• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract*

    2014-07-18 12:09:48Fenfen呂芬芬GAOYixian高藝HUANGJiale黃加樂(lè)SUNDaohua孫道華andLIQingbiao李清彪DepartmentofChemicalandBiochemicalEngineeringCollegeofChemistryandChemicalEngineeringFujianProvincialKeyLaboratoryofChemicalBiologyXiamenUniversityXiamen3610

    Lü Fenfen (呂芬芬), GAO Yixian (高藝), HUANG Jiale (黃加樂(lè)), SUN Daohua (孫道華)** and LI Qingbiao (李清彪)Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China

    Roles of Biomolecules in the Biosynthesis of Silver Nanoparticles: Case of Gardenia jasminoides Extract*

    Lü Fenfen (呂芬芬), GAO Yixian (高藝), HUANG Jiale (黃加樂(lè)), SUN Daohua (孫道華)** and LI Qingbiao (李清彪)
    Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen 361005, China

    Rapid development of biosynthesis of metal nanoparticles using plants has attracted extensive interests to further investigate this novel and eco-friendly method. In the biosynthesis process, the plant may act as reducing agent, capping agent or shape directing agent. However, identifying specific roles of various components in the plant is challenging. In this study, we use biosynthesis of silver nanoparticles with Gardenia jasminoides Ellis extract to address this issue. The formation process of silver nanoparticles is investigated and the nanoparticles are characterized with the ultraviolet-visible spectroscopy, Fourier transform infrared spectra and scanning electron microscopy. The results indicate that the Gardenia jasminoides Ellis extract can reduce silver ions to form silver nanoparticles, stabilize the nanoparticles, and affect the growth of silver nanocrystal to form silver nanowires. Only geniposide in the extract exhibits good shape-directing ability for silver nanowires. It is found that bovine albumin is a potential capping agent, whereas rutin, gallic acid and chlorogenic acid possess reducing and capping ability.

    biosynthesis, nanoparticle, nanowire, silver

    1 INTRODUCTION

    Synthesis of nanoparticles is of great importance and interest due to their particular physical and chemical properties, which provide a lot of opportunities for technical advances in the fields of mechanics, optics, electronics, chemical industry, medical science, and catalysis [1-5]. The synthesis of nanoparticles by various physical and chemical methods, such as laser radiation [6], ultrasound irradiation [7], evaporative cooling [8], chemical vapor deposition [9], explosion [10], impregnation [11], co-precipitation [12], sol-gel [13], and deposition-precipitation [14], has been reported extensively. Although these methods have successfully produced well-defined nanoparticles, they are environmental unfriendly and economically unsustainable. To overcome the problems, several studies have used biological resources available in nature, such as bacteria [15, 16], fungi [17], yeast [18], algae [19], and plants [20-22], for the synthesis of a variety of metal nanoparticles. Since the maintenance of cell cultures is elaborate, utilization of plant is well defined and established. Plant-mediated nanoparticle biosynthesis provides an important opportunity for straightforward, rapid and convenient approaches for the formation of metal nanoparticles. Plant-mediated biosynthesis of metal nanostructures only requires mild reaction conditions, and thus has many environmental and economic advantages. More importantly, the as-biosynthesized nanostructures possess high stability, which is one of the key issues for making nanoparticles. Therefore, the rapid development of the plant-mediated method has captured considerable attention in recent years.

    Many kinds of plants have been successfully utilized for synthesizing silver nanoparticles. Important examples include plant leaf/seed extract of alfalfa [23], Capsicum annuum [24], Azadirachta indica [25], Lippia citriodora [26], Polyalthia longifolia [27], Stevia rebaudiana [28], Crossandra infundibuliformis [29] and Ficus benghalensis [30]. In the synthesis process, bioactive components in the plant, such as proteins, polyphenols, flavonoid and reducing sugars, play different roles. For example, Zhou et al. [31] have demonstrated that reducing sugars and flavonoids are important reductants responsible for the formation of gold nanoparticles, and the proteins are not reducing agent but capping agent. Raghunandan et al. [32] have found that flavonoids could be adsorbed on the metal surface by interaction with carbonyl groups or π-electrons, and the internal conversion mechanism of ketone group to carboxylic acid in flavonoids may influence the metal ion reduction. Shankar et al. [33] have reported that the formation of gold nanoparticles by lemongrass plant is a result of reduction of aqueous AuCby the reducing sugars and the aldehydes/ ketones bound to the nascent spherical nanoparticles. Huang et al. [34] have demonstrated that polyol components and water-soluble heterocyclic components are involved in the reduction of silver ions as well as the stabilization of nanoparticles. Bar et al. [35] have reported the roles of cyclic peptides as bio-reducing and encapsulating agents for the synthesis of silver nanoparticles by Jatropha curcas, and hypothesized that smaller particles are mostly stabilized by cyclic octapeptide.

    It is clear that the formation of metal nanoparticles by plants usually involves several active components.In the synthesis process, the plant may act as reducing agent, capping agent or shape directing agent. Nevertheless, due to the complicated nature and enormous diversity of plants, identifying particular roles of different plant components responsible for the formation of silver nanoparticles is challenging. In this study, we obtain silver nanoparticles by using the extract of Gardenia jasminoides Ellis. The role of proteins, flavonoids, reducing sugars, polyphenols, geniposide and chlorogenic acids as the main components in the extract of Gardenia jasminoides Ellis are systematically investigated and clarified.

    2 EXPERIMENTAL

    2.1 Chemicals and materials

    Sundried Gardenia jasminoides Ellis was purchased from Xiamen Jiuding Drugstore (China). Silver nitrate (AgNO3), rutin hydrate (C27H30O16·3H2O), gallic acid (C7H6O5), 3,5-dinitrosalicylic acid, phenol (C6H5OH), sulfuric acid (H2SO4), and D-glucose (C6H12O6) were purchased from Sinopharm Chemical Reagent Co. Ltd., China and used as received.

    2.2 Preparation of extracts of Gardenia jasminoides Ellis

    The Gardenia jasminoides Ellis was ground to powder before use. 1.0 g of such powder was dispersed in 250 ml conical flask with 100 ml deionized water in a water bath shaker for 12 h. The mixture was filtered to obtain the extract for further experiments.

