• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    2014-07-18 12:09:48LIUHuie劉會(huì)娥ZHANGXiaokun張孝坤DINGChuanqin丁傳芹CHENShuang陳爽andQIXuanliang齊選良StateKeyLaboratoryofHeavyOilProcessingChinaUniversityofPetroleumQingdao266555China
    關(guān)鍵詞:脂肪組織傷口體重

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Phase Behavior of Sodium Dodecyl Sulfate-n-Butanol-Kerosene-Water Microemulsion System*

    LIU Huie (劉會(huì)娥)**, ZHANG Xiaokun (張孝坤), DING Chuanqin (丁傳芹), CHEN Shuang (陳爽) and QI Xuanliang (齊選良)
    State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China

    Experiments were carried out to investigate the influences of cation from electrolytes and acidity/alkalinity on the phase behavior of sodium dodecyl sulfate-n-butanol-organics-water (with electrolytes) microemulsion system. The organics used is commercial kerosene. The volume ratio of water to organics is 1︰1. The results show that the type and valence of electrolyte cations are important factors influencing the microemulsion behavior. Bivalent Ca2+ is more effective than monovalent K+ and Na+ for the formation of Winsor type III and II microemulsion. For electrolytes with the same monovalent cation Na+, i.e. NaCl and Na2CO3, anions in the electrolyte have some effect. Bivalent anion 2 CO3? leads to a lower activity of cation Na+ than monovalent anion Cl?. NaOH (or KOH) behaves similar with NaCl (or KCl). When HCl is used as electrolyte, its acidity plays an important role. Phase inversion of microemulsion from type III (or II) to type I is observed through precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH, and addition of water to the system, which releases the oil from the microemulsion.

    microemulsion, sodium dodecyl sulfate, kerosene, phase inversion

    1 INTRODUCTION

    Microemulsions are thermodynamically stable, optically transparent, isotropic dispersions of aqueous and organic liquids stabilized by an interfacial film of surfactant molecules [1]. Three types of microemulsion systems are found with the change of hydrophile-lipophile balance (HLB), i.e., Winsor type I, II and III microemulsion systems. Winsor type I system is an O/W microemulsion in equilibrium with excess oil, which, in the form of oil-swollen micelles in aqueous phase, is water soluble. Winsor type II is a W/O microemulsion in equilibrium with excess water, which is oil soluble and exists in the form of water-swollen micelles in the organic phase. Winsor type III is a middle phase microemulsion coexisting with excess water and organic phases, which has a bicontinuous structure and contains large quantities of organics and water. It can be considered as an accumulation of swollen micelles, which are so numerous that they touch one another, forming dispersion or a perfectly bicontinuous structure with all water domains connected and all oil domains connected likewise [2]. The microemulsion systems have the advantages of high interfacial area and ultra-low organics/water interfacial tension.

    Microemulsion is an efficient tool in the enhanced oil recovery (EOR) [3-6], because it can provide high levels of extraction. For example, Santana et al. [6] observed that with the commercial surfactant-based MCS microemulsion, a recovery factor as high as 87.5% was obtained. A modification and extension of the EOR concept is the environmental applications, such as the remediation of organic-polluted soil [7-13] or groundwater aquifers contaminated by non-aqueous phase liquids [14-18]. Different research groups [e.g. 7, 12, 14] have given similar results that for those surfactant-based washing agents, micro-emulsification (forming Winsor type III microemulsion) of organic contaminants in the processes presents higher de-polluting efficiency than others.

    However, the economics of surfactant-based remediation technologies benefits from material separation and recycling of surfactant [19, 20]. For processes with high organics content of Winsor type III or II microemulsions in contaminant removal, shifting of microemulsion from Winsor type II or III to type I is an attractive method for organics separation and surfactant reuse. During the phase shifting from Winsor type II or III to type I, most organics is separated as free phase, and through reverse phase shifting, that is, Winsor type I to type III or II, the reuse of surfactants can be realized. What factors influence the phase behavior of a microemulsion system is a crucial point for this problem.

    Chai et al. [21] found that there existed differences in the state with different electrolytes in sodium dodecyl sulfate (SDS) microemulsion systems. Both aliphatic acid and short chain alcohol were used as co-surfactants in their work. For the salts with the same anion but different cations (MgCl2, CaCl2, SrCl2), the solubility of alcohol (Sa) and the solubilization ability (SP) are in the same order of MgCl2>CaCl2~SrCl2, no matter in the aliphatic acid-based or in the alcoholbased microemulsion systems. For salts with the same cation but different anions [CaCl2, CaBr2, Ca(NO3)2], Saand SP are also in the same order of Ca(NO3)2>CaBr2>CaCl2for the two kinds of microemulsion systems. Anton and Salvager [22] investigated the anionic surfactant-oil-water-alcohol microemulsion systems by using sodium salts with different anions from monovalence through tetravalence. Oil phases with different equivalent alkane carbon number were used, with petroleum sulfonate sodium salts as the surfactant and sec-butanol as the cosurfactant. For the sodium salts, the correspondent anion valence showed important influence on the electrolyte activity and a correlation was given for the optimum formulation of anionic surfactant-oil-water systems. Puerto and Reed [23] found that for monovalents Li+, Na+and K+, whose hydration radii are in the sequence of Li+>Na+>K+, the optimal salinities are in the sequence of K+>Na+>Li+. It was concluded that at constant valence, the greater the hydration radius, the higher the optimal salinity.

