频| 亚洲 欧美 日韩 在线 免费| 亚洲成av人片在线播放无| 精品久久蜜臀av无| 毛片女人毛片| 亚洲熟妇熟女久久| 国产一区在线观看成人免费| 一进一出抽搐gif免费好疼| 免费在线观看视频国产中文字幕亚洲| 欧美成人免费av一区二区三区| 麻豆成人午夜福利视频| 一夜夜www| 国语自产精品视频在线第100页| 久久热在线av| 女人被狂操c到高潮| 国产精华一区二区三区| 淫秽高清视频在线观看| 黄片小视频在线播放| 99国产极品粉嫩在线观看| 在线观看66精品国产| 韩国av一区二区三区四区| 制服人妻中文乱码| 欧美黄色淫秽网站| 久久午夜亚洲精品久久| 亚洲欧美一区二区三区黑人| 亚洲精品国产精品久久久不卡| 男女做爰动态图高潮gif福利片| 午夜福利高清视频| 精品少妇一区二区三区视频日本电影| 欧美日韩国产亚洲二区| 国产1区2区3区精品| 亚洲在线自拍视频| 人人妻人人看人人澡| 亚洲 欧美一区二区三区| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 久久久久久亚洲精品国产蜜桃av| 国产成人aa在线观看| 亚洲精华国产精华精| 在线观看美女被高潮喷水网站 | 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 91麻豆精品激情在线观看国产| 亚洲精品一区av在线观看| 欧美一区二区精品小视频在线| 麻豆成人av在线观看| 国产熟女xx| 窝窝影院91人妻| 观看免费一级毛片| 欧美另类亚洲清纯唯美| 两人在一起打扑克的视频| 久久香蕉激情| 男女视频在线观看网站免费 | 欧美一级a爱片免费观看看 | 久久国产乱子伦精品免费另类| 不卡一级毛片| 两个人的视频大全免费| 久久精品夜夜夜夜夜久久蜜豆 | 少妇裸体淫交视频免费看高清 | 亚洲av电影不卡..在线观看| 成人亚洲精品av一区二区| 制服人妻中文乱码| 国内精品久久久久精免费| 夜夜躁狠狠躁天天躁| 啦啦啦韩国在线观看视频| 可以在线观看毛片的网站| 在线国产一区二区在线| 亚洲午夜理论影院| www日本在线高清视频| 久久精品亚洲精品国产色婷小说| 好看av亚洲va欧美ⅴa在| 国产亚洲精品综合一区在线观看 | 色综合亚洲欧美另类图片| 五月伊人婷婷丁香| 午夜福利欧美成人| 国产精品久久久av美女十八| 亚洲精品一区av在线观看| 婷婷精品国产亚洲av在线| 黄色 视频免费看| 日韩欧美 国产精品| 日本黄大片高清| 神马国产精品三级电影在线观看 | 亚洲色图 男人天堂 中文字幕| 嫁个100分男人电影在线观看| 香蕉国产在线看| 欧美日韩福利视频一区二区| 非洲黑人性xxxx精品又粗又长| 久久草成人影院| 欧美极品一区二区三区四区| 精品久久蜜臀av无| 婷婷丁香在线五月| 亚洲欧美精品综合久久99| 两人在一起打扑克的视频| 免费在线观看亚洲国产| 国产单亲对白刺激| 精品久久蜜臀av无| 亚洲精品国产一区二区精华液| 高清在线国产一区| 国产精品九九99| 99re在线观看精品视频| 午夜影院日韩av| 午夜福利欧美成人| 日韩欧美一区二区三区在线观看| 国产真人三级小视频在线观看| 午夜福利18| 美女免费视频网站| 国产精品免费一区二区三区在线| 久久精品国产清高在天天线| 长腿黑丝高跟| 国产亚洲欧美在线一区二区| 亚洲精品国产精品久久久不卡| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 午夜免费激情av| 亚洲人成电影免费在线| 国产精华一区二区三区| 午夜精品在线福利| 一本一本综合久久| bbb黄色大片| 免费在线观看成人毛片| www国产在线视频色| 正在播放国产对白刺激| 亚洲av成人一区二区三| 在线观看66精品国产| 成人特级黄色片久久久久久久| 亚洲成人免费电影在线观看| 亚洲熟女毛片儿| 悠悠久久av| 亚洲国产精品sss在线观看| 亚洲成人精品中文字幕电影| 美女免费视频网站| 男人舔女人下体高潮全视频| 18禁国产床啪视频网站| 88av欧美| 99在线人妻在线中文字幕| 少妇裸体淫交视频免费看高清 | 亚洲aⅴ乱码一区二区在线播放 | 好看av亚洲va欧美ⅴa在| 又紧又爽又黄一区二区| 亚洲一区二区三区色噜噜| 两个人的视频大全免费| 国产精品影院久久| 亚洲片人在线观看| 欧美黑人欧美精品刺激| 麻豆国产97在线/欧美 | 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 特大巨黑吊av在线直播| 国产久久久一区二区三区| 黄色丝袜av网址大全| 脱女人内裤的视频| 国产熟女xx| 精品少妇一区二区三区视频日本电影| 悠悠久久av| 国产男靠女视频免费网站| 久久这里只有精品中国| 色综合亚洲欧美另类图片| 