    2.3 Synthesis of silver nanoparticles

    Biosynthesis of silver nanoparticles was carried out by a simple procedure by reducing AgNO3with the extract of Gardenia jasminoides Ellis. Specifically, a certain amount of aqueous AgNO3(100 mmol·L?1) was added into a 100 ml flask with 50 ml of extract. Then, the reaction flask was covered with aluminum foil and incubated in a water bath shaker (30 °C, 150 r·min?1).

    2.4 Characterization of silver nanoparticles

    UV-Vis spectroscopic analyses of silver nanostructures were carried out as a function of bioreduction time at room temperature using TU 1900 UV-Vis spectrophotometer (Pgeneral, China) at a resolution of 1 nm. Samples for scanning electron microscopy (SEM) were prepared by placing drops of silver hydrosol on silicon wafers and allowing water or ethanol to evaporate completely. Then, the silicon wafers with silver nanoparticles were analyzed by a LEO-1530 Electron Microscope (LEO, Germany). Fourier transform infrared spectroscopy (FTIR) analysis was performed in order to identify the biomolecules responsible for the reduction of silver ions in Gardenia jasminoides Ellis extract. Specifically, the extract before reaction and the resulting solution after biosynthesis of silver nanoparticles were dried at 50 °C. The dried samples were ground with KBr (dried at 120 °C) and analyzed by Nicolet IR200 spectrophotometer (Thermo Nicolet, USA).

    2.5 Determination of components of Gardenia jasminoides Ellis

    The contents of proteins, flavonoid, reducing sugar, polyphenol in the Gardenia jasminoides Ellis extract before and after the reaction were determined by the spectrophotometric analysis. The contents of geniposide and chlorogenic acid in samples were obtained by high performance liquid chromatography (HPLC) method.

    The content of proteins was quantified by the coomassie brilliant blue colorimetric method [36]. Coomassie brilliant blue G-250 dye regent shows red color (the maximum UV-Vis absorption at 595 nm) in acidic state, while combined with protein, it shows blue color instead. 10 mg bovine albumin was dissolved in 100 ml water in 100 ml volumetric flask for linear assay to establish the calibration line.

    The content of flavonoid was determined using rutin as a standard [37]. The absorbance at 510 nm was measured against the color-developing blank agent using UV-Vis spectrophotometer. Rutin of 50 mg was dissolved in 20 ml alcohol (95%, by volume) in a 250 ml volumetric flask, and the solution was diluted 10 times with deionized water. The diluted solution was employed to establish the calibration line.

    The 3,5-dinitrosalicylic acid method was used for determination of reducing sugar [38]. Reducing sugar would reduce the nitro on 3,5-dinitrosalicylic acid to amino in the presence of sodium hydroxide and glycerol, and the ammonium compound would appear orange. The absorbance of samples at 540 nm was measured by UV-Vis spectrophotometer. D-Glucose of 3.0 g (dried at 105 °C) was dissolved in 1000 ml deionized water as standard solution to make the calibration line.

    The Prussian blue method was used to determine the total polyphenols content [39]. A combination of 1.0 ml aqueous Prussian blue solution (100 mmol·L?1HCl, 1.6 mmol·L?1K3Fe(CN)6, and 20 mmol·L?1FeCl3) and 3.0 ml adjusted sample solution were vortex-mixed in a test tube of 10 ml. The mixture showed blue color in 15 min after vortex. 3.0 ml of H3PO4was added into the solution, agitated, and kept for 2 min at room temperature. Finally, aqueous Arabic gum (2 ml, 1%) was added into the mixture. The absorbance of mixture at 700 nm was measured with the UV-Vis spectrophotometer.

    A straightforward, sensitive and specific HPLC method was employed to determined the content of geniposide and chlorogenic acid [40, 41], with anAgilent 1200 liquid chromatography system (Agilent Technologies, USA). For chromatographic analysis, a Hypersil ODS C18 column was used at a temperature of 30 °C. The mobile phase consisted of 100% methanol and 2% glacial acetic acid. The flow rate was 0.8 ml·min?1and the injection volume was 10 μl. Absorbance at 239 nm for geniposide and at 327 nm for chlorogenic acid was measured for quantification of the two compounds. The mixture solution of geniposide (100 mg·L?1) and chlorogenic acid (100 mg·L?1) was employed to establish the calibration line. The sample to be measured was filtered through a 0.45 μm membrane before injection for HPLC analysis.

    Figure 1 UV-Vis spectra of silver nanoparticles by reducing AgNO3with Gardenia jasminoides Ellis extract a—1d; b—2d; c—3d; d—4d; e—6d; f—7d; g—14d

    3 RESULTS AND DISCUSSION

    3.1 Preparation of silver nanoparticles with Gardenia jasminoides Ellis extract

    The formation of silver nanoparticles was primarily characterized by UV-visible spectroscopy analysis, which is generally considered to be a reliable way to examine size and shape of nanoparticles in aqueous solution [33, 42]. Herein, reduction of aqueous AgNO3during exposure to the extract of Gardenia jasminoides Ellis could be easily monitored by UV-Vis spectroscopy. Generally, the surface plasmon band of silver nanoplates falls in the range of 450-870 nm, with nanoparticles in the range of 400-450 nm and nanowires in the range of 350-390 nm in aqueous solutions [43-46]. Fig. 1 shows the UV-Vis spectra recorded from the reaction mixture of aqueous AgNO3and Gardenia jasminoides Ellis extract as a function of reaction time. It clearly demonstrates that the maximum absorbance wavelength red shifts and the absorbance increases with time from one day to two weeks. The red shifts also indicate the increasing size of silver nanoparticles, which is confirmed by the SEM images (Fig. 2). It is worth to note that the peak on the 14th day is broadened, due to the formation of

    O stretching vibration in aldehydes and cyclic compounds, respectively. The peaks at 1384 and 2927 cm?1is due to the bending vibration and stretching vibration of C silver nanowires [Fig. 2 (F)].