    Rudolph et al. [24] found that varying oil/water ratio changed the extension of the three-phase region for the oil/water/nonionic surfactant (2-butoxyethanol) system. The experimental results of Raijb and Bidyut indicated that increasing oil/water ratio reduced the solubilization capacity for the Brij-56/1-butanol/ n-heptane/water system, while with negligible influence on the phase behavior of Brij/SDBS mixed system [25]. Chai et al. [26] investigated the influence of oil/water ratio on the phase behavior of SDS/alcohol/oil/water microemulsion system. As the oil/water mass ratio increases, the solubility of alcohol increases while both the mass fraction of the alcohol in the interfacial layer and the solubilization ability decrease.

    Kunieda and Shinoda [27] showed a HLB temperature for the aerosol OT-isooctane-brine system with the increase of temperature. A phase inversion from W/O microemulsion to three-phase microemulsion and then O/W microemulsion was observed. The influence of temperature on phase behavior of nonionic surfactant microemulsion system was also reported in [25, 28, 29].

    In summary, several variables (e.g., temperature, electrolyte, surfactant and cosurfactant) are important factors influencing the property of a microemulsion system. The phase state of a microemulsion may be changed by changing one of the several variables. Cheng and Sabatini [30] shifted the contaminant-rich Winsor type III microemulsion to type I system through precipitation-based exchange of polyvalent cations (Al3+and Ca2+) with equivalent amount of monovalent cation (Na+). The contaminants used were decane and tetradecane and the surfactant was Alfoterra 145-4 PO sulfate. In this work, the phase behavior of kerosene-water-SDS-n-butanol microemulsion systems is investigated. The effects of electrolytes, including NaCl, KCl, CaCl2, Na2CO3, NaOH, KOH and HCl, are investigated to find an effective way for phase inversion of microemulsions. The influence of acidity and alkalinity and water/oil ratio are also studied. Phase inversion of Winsor type II→III→I→III→II is to be realized through manipulating electrolytes and the acidity/alkalinity. Water is added into the Winsor type II microemulsion system for the shift from Winsor type II→III→I.

    2 EXPERIMENTAL

    2.1 Materials

    The surfactant used in this work was an anionic type, chemically pure sodium dodecyl sulfate (SDS). Other materials used were analytically pure n-butanol, NaCl, NaOH, KOH, KCl, CaCl2, Na2CO3, HCl, deionized water, and simulated contaminant-industrial kerosene [density 840 kg·m?3, distillation range 170-240 °C, total alkane content 50.5% (by mass), total naphthene content 29.9% (by mass), and total arene content 19.6%]. All chemicals were used as received without further purification.

    2.2 Preparation of microemulsions

    Microemulsions were prepared using SDS, 1︰1 (by volume) deionized water and kerosene, n-butanol and one cation donor (electrolyte) from the above reagents. Both salinity scan and alcohol scan were used to observe the phase behavior of microemulsions. For convenient, the concentrations of reagents were based on the total volume of water and kerosene.

    For determined organics, with equal volume of organics and water at fixed surfactant and electrolyte concentration, the microemulsion will change from Winsor type I→III→II with the increase of alcohol concentration. This is called alcohol scanning method.

    On the other hand, for determined organics, with equal volume of organics and water at fixed surfactant and cosurfactant concentration, if the concentration of electrolyte in the system increases, the system will also change from Winsor type I→III→II. This is called salinity scanning method.

    Taking the phase volume data during the alcohol or salinity scan, simple phase diagram can be made to show the phase state and the oil-solubilization capacity of each state. The schematic phase diagram is shown in Fig. 1. To show the phase state, a pair of curves is needed. The distance between the upper curve and the 100% line is the volume fraction of oil phase, that between the two curves is the volume fraction of microemulsion phase and between the lower one and abscissa axis is that of water phase. It is Winsor type I when the lower curve coincides with the abscissa, Winsor type II when the upper one coincides with the 100% volume fraction line and Winsor type III in between.