波多野结衣高清作品| 久久人妻福利社区极品人妻图片| 久久亚洲真实| 后天国语完整版免费观看| 亚洲免费av在线视频| 国产av一区在线观看免费| 可以在线观看毛片的网站| 女人爽到高潮嗷嗷叫在线视频| 在线a可以看的网站| 日韩欧美国产一区二区入口| 日本 av在线| 国产高清视频在线观看网站| 久久午夜亚洲精品久久| 精品欧美一区二区三区在线| 色尼玛亚洲综合影院| 免费在线观看日本一区| 人人妻人人看人人澡| 久久久久国产精品人妻aⅴ院| 国产亚洲精品久久久久久毛片| 男人舔女人的私密视频| 国产又色又爽无遮挡免费看| 香蕉av资源在线| videosex国产| 母亲3免费完整高清在线观看| 亚洲成av人片免费观看| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av| 一区福利在线观看| a级毛片在线看网站| www.精华液| 国产精品98久久久久久宅男小说| 宅男免费午夜| 欧美黑人巨大hd| 欧美一级毛片孕妇| 欧美日本视频| 妹子高潮喷水视频| 18禁国产床啪视频网站| 两个人视频免费观看高清| 精品欧美一区二区三区在线| 精品高清国产在线一区| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲| 欧美丝袜亚洲另类 | 久久精品夜夜夜夜夜久久蜜豆 | 免费看十八禁软件| 黄色片一级片一级黄色片| 欧美成狂野欧美在线观看| 亚洲人成电影免费在线| 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 国产亚洲精品av在线| 一二三四在线观看免费中文在| 日韩免费av在线播放| 亚洲成人中文字幕在线播放| 麻豆国产97在线/欧美 | 欧美丝袜亚洲另类 | 99热只有精品国产| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 久久久久国产一级毛片高清牌| 真人做人爱边吃奶动态| 一边摸一边做爽爽视频免费| 好男人电影高清在线观看| videosex国产| 国产麻豆成人av免费视频| 成年女人毛片免费观看观看9| 可以在线观看毛片的网站| 成人特级黄色片久久久久久久| 精品乱码久久久久久99久播| 久久久久国内视频| 亚洲av成人精品一区久久| 色哟哟哟哟哟哟| 97人妻精品一区二区三区麻豆| 久久精品影院6| 国产精品久久视频播放| 很黄的视频免费| 中文字幕最新亚洲高清| www日本在线高清视频| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 99在线视频只有这里精品首页| 中文字幕最新亚洲高清| 精品国内亚洲2022精品成人| 亚洲欧美日韩东京热| 久久久国产欧美日韩av| 国产一区二区在线av高清观看| 在线观看免费午夜福利视频| 精品国内亚洲2022精品成人| 欧美性长视频在线观看| 2021天堂中文幕一二区在线观| 九色成人免费人妻av| 操出白浆在线播放| 久久热在线av| 免费无遮挡裸体视频| 色在线成人网| 午夜影院日韩av| 亚洲av成人av| 亚洲aⅴ乱码一区二区在线播放 | 特级一级黄色大片| 亚洲一区二区三区色噜噜| 亚洲成人精品中文字幕电影| www.999成人在线观看| 舔av片在线| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 啦啦啦观看免费观看视频高清| 成人高潮视频无遮挡免费网站| ponron亚洲| 午夜免费观看网址| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 国产激情久久老熟女| 看片在线看免费视频| 少妇熟女aⅴ在线视频| 我的老师免费观看完整版| 国产主播在线观看一区二区| 久久精品影院6| 男人的好看免费观看在线视频 | 亚洲av成人不卡在线观看播放网| 久久中文看片网| а√天堂www在线а√下载| 狂野欧美白嫩少妇大欣赏| 男女那种视频在线观看| 免费观看精品视频网站| 免费在线观看日本一区| 成人欧美大片| 欧美日本视频| 国产爱豆传媒在线观看 | 成人三级做爰电影| 亚洲中文日韩欧美视频| 国产一级毛片七仙女欲春2| 久久香蕉国产精品| 毛片女人毛片| 在线播放国产精品三级| 国产精品国产高清国产av| 最好的美女福利视频网| 国产午夜精品久久久久久| 嫁个100分男人电影在线观看| 久久伊人香网站| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| videosex国产| 1024手机看黄色片| 成人18禁在线播放| 亚洲色图av天堂| 中文字幕人成人乱码亚洲影| 国产亚洲精品久久久久5区| x7x7x7水蜜桃| 窝窝影院91人妻| 身体一侧抽搐| 亚洲,欧美精品.| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 欧美 亚洲 国产 日韩一| 国产男靠女视频免费网站| 一个人免费在线观看的高清视频| 日韩有码中文字幕| 亚洲在线自拍视频| 精品国产亚洲在线| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 久久久久性生活片| 国产激情偷乱视频一区二区| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 欧美zozozo另类| 中出人妻视频一区二区| 成人永久免费在线观看视频| 又粗又爽又猛毛片免费看| 日韩三级视频一区二区三区| 亚洲人成电影免费在线| 国产又黄又爽又无遮挡在线| 婷婷亚洲欧美| 欧美av亚洲av综合av国产av| or卡值多少钱| 精品一区二区三区四区五区乱码| 日韩大尺度精品在线看网址| 欧美三级亚洲精品| 免费电影在线观看免费观看| 日韩高清综合在线| 欧美极品一区二区三区四区| 成人高潮视频无遮挡免费网站| 亚洲国产精品999在线| 免费观看人在逋| 老司机午夜福利在线观看视频| 一本大道久久a久久精品| 久久久国产欧美日韩av| 国产精品av久久久久免费| 最新在线观看一区二区三区| 香蕉久久夜色| 免费在线观看完整版高清| 国产成人aa在线观看| 日韩欧美在线乱码| 伊人久久大香线蕉亚洲五| 久久精品综合一区二区三区| 久久久久九九精品影院| 精品第一国产精品| 夜夜看夜夜爽夜夜摸| 波多野结衣高清作品| 亚洲人成电影免费在线| 夜夜躁狠狠躁天天躁| 老熟妇仑乱视频hdxx| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 日日爽夜夜爽网站| 国产野战对白在线观看| 男女之事视频高清在线观看| 久久久久国产一级毛片高清牌| 757午夜福利合集在线观看| 在线视频色国产色| 亚洲一码二码三码区别大吗| 熟女少妇亚洲综合色aaa.| 国产精品一区二区精品视频观看| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美精品综合一区二区三区| 精品国产美女av久久久久小说| 久久精品成人免费网站| 观看免费一级毛片| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 老司机在亚洲福利影院| 美女黄网站色视频| 在线观看日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品91蜜桃| 九色成人免费人妻av| 日本撒尿小便嘘嘘汇集6| 少妇熟女aⅴ在线视频| 婷婷六月久久综合丁香| www.www免费av| 免费在线观看日本一区| 日韩精品青青久久久久久| 两个人视频免费观看高清| 精品久久久久久久久久久久久| 又紧又爽又黄一区二区| 亚洲av成人av| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 男女做爰动态图高潮gif福利片| 午夜免费激情av| 国产激情偷乱视频一区二区| 亚洲美女黄片视频| 母亲3免费完整高清在线观看| 精品第一国产精品| 嫩草影视91久久| 亚洲av第一区精品v没综合| 国产av一区在线观看免费| 老司机靠b影院| 日韩欧美免费精品| 欧美国产日韩亚洲一区| 欧美三级亚洲精品| 亚洲国产欧美人成| 成熟少妇高潮喷水视频| 亚洲国产高清在线一区二区三| 欧美性猛交黑人性爽| 免费看日本二区| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 亚洲一区高清亚洲精品| 黄色成人免费大全| 在线免费观看的www视频| 午夜老司机福利片| 岛国在线观看网站| 日韩三级视频一区二区三区| 黄色丝袜av网址大全| 午夜a级毛片| www国产在线视频色| 两个人视频免费观看高清| 成人国语在线视频| 亚洲中文字幕日韩| 国产三级黄色录像| 成熟少妇高潮喷水视频| 黄色 视频免费看| 亚洲精品中文字幕一二三四区| 男女那种视频在线观看| 国产av在哪里看| 女警被强在线播放| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 99国产极品粉嫩在线观看| 18美女黄网站色大片免费观看| 色综合婷婷激情| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 老司机深夜福利视频在线观看| 黄片小视频在线播放| 欧美色欧美亚洲另类二区| 女同久久另类99精品国产91| 九九热线精品视视频播放| 色尼玛亚洲综合影院| 男人舔奶头视频| 日韩高清综合在线| 中文资源天堂在线| 亚洲,欧美精品.| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 两个人视频免费观看高清| 啦啦啦观看免费观看视频高清| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品粉嫩美女一区| 91麻豆av在线| 日本免费一区二区三区高清不卡| 最近最新免费中文字幕在线| 午夜日韩欧美国产| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| а√天堂www在线а√下载| 国产精品野战在线观看| 久久99热这里只有精品18| 国内精品久久久久久久电影| 亚洲欧美精品综合一区二区三区| 露出奶头的视频| 91大片在线观看| 免费av毛片视频| 欧美一级毛片孕妇| 色在线成人网| 丝袜人妻中文字幕| 又黄又粗又硬又大视频| 变态另类丝袜制服| 国产片内射在线| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 欧美不卡视频在线免费观看 | 级片在线观看| 国产精品久久久av美女十八| 欧美日韩福利视频一区二区| 日本成人三级电影网站| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 1024香蕉在线观看| 婷婷丁香在线五月| 日本五十路高清| 香蕉国产在线看| 黄色成人免费大全| 国产亚洲精品久久久久5区| 一级毛片精品| 日韩欧美三级三区| √禁漫天堂资源中文www| 亚洲欧美日韩无卡精品| 免费在线观看黄色视频的| 亚洲国产高清在线一区二区三| 岛国在线免费视频观看| 亚洲av中文字字幕乱码综合| 久久天堂一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 欧美色视频一区免费| 日本成人三级电影网站| 亚洲av熟女| 在线观看舔阴道视频| 麻豆国产97在线/欧美 | 亚洲色图av天堂| 日韩欧美免费精品| 波多野结衣巨乳人妻| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| 18禁黄网站禁片免费观看直播| 黄色片一级片一级黄色片| 国产一级毛片七仙女欲春2| a级毛片在线看网站| 亚洲国产精品合色在线| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 深夜精品福利| 午夜久久久久精精品| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 人人妻人人澡欧美一区二区| 女警被强在线播放| 老司机靠b影院| 国产亚洲av嫩草精品影院| 小说图片视频综合网站| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 日韩大尺度精品在线看网址| 精品乱码久久久久久99久播| 国产精品永久免费网站| 午夜a级毛片| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 两人在一起打扑克的视频| 欧美又色又爽又黄视频| bbb黄色大片| 日本免费一区二区三区高清不卡| 1024手机看黄色片| 欧美日韩黄片免| 欧美成狂野欧美在线观看| 国产精品久久久久久久电影 | 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 欧美乱色亚洲激情| 在线观看美女被高潮喷水网站 | 成熟少妇高潮喷水视频| 18禁黄网站禁片免费观看直播| 久久久国产成人精品二区| 午夜福利18| 久久草成人影院| 国产在线观看jvid| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 国产区一区二久久| 国产野战对白在线观看| 最新在线观看一区二区三区| 国产野战对白在线观看| 免费看日本二区| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx| 美女大奶头视频| 欧美中文日本在线观看视频| 成人三级黄色视频| 欧美成人免费av一区二区三区| 国产一区二区在线观看日韩 | 少妇熟女aⅴ在线视频| 日本a在线网址| 白带黄色成豆腐渣| 亚洲国产欧美一区二区综合| 国产乱人伦免费视频| 18美女黄网站色大片免费观看| 小说图片视频综合网站| 俺也久久电影网| 身体一侧抽搐| 亚洲人成电影免费在线| 91字幕亚洲| 两人在一起打扑克的视频| 亚洲成人中文字幕在线播放| 欧美成人免费av一区二区三区| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 国产私拍福利视频在线观看|