    FTIR analysis was carried out to identify possible functional groups responsible for the formation of silver nanoparticles. The peaks at 1045, 1075, 1158, 1284, 1384, 1440, 1514, 1630, 1701, 1756, 2927, and 3410 cm?1are identified [Fig. 3 (a)] before the reaction. Specifically, the peaks at 1075 and 1045 cm?1correspond to the hemiacetal in carbohydrate; the peaks at 1158 and 1284 cm?1can be attributed to the C

    C in aromatic compounds; the peaks at 1630 cm?1is attributed to the C H in alkanes; the peaks of 1440 and 1514 cm?1are associated with C

    O stretching vibration in carbonyl compounds or carboxylic acids; and the peak at 3410 cm?1was assigned to O

    O in carboxylates; the peaks at 1756 and 1701 cm?1are associated with C

    H stretching vibration in alcohols and phenolic compounds. Through the peak identification, we are able to show that the compounds responsible for the formation of silver nanoparticles in Gardenia jasminoides Ellis extract may includesaccharides, polyphenols, aldehydes, alcohol ketones, and carbonyl compounds.

    Figure 2 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with Gardenia jasminoides Ellis extract A—1d; B—2d; C—4d; D—6d; E—7d; F—14 d

    The FTIR spectra of the extract with AgNO3solution at 7 d and 14 d are presented as curves b and c. The peak at 1075 cm?1after reaction appears weaker than that before reaction, due to the reduction process with hemiacetal in carbohydrate [20]. The disappearance of the peaks at 1284 and 1514 cm?1is because of the reduction of silver ions by aldehydes and cyclic compounds. The peaks at 1756 and 1701 cm?1disappear after reaction. Earlier studies have demonstrated that polyvinyl pyrrolidone (PVP) protects palladium nanoparticles via the coordination of the C O group with particle surface [47]. Therefore, we speculate that the formation of silver nanoparticles is due to the reduction of aqueous AgNO3by the saccharides, carbonyl compounds or phenolic hydroxyl group, and the aldehydes ketones binding to silver nanoparticles act as protective group.

    Figure 3 FTIR spectra of Gardenia jasminoides Ellis extract before bioreduction (a), after bioreduction for 7 days (b) and 14 days (c) of silver nitrate

    3.2 Variance of main components in the extract before and after reaction

    In order to identify the active biomolecules responsible for the formation of silver nanoparticles, the major biomolecule components [41, 48] of the extract before and after the reaction were tested and the results are showed in Table 1. It is clear that proteins, flavonoid, geniposide and chlorogenic acid presents noticeable changes after reaction among all the biomolecules, revealing that they should be responsible for the formation of silver nanoparticles. This result is consistent with that of the FTIR analysis.

    To further confirm the role (reducing agent, capping agent, and shape-directing agent) of the biomolecule components in the Gardenia jasminoides Ellis extract during the biosynthesis of silver nanoparticles, six pure chemicals of these active components (bovine albumin, rutin, glucose, gallic acid, geniposide and chlorogenic acid) are employed for the following evaluation. Notably, bovine albumin, rutin, glucose and gallic acid are chosen to represent the protein, flavonoid, reducing sugars and polyphenols in the Gardenia jasminoides Ellis extract, respectively, since each of them includes a wide range of constituents.

    Table 1 Components of Gardenia jasminoides Ellis extract before and after the reaction

    3.3 Identification of reducing agent in Gardenia jasminoides Ellis extract

    Given constant amount of aqueous AgNO3(50 ml, 1 mmol·L?1), with PVP as typical capping agent, comparative amounts of six components were added to carry out possible reducing reaction in Gardenia jasminoides Ellis extract. The results are shown in Fig. 4. The fairly sharp absorbance at 400-450 nm is responsible for the formation of spherical silver nanoparticles [49]. No peak is observed with deionized water as a reference. Curves c, e and g show the resulting silver nanoparticles by the reactions of AgNO3with rutin, gallic acid and chlorogenic acid, respectively, which reveal that these three components have the reducing ability. Specially, the absorption peak intensity of silver nanoparticles by adding gallic acid is stronger than theother two, indicating that gallic acid is a stronger reducing agent.

    Figure 4 UV-Vis spectra of silver nanostructures synthesized by aqueous silver nitrate reacted with different components with PVP as protectant a—reference; b—bovine albumin; c—rutin; d—glucose; e—gallic acid; f—geniposide; g—chlorogenic acid

    3.4 Identification of capping agent in Gardenia jasminoides Ellis extract

    To confirm the potential capping agents in Gardenia jasminoides Ellis extract, the reactions of AgNO3with six components are presented in Fig. 5, with NaBH4added as typical reducing agent. No absorbance peak appears in the blank control sample and glucose (curves a and d), while geniposide (curve f) show minimal capping capacity in biosynthesis of silver nanoparticles. Obviously, bovine albumin, rutin, gallic acid and chlorogenic acid display peculiar capping capacity.

    3.5 Identification of shape-directing agent in Gardenia jasminoides Ellis extract

    Figure 5 UV-Vis spectra of silver nanostructures synthesized by aqueous silver nitrate reacted with components with NaBH4as reductanta—reference; b—bovine albumin; c—rutin; d—glucose; e—gallic acid; f—geniposide; g—chlorogenic acid

    Figure 6 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with different components with PVP as protectant and NaBH4as reductant A—bovine albumin; B—rutin; C—glucose; D—gallic acid; E—geniposide; F—chlorogenic acid

    In order to identify possible shape-directing agents, NaBH4and PVP were added to the aqueous mixture of AgNO3and six components separately. Fig. 6 shows the SEM images of silver nanoparticles synthesized by aqueous AgNO3reduced by different components with PVP as a protectant and NaBH4as a reductant. Clearly, silver nanoparticles are present in all the samples. Especially, Fig. 6 (E) illustrates silver nanoparticles with different morphologies obtained through adding geniposide into the initial solution. The formation of as-synthesized silver nanorods indicates the shape-directing capacity of geniposide. The addition of geniposide in chemical reduction systems results in the appearance of silver nanorods, since NaBH4has strong deoxidizing ability, which may impose restriction on shape-directing capacity of geniposide. In order to further confirm the role of geniposide in the process of synthesizing silver nanoparticles, a milder agent, the extract of Cinnamomum camphora leaf, was used as the reducing and protecting agent. Fig. 7 (C, D) shows typical SEM image of silver nanowires, while spherical and plate-like silver nanoparticles, without any silver nanowires, are observed in Fig. 7 (A, B). This further indicates thatgeniposide serves as a shape-directing agent in this system to promote the formation of silver nanowires.

    The above results are summarized in Table 2, which clearly shows that only geniposide in Gardenia jasminoides Ellis extract exhibits good shape-directing ability for plant-mediated biosynthesis of silver nanowires, but it barely shows any reducing and capping capacity. Rutin, gallic acid and chlorogenic acid possess both reducing and capping capacity, and gallic acid exhibits the strongest reducing capacity for synthesizing silver nanoparticles. Bovine albumin has the capping capacity, and early study has also proved that proteins might be protection agents in biosynthesis of gold nanoparticles [31].

    Figure 7 SEM images of silver nanostructures synthesized by aqueous silver nitrate reacted with water extract of Cinnamomum camphora leaf (A, B) and with 16 mg·L?1geniposide added (C, D)

    Table 2 Summary of the effect of biomolecule components in the Gardenia jasminoides Ellis

    4 CONCLUSIONS

    Biosynthesis of silver nanoparticles by Gardenia jasminoides Ellis extract is used as a showcase to systematically study the specific roles of different plant components in the formation of nanoparticles. The component analysis shows that proteins, flavonoid, reducing sugar, polyphenol, geniposide and chlorogenic acid are important for the formation of silver nanoparticles. Especially, the content of flavonoid, polyphenols and chlorogenic acid has a significant drop after reaction. To further ascertain the role of the components in Gardenia jasminoides Ellis extract, pure chemicals of these active components are utilized and corresponding identifying experiments show that rutin, gallic acid and chlorogenic acid have reducing and protecting capacities. It is worth to note that geniposide exhibits good shape-directing capacity for the formation of silver nanowires.

    REFERENCES

    1 Iravani, S., “Green synthesis of metal nanoparticles using plants”, Green Chemistry, 13 (10), 2638-2650 (2011).

    2 Schmid, G., “Large clusters and colloids metals in the embryonic state”, Chemical Reviews, 92, 1709-1727 (1992).

    3 Colvin, V.L., Schlamp, M.C., Allvlsatos, A.P., “Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer”, Nature, 370 (4), 354-357 (1994).

    4 Wang, R., Hashimoto, K., Fujishima, A., “Light-induced amphiphilic surfaces”, Nature, 388, 431-432 (1997).

    5 Medintz, I.L., Uyeda, H.T., Goldman, E.R., mattoussi, H., “Quantum dot bioconjugates for imaging, labelling and sensing”, Nature Materials, 4, 435-446 (2005).

    6 Sivakumar, M., Venkatakrishnan, K., Tan, B., “Synthesis of nanoscale tips using femtosecond laser radiation under ambient condition”, Nanoscale Research Letters, 5 (2), 438-441 (2009).

    7 Kundu, S., Panigrahi, S., Praharaj, S., Basu, S., Ghosh, S.K., Pal, A., Pal, T., “Anisotropic growth of gold clusters to gold nanocubes under UV irradiation”, Nanotechnology, 18 (7), 075712 (2007).

    8 Fisenko, S.P., Khodyko, J.A., “Low pressure evaporative cooling of micron-sized droplets of solutions and its novel applications”, Int. J. Heat and Mass Transfer, 52 (15-16), 3842-3849 (2009).

    9 Li, Y.L., Kinloch, I.A., Windle, A.H., “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis”, Science, 304 (5668), 276-278 (2004).

    10 Wu, W., Zhu, Z., Liu, Z., Xie, Y., Zhang, J., Hu, T., “Preparation of carbon-encapsulated iron carbide nanoparticles by an explosion method”, Carbon, 41, 317-321 (2003).

    11 Tsoncheva, T., Rosenholm, J., Linden, M., Kleitz, F., Tiemann, M., Ivanova, L., Dimitrov, M., Paneva, D., Mitov, I., Minchev, C.,“Critical evaluation of the state of iron oxide nanoparticles on different mesoporous silicas prepared by an impregnation method”, Microporous and Mesoporous Materials, 112 (1-3), 327-337 (2008).

    12 Yang, H., Song, X., Zhang, X., Ao, W., Qiu, G., “Synthesis of vanadium-doped SnO2nanoparticles by chemical co-precipitation method”, Materials Letters, 57 (20), 3124-3127 (2003).

    13 Lu, Y., Yin, Y., Mayers, B.T., Xia, Y., “Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach”, Nano Letters, 2 (3), 183-186 (2002).

    14 You, X., Chen, F., Zhang, J., Anpo, M., “A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide”, Catalysis Letters, 102 (3-4), 247-250 (2005).

    15 Taheri Otaqsara, S.M., “Biosynthesis of quasi-spherical Ag nanoparticle by Pseudomonas aeruginosa as a bio-reducing agent”, The European Physical Journal Applied Physics, 56 (3), 30402 (2011).

    16 Fu, M.X., Li, Q.B., Sun, D.H., Lu, Y.H., He, N., Deng, X., Wang, H.X., Huang, J.L., “Rapid preparation process of silver nanoparticles by bioreduction and their characterizations”, Chin. J. Chem. Eng., 14 (1), 114-117 (2006).

    17 Du, L.W., Xian, L.A., Feng, J.X., “Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp”, Journal of Nanoparticle Research, 13 (3), 921-930 (2011).

    18 Subramanian, M., Alikunhi, N.M., Kandasamy, K., “In vitro synthesisof silver nanoparticles by marine yeasts from coastal mangrove sediment”, Advanced Science Letters, 3 (4), 428-433 (2010).

    19 Sicard, C., Brayner, R., Margueritat, J., Hemadi, M., Coute, A., Yepremian, C., Djediat, C., Aubard, J., Fievet, F., Livage, J., Coradin, T., “Nano-gold biosynthesis by silica-encapsulated micro-algae: a‘living’ bio-hybrid material”, J. Mater. Chem., 20 (42), 9342-9347 (2010).

    20 Zhang, G., Du, M., Li, Q., Li, X., Huang, J., Jiang, X., Sun, D.,“Green synthesis of Au-Ag alloy nanoparticles using Cacumen platycladi extract”, RSC Advances, 3 (6), 1878 (2013).

    21 Lin, L., Wang, W., Huang, J., Li, Q., Sun, D., Yang, X., Wang, H., He, N., Wang, Y., “Nature factory of silver nanowires: plant-mediated synthesis using broth of Cassia fistula leaf”, Chem. Eng. J., 162 (2), 852-858 (2010).

    22 Chang, X., Yang, Z., Zeng, R., Yang, G., Yan, J., “Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst”, Chin. J. Chem. Eng., 18 (6), 1029-1033 (2010).

    23 Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H., Jose-Yacaman, M., “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles”, Langmuir, 19 (4), 1357-1361 (2003).

    24 Li, S.K., Shen, Y.H., Xie, A.J., Yu, X.R., Qiu, L.G., Zhang, L., Zhang, Q.F., “Green synthesis of silver nanoparticles using Capsicum annuum L. extract”, Green Chemistry, 9 (8), 852-858 (2007).

    25 Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T.C., Mukherjee, A., “Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves”, Journal of Nanoparticle Research, 12 (1), 237-246 (2009).

    26 Cruz, D., Fale, P.L., Mourato, A., Vaz, P.D., Serralheiro, M.L., Lino, A.R.L., “Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena)”, Colloids and Surfaces B—Biointerfaces, 81 (1), 67-73 (2010).

    27 Kaviya, S., Santhanalakshmi, J., Viswanathan, B., “Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity”, Journal of Nanotechnology, 2011, 1-5 (2011).

    28 Yilmaz, M., Turkdemir, H., Kilic, M.A., Bayram, E., Cicek, A., Mete, A., Ulug, B., “Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana”, Materials Chemistry and Physics, 130 (3), 1195-1202 (2011).

    29 Kaviya, S., Santhanalakshmi, J., Viswanathan, B., “Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract”, Materials Letters, 67 (1), 64-66 (2012).

    30 Saxena, A., Tripathi, R.M., Zafar, F., Singh, P., “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity”, Materials Letters, 67 (1), 91-94 (2012).

    31 Zhou, Y., Lin, W.S., Huang, J.L., Wang, W.T., Gao, Y.X., Lin, L.Q., Li, Q.B., Lin, L., Du, M.M., “Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts”, Nanoscale Research Letters, 5 (8), 1351-1359 (2010).

    32 Raghunandan, D., Basavaraja, S., Mahesh, B., Balaji, S., Manjunath, S.Y., Venkataraman, A., “Biosynthesis of stable poly-shaped gold nanoparticles from microwave-exposed aqueous extracellular antimalignant guava (Psidium guajava) leaf extract”, NanobioTechnology, 5 (1-4), 34-41 (2009).

    33 Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., Sastry, M., “Biological synthesis of triangular gold nanoprisms”, Nature Materials, 3 (7), 482-488 (2004).

    34 Huang, J.L., Li, Q.B., Sun, D.H., Lu, Y.H., Su, Y.B., Yang, X., Wang, H.X., Wang, Y.P., Shao, W.Y., He, N., Hong, J.Q., Chen, C.X., “Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf”, Nanotechnology, 18 (10), 105104 (2007).

    35 Bar, H., Bhui, D.K., Sahoo, G.R., Sarkar, P., De, S.R., Misra, A.,“Green synthesis of silver nanoparticles using latex of Jatropha curcas”, Colloids and Surfaces A—Physicochemical and Engineering Aspects, 339 (1-3), 134-139 (2009).

    36 Hou, M., Food Anlysis, Chemical Industry Press, Beijing (2004). (in Chinese)

    37 Sun, C., Huang, K., Chen, C., Zhang, D., “Extraction of flavonoids from Cinnamomum camphora leaves”, Appl. Chem. Ind., 35 (2), 142-143 (2006).

    38 Wang, J., Zhang, S., Yang, B., Cheng, P., Wu, Z., Hu, J., “Application of 3,5-dinitrosalicylic acid (DNS) method to test the reducing sugar and water-soluble total sugar content in sugarcane internodes”, Sugarcane and Canesugar, 5, 45-49 (2008).

    39 Graham, H.D., “Stabilization of the Prussian blue color in the determination of polyphenols”, Journal of Agricultural and Food Chemistry, 40 (5), 801-805 (1992).

    40 He, M.L., Cheng, X.W., Chen, J.K., Zhou, T.S., “Simultaneous determination of five major biologically active ingredients in different parts of Gardenia jasminoides fruits by HPLC with diode-array detection”, Chromatographia, 64 (11-12), 713-717 (2006).

    41 Ji, X., Bi, K., Wang, Y., Chen, X., “Simultaneous HPLC determination of chlorogenic acid, jasminoidin and puerarin in Kanggan Jiedu granules”, Chinese Journal of Pharmaceutical Analysis, 30 (1), 56-58 (2010).

    42 Shankar, S.S., Ahmad, A., Pasricha, R., Sastry, M., “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes”, J. Mater. Chem., 13 (7), 1822-1826 (2003).

    43 Sun, Y., Gates, B., Mayers, B., Xia, Y., “Crystalline silver nanowires by soft solution processing”, Nano Letters, 2 (2), 165-168 (2002).

    44 Zhang, W.C., Wu, X.L., Chen, H.T., Gao, Y.J., Zhu, J., Huang, G.S., Chu, P.K., “Self-organized formation of silver nanowires, nanocubes and bipyramids via a solvothermal method”, Acta Materialia, 56 (11), 2508-2513 (2008).

    45 Kottmann, J., Martin, O., Smith, D., Schultz, S., “Plasmon resonances of silver nanowires with a nonregular cross section”, Physical Review B, 64, 235402 (2001).

    46 Zhang, Q., Ge, J., Pham, T., Goebl, J., Hu, Y., Lu, Z., Yin, Y., “Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability”, Angewandte Chemie, 48 (19), 3516-3519 (2009).

    47 Nemamcha, A., Rehspringer, J.L., Khatmi, D., “Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution”, Journal of Physical Chemestry B, 110 (1), 383-387 (2006).

    48 Kim, H.J., Kim, E.J., Seo, S.H., Shin, C.G., Jin, C., Lee, Y.S., “Vanillic acid glycoside and quinic acid derivatives from Gardeniae fructus”, Journal of Natural Products, 69 (4), 600-603 (2006).

    49 Vijayaraghavan, K., Nalini, S.P.K., Prakash, N.U., Madhankumar, D.,“Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum”, Materials Letters, 75, 33-35 (2012).

    2013-07-30, accepted 2013-10-22.

    * Supported by the National Natural Science Foundation of China (21036004, 21206140) and Science and Technology Program of Xiamen of Fujian Province, China (3502Z20133006).

    ** To whom correspondence should be addressed. E-mail: sdaohua@xmu.edu.cn

    国产亚洲精品第一综合不卡| 大陆偷拍与自拍| 啦啦啦视频在线资源免费观看| 一本色道久久久久久精品综合| 后天国语完整版免费观看| 欧美日本中文国产一区发布| 亚洲中文字幕日韩| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线不卡| 国产成人一区二区三区免费视频网站| 丰满饥渴人妻一区二区三| 黑人猛操日本美女一级片| 久久久久国内视频| 久久亚洲国产成人精品v| 久久久久久久大尺度免费视频| 啦啦啦视频在线资源免费观看| 亚洲av成人一区二区三| 国产成人免费无遮挡视频| 亚洲情色 制服丝袜| 久久国产精品人妻蜜桃| 免费久久久久久久精品成人欧美视频| 免费在线观看黄色视频的| 亚洲av欧美aⅴ国产| 国产在线免费精品| 中文字幕制服av| 啦啦啦啦在线视频资源| 97精品久久久久久久久久精品| 黄网站色视频无遮挡免费观看| 国产精品1区2区在线观看. | 人成视频在线观看免费观看| 免费女性裸体啪啪无遮挡网站| 俄罗斯特黄特色一大片| 国产精品久久久人人做人人爽| 国产精品久久久人人做人人爽| 久热这里只有精品99| 精品国产乱码久久久久久男人| www日本在线高清视频| 黑人欧美特级aaaaaa片| 国产精品欧美亚洲77777| 免费观看av网站的网址| 男女床上黄色一级片免费看| 在线观看一区二区三区激情| 无遮挡黄片免费观看| 国产在视频线精品| 少妇的丰满在线观看| 十八禁人妻一区二区| 国产麻豆69| 亚洲精华国产精华精| 国产精品久久久久久人妻精品电影 | 亚洲精品粉嫩美女一区| 三上悠亚av全集在线观看| 丝袜脚勾引网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品熟女亚洲av麻豆精品| 丰满饥渴人妻一区二区三| 亚洲色图综合在线观看| 亚洲av成人不卡在线观看播放网 | av在线app专区| 国产成人av教育| 18在线观看网站| 欧美日韩成人在线一区二区| 丝袜人妻中文字幕| 精品免费久久久久久久清纯 | 高潮久久久久久久久久久不卡| 国产片内射在线| 我的亚洲天堂| 亚洲国产精品一区三区| 色视频在线一区二区三区| 一级片'在线观看视频| 日韩大码丰满熟妇| 亚洲精品久久久久久婷婷小说| 国产精品偷伦视频观看了| 19禁男女啪啪无遮挡网站| 精品一品国产午夜福利视频| 97在线人人人人妻| 十八禁高潮呻吟视频| 亚洲精品在线美女| 一级a爱视频在线免费观看| 久久 成人 亚洲| 操美女的视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 99热网站在线观看| 国产成人欧美在线观看 | 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 91麻豆av在线| 两人在一起打扑克的视频| 国产一区二区在线观看av| 少妇的丰满在线观看| 国产精品av久久久久免费| 99国产精品一区二区蜜桃av | 亚洲精品成人av观看孕妇| 亚洲国产欧美日韩在线播放| 黄色视频在线播放观看不卡| 精品福利观看| 男人爽女人下面视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 中文字幕制服av| 十八禁高潮呻吟视频| 久久久欧美国产精品| 99九九在线精品视频| 大片电影免费在线观看免费| 亚洲熟女精品中文字幕| 美女主播在线视频| 国产精品秋霞免费鲁丝片| 国产成人一区二区三区免费视频网站| e午夜精品久久久久久久| 两性夫妻黄色片| 一区二区三区精品91| 国产一区二区三区av在线| av网站免费在线观看视频| 日韩人妻精品一区2区三区| 国产黄色免费在线视频| 99精品久久久久人妻精品| 久久九九热精品免费| 日韩制服骚丝袜av| 久久久精品国产亚洲av高清涩受| 大香蕉久久成人网| 国产一区二区三区av在线| 亚洲人成电影观看| 超色免费av| 成人黄色视频免费在线看| 麻豆国产av国片精品| 亚洲av男天堂| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 久久久久久亚洲精品国产蜜桃av| 嫁个100分男人电影在线观看| 中文字幕人妻熟女乱码| 日韩电影二区| 999久久久国产精品视频| 999久久久精品免费观看国产| 亚洲中文字幕日韩| 丰满饥渴人妻一区二区三| 久热爱精品视频在线9| a 毛片基地| 999久久久精品免费观看国产| 91字幕亚洲| 精品乱码久久久久久99久播| 亚洲第一青青草原| 深夜精品福利| 99国产极品粉嫩在线观看| 亚洲一区中文字幕在线| 亚洲三区欧美一区| 丝袜在线中文字幕| 国产日韩欧美亚洲二区| 免费黄频网站在线观看国产| 亚洲成人国产一区在线观看| 狠狠狠狠99中文字幕| 中文字幕人妻丝袜一区二区| 90打野战视频偷拍视频| 午夜福利在线观看吧| 久久香蕉激情| 成人亚洲精品一区在线观看| 精品一区二区三卡| 国产又色又爽无遮挡免| 国产91精品成人一区二区三区 | 又紧又爽又黄一区二区| 五月天丁香电影| 人成视频在线观看免费观看| www.自偷自拍.com| 人妻 亚洲 视频| 99精品欧美一区二区三区四区| 他把我摸到了高潮在线观看 | a级毛片黄视频| 一二三四在线观看免费中文在| www日本在线高清视频| 成年av动漫网址| 欧美在线黄色| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线观看99| 国产免费现黄频在线看| 久久久国产精品麻豆| 宅男免费午夜| 亚洲中文av在线| 国产一区二区激情短视频 | 丰满人妻熟妇乱又伦精品不卡| 欧美少妇被猛烈插入视频| 欧美日韩国产mv在线观看视频| 一本综合久久免费| 国产日韩欧美视频二区| 狠狠精品人妻久久久久久综合| 国产又色又爽无遮挡免| 色精品久久人妻99蜜桃| 欧美日韩视频精品一区| 狂野欧美激情性xxxx| 日本猛色少妇xxxxx猛交久久| av在线播放精品| 每晚都被弄得嗷嗷叫到高潮| 十八禁高潮呻吟视频| 亚洲精品美女久久久久99蜜臀| 精品人妻1区二区| 男女午夜视频在线观看| 日韩 欧美 亚洲 中文字幕| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 久久免费观看电影| 操美女的视频在线观看| 青草久久国产| 美女大奶头黄色视频| 亚洲人成电影免费在线| 亚洲 欧美一区二区三区| 咕卡用的链子| 老熟妇乱子伦视频在线观看 | 乱人伦中国视频| 国产成人欧美| 亚洲精品第二区| 狂野欧美激情性bbbbbb| 婷婷成人精品国产| 婷婷色av中文字幕| 成人av一区二区三区在线看 | 日本av免费视频播放| 欧美一级毛片孕妇| 高清av免费在线| 99九九在线精品视频| 少妇粗大呻吟视频| kizo精华| 久久中文字幕一级| 午夜精品久久久久久毛片777| av片东京热男人的天堂| 久久国产精品人妻蜜桃| 中文字幕最新亚洲高清| 正在播放国产对白刺激| 青青草视频在线视频观看| 国产免费一区二区三区四区乱码| 欧美精品亚洲一区二区| 国产精品香港三级国产av潘金莲| 日本黄色日本黄色录像| 欧美日韩成人在线一区二区| 成人三级做爰电影| 大片免费播放器 马上看| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 亚洲天堂av无毛| 我的亚洲天堂| 国产老妇伦熟女老妇高清| 国产日韩欧美视频二区| 亚洲av成人不卡在线观看播放网 | 老鸭窝网址在线观看| 色精品久久人妻99蜜桃| 性少妇av在线| 久久ye,这里只有精品| 啦啦啦在线免费观看视频4| 久久久精品94久久精品| av国产精品久久久久影院| 91九色精品人成在线观看| 欧美性长视频在线观看| 在线亚洲精品国产二区图片欧美| 人妻一区二区av| 久久人妻熟女aⅴ| 成人国产av品久久久| 欧美亚洲日本最大视频资源| 欧美精品高潮呻吟av久久| 日韩制服丝袜自拍偷拍| kizo精华| 色精品久久人妻99蜜桃| 亚洲国产av影院在线观看| 欧美少妇被猛烈插入视频| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 热re99久久国产66热| 久久久国产成人免费| 国产精品 欧美亚洲| 搡老乐熟女国产| 亚洲国产精品成人久久小说| 天天躁狠狠躁夜夜躁狠狠躁| 另类亚洲欧美激情| 男女边摸边吃奶| 午夜老司机福利片| 黄色怎么调成土黄色| 99热全是精品| 精品人妻在线不人妻| 国产一区二区三区av在线| 国精品久久久久久国模美| 成人av一区二区三区在线看 | 国产精品成人在线| 国精品久久久久久国模美| 丝袜喷水一区| 一本一本久久a久久精品综合妖精| 免费女性裸体啪啪无遮挡网站| 日韩制服丝袜自拍偷拍| 少妇精品久久久久久久| 久久狼人影院| 人妻一区二区av| 两性夫妻黄色片| 国产日韩一区二区三区精品不卡| 99久久综合免费| 热re99久久国产66热| 黑人巨大精品欧美一区二区mp4| 亚洲少妇的诱惑av| 国产精品九九99| 一进一出抽搐动态| 窝窝影院91人妻| 婷婷成人精品国产| 国产日韩欧美亚洲二区| 一个人免费在线观看的高清视频 | 母亲3免费完整高清在线观看| 久久这里只有精品19| 精品少妇久久久久久888优播| 免费不卡黄色视频| 欧美性长视频在线观看| 精品亚洲成国产av| 久久女婷五月综合色啪小说| 成年美女黄网站色视频大全免费| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲欧美精品综合一区二区三区| 亚洲午夜精品一区,二区,三区| videos熟女内射| 欧美在线一区亚洲| 亚洲精品久久久久久婷婷小说| 大片电影免费在线观看免费| 黄色a级毛片大全视频| 啦啦啦视频在线资源免费观看| 亚洲中文字幕日韩| 人妻一区二区av| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 老司机亚洲免费影院| 女人被躁到高潮嗷嗷叫费观| 成在线人永久免费视频| 99久久精品国产亚洲精品| 精品国产国语对白av| 欧美 亚洲 国产 日韩一| 麻豆乱淫一区二区| 国精品久久久久久国模美| 啦啦啦视频在线资源免费观看| 两个人看的免费小视频| 少妇猛男粗大的猛烈进出视频| 国产成+人综合+亚洲专区| 欧美乱码精品一区二区三区| 久久久精品区二区三区| 久久天堂一区二区三区四区| 亚洲美女黄色视频免费看| 多毛熟女@视频| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| 亚洲国产成人一精品久久久| 免费观看人在逋| 欧美日韩成人在线一区二区| 黄色毛片三级朝国网站| 精品国产超薄肉色丝袜足j| 亚洲国产日韩一区二区| 亚洲免费av在线视频| 午夜91福利影院| 久久亚洲精品不卡| 久久精品亚洲av国产电影网| 久久午夜综合久久蜜桃| 亚洲精品国产区一区二| 一本一本久久a久久精品综合妖精| 美女视频免费永久观看网站| 日韩中文字幕欧美一区二区| 1024香蕉在线观看| 视频在线观看一区二区三区| 国产片内射在线| 999久久久精品免费观看国产| 国产精品av久久久久免费| 男人操女人黄网站| 一本综合久久免费| 日韩 欧美 亚洲 中文字幕| 99香蕉大伊视频| 亚洲专区字幕在线| 亚洲成人免费av在线播放| 老司机靠b影院| 人人妻人人添人人爽欧美一区卜| 精品国内亚洲2022精品成人 | 国精品久久久久久国模美| 国产成+人综合+亚洲专区| 最黄视频免费看| 又黄又粗又硬又大视频| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕| 国产男人的电影天堂91| 日日爽夜夜爽网站| 一区二区三区激情视频| 国产男女超爽视频在线观看| 人成视频在线观看免费观看| 精品久久久久久电影网| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 国产精品av久久久久免费| 大片电影免费在线观看免费| 动漫黄色视频在线观看| 亚洲精品一二三| 嫁个100分男人电影在线观看| 高清黄色对白视频在线免费看| 老司机午夜福利在线观看视频 | 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| kizo精华| av片东京热男人的天堂| 天天躁日日躁夜夜躁夜夜| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 99九九在线精品视频| 精品亚洲成a人片在线观看| 亚洲国产精品一区二区三区在线| 精品国内亚洲2022精品成人 | 国产精品国产av在线观看| 免费观看a级毛片全部| 国产免费视频播放在线视频| 久久精品国产a三级三级三级| 久久亚洲精品不卡| cao死你这个sao货| 亚洲免费av在线视频| 97精品久久久久久久久久精品| 久久亚洲精品不卡| 伊人亚洲综合成人网| 久久久国产一区二区| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情极品国产一区二区三区| 成年人黄色毛片网站| 久久99热这里只频精品6学生| 国产欧美日韩一区二区三区在线| 国产精品久久久人人做人人爽| 免费高清在线观看日韩| 黑人猛操日本美女一级片| 五月天丁香电影| 午夜福利一区二区在线看| 国产精品久久久久久人妻精品电影 | 十八禁网站免费在线| 操出白浆在线播放| 亚洲精品成人av观看孕妇| 一个人免费在线观看的高清视频 | 亚洲自偷自拍图片 自拍| 美女午夜性视频免费| a级毛片在线看网站| 多毛熟女@视频| 男人爽女人下面视频在线观看| 一个人免费看片子| 久久香蕉激情| 欧美日韩国产mv在线观看视频| 久久久欧美国产精品| 日本av免费视频播放| 久久久久网色| 男人添女人高潮全过程视频| 亚洲人成电影免费在线| av电影中文网址| 一二三四社区在线视频社区8| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 深夜精品福利| 亚洲国产av影院在线观看| 又紧又爽又黄一区二区| 国产精品九九99| 欧美大码av| av线在线观看网站| 日韩大码丰满熟妇| 欧美日韩精品网址| 日本黄色日本黄色录像| 国产片内射在线| 日本五十路高清| 亚洲人成电影观看| 我要看黄色一级片免费的| 欧美在线黄色| 99久久国产精品久久久| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 性少妇av在线| 秋霞在线观看毛片| 国产伦人伦偷精品视频| 欧美日韩国产mv在线观看视频| 亚洲男人天堂网一区| 色婷婷av一区二区三区视频| 99热全是精品| 老鸭窝网址在线观看| 一本大道久久a久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 在线看a的网站| 国产人伦9x9x在线观看| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 视频在线观看一区二区三区| 国产老妇伦熟女老妇高清| 日韩 欧美 亚洲 中文字幕| 久久久久国产一级毛片高清牌| 老司机在亚洲福利影院| 母亲3免费完整高清在线观看| 亚洲av成人一区二区三| 人人妻人人爽人人添夜夜欢视频| 国产成人啪精品午夜网站| 中文字幕制服av| 国产色视频综合| 国产视频一区二区在线看| 黄色视频,在线免费观看| 精品国产乱子伦一区二区三区 | 操出白浆在线播放| 亚洲欧美日韩另类电影网站| 精品免费久久久久久久清纯 | 日韩中文字幕欧美一区二区| 黄色视频,在线免费观看| 淫妇啪啪啪对白视频 | 免费在线观看完整版高清| 国产精品亚洲av一区麻豆| 18禁观看日本| 99热国产这里只有精品6| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 美国免费a级毛片| 女人久久www免费人成看片| 精品少妇久久久久久888优播| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲国产一区二区在线观看 | 丁香六月欧美| kizo精华| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 又大又爽又粗| 亚洲成人免费电影在线观看| 18在线观看网站| 岛国在线观看网站| 国产男女超爽视频在线观看| 高潮久久久久久久久久久不卡| 少妇被粗大的猛进出69影院| 中文精品一卡2卡3卡4更新| 国产野战对白在线观看| 热99re8久久精品国产| 啦啦啦啦在线视频资源| 欧美精品一区二区大全| 免费日韩欧美在线观看| 亚洲av日韩在线播放| 午夜福利视频精品| 高清视频免费观看一区二区| 老司机福利观看| 国产在线一区二区三区精| 操出白浆在线播放| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| av免费在线观看网站| 亚洲国产精品一区二区三区在线| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 在线永久观看黄色视频| 国产人伦9x9x在线观看| 欧美在线黄色| 在线av久久热| videos熟女内射| 国产麻豆69| 日本五十路高清| e午夜精品久久久久久久| 黄色 视频免费看| 国产色视频综合| 激情视频va一区二区三区| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 香蕉丝袜av| 9191精品国产免费久久| 亚洲久久久国产精品| www.精华液| 成年动漫av网址| 香蕉国产在线看| 手机成人av网站| 中国美女看黄片| 婷婷色av中文字幕| 免费在线观看黄色视频的| av在线app专区| 2018国产大陆天天弄谢| 热99久久久久精品小说推荐| cao死你这个sao货| 天天躁日日躁夜夜躁夜夜| 在线精品无人区一区二区三| 久久综合国产亚洲精品| 亚洲av美国av| 黄色a级毛片大全视频| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人 | 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 日韩电影二区| av天堂久久9| 亚洲第一青青草原| 欧美久久黑人一区二区| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区久久| 久久久欧美国产精品| 亚洲欧洲日产国产| 18禁国产床啪视频网站| 啦啦啦中文免费视频观看日本| 岛国毛片在线播放| 国产免费视频播放在线视频| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 天堂中文最新版在线下载| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 精品国产国语对白av| 国产有黄有色有爽视频| 在线观看舔阴道视频| 日本a在线网址| 老司机深夜福利视频在线观看 | 精品少妇久久久久久888优播| 成年人免费黄色播放视频| 国产精品一区二区免费欧美 | 青春草亚洲视频在线观看| 人妻一区二区av| 久久 成人 亚洲| 国产免费福利视频在线观看| 久热爱精品视频在线9| 男人操女人黄网站| 国产欧美日韩一区二区三区在线| 三级毛片av免费| 搡老岳熟女国产| 亚洲综合色网址| 人妻 亚洲 视频| 久久国产精品人妻蜜桃| 国产亚洲欧美在线一区二区|