    3 RESULTS AND DISCUSSION

    3.1 Influence of electrolyte cations on phase behavior

    To observe the influence of cation types on the microemulsion phase behavior, CaCl2, KCl, NaCl andNa2CO3are used as the electrolyte separately. 10 ml kerosene and 10 ml water were used, with the concentration of SDS and n-butanol being 0.14 and 1.73 mol·L?1, respectively. Fig. 2 shows the salinity scanning results for different types of electrolytes for the SDS-n-butanol-kerosene-water microemulsion system. The system changes from Winsor type I→III→II with increasing electrolyte concentration, no matter what kind of electrolyte is used. With the addition of electrolyte, the critical micelle concentration of anionic surfactant SDS greatly decreases, while the aggregation number of micelle increases and micelles get bigger, solubilizing more oil.

    Figure 1 Schematic phase diagram for microemulsion during salinity or alcohol scan

    Figure 2 Phase diagram for SDS-n-butanol-kerosene-water microemulsion system using different electrolytes

    The results also show that each type of electrolyte has its typical length of salinity for the existence of Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1and c(n-butanol)=1.73 mol·L?1, for electrolytes CaCl2, KCl, NaCl, and Na2CO3, their concentrations for forming Winsor type III microemulsion are 0.041-0.099, 0.15-0.30, 0.19-0.43 and 0.21-0.47 mol·L?1, and the salinity length is 0.058, 0.15, 0.24 and 0.26 mol·L?1, respectively. High surface charge density of Ca2+makes it more effective than K+and Na+in decreasing the HLB of surfactant system, and much easier for the formation of Winsor type III and II microemulsion. At the same time, the effect of K+is stronger than Na+, similar to the results obtained by Aarra et al [31]. As to the effect of NaCl and Na2CO3, it is found that NaCl is more effective than Na2CO3although they have the same monovalent cation, Na+. Anton and Salager [22] gave similar results. They put forward a concept of “valence activity factor (VAF)”to indicate the active fraction of sodium cations, COleads to a lower activity of the sodium salt than monovalent Cl?.

    It is attractive that when Winsor type II or III microemulsion is obtained using CaCl2, it may be Winsor type I for NaCl under the same valence number (see Fig. 2). Therefore, if Ca2+is replaced by Na+, Winsor type II or III microemulsion may convert into type I, and most of the oil solubilized in the microemulsion is released. Tests were carried out to approve this supposition. CaCl2was first used to prepare Winsor III microemulsion, with the volume fraction of microemulsified kerosene being 35% and then Na2CO3added into the system, causing Ca2+to precipitate as CaCO3. Thus Ca2+in the system was substituted by Na+. Fig. 3 (a) shows the phase behavior during this substituting process. Phase inversion from Winsor type III→I can be observed with the substitution of where Z is the valence of the anion. Eq. (1) indicates that the higher the anion valence, the lower its VAF, i.e. the less active the sodium salt. Thus bivalentCa2+by Na+. The volume fraction of solubilized kerosene in the Winsor type I microemulsion is only 7.6%. After exchanging Ca2+with Na+through precipitation, 74% of the oil in the microemulsion phase is released to the free oil phase. With further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II. The volume fraction of kerosene in the microemulsion phase gradually changes from 7.6% to 65%.

    Winsor type II microemulsion is also formed initially using CaCl2, and then Na2CO3is added gradually. The phase diagram is shown in Fig. 3 (b). For the Winsor type II microemulsion, the volume fraction of kerosene is 67%. When proper amount of Ca2+is substituted by Na+, Winsor type I microemulsion forms, in which the volume fraction of kerosene is only 11%. It means that 85% of the oil is released from the microemulsion. Similarly, with further addition of Na2CO3, the microemulsion system changes from Winsor type I→III→II, and more oil goes into the microemulsion again.

    In summary, after the replacement of Ca2+by Na+, Winsor type III (or II) goes to type I microemulsion, whose oil solubilization capacity is relatively small, releasing most of the oil initially contained. With the addition of cation Na+, Winsor type I microemulsion converts into type III (or II) again and more oil goes into the microemulsion gradually. Thus, the system will repeatedly convert between Winsor type III (or II) and I with the precipitation and re-dissolution of Ca2+(just as the addition of cations). This is a promising way for the recovery of organic contaminants and reuse of the surfactant system repeatedly. However, the content of Na+increases monotonously during the Ca2+precipitation and re-dissolution process, with no replacement of Na+taking place, which will lead to the end of the recycle because the cation concentration is too high eventually. The replacement of Ca2+with Na+and that of Na+with Ca2+are the keys for the repeated inversion between Winsor type III (or II) and I microemulsions, which is still under investigation in our laboratory.

    Figure 3 Phase inversion through cation substitution [Vkerosene︰Vwater=1︰1, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.75 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    3.2 Influence of acidity and alkalinity on phase behavior

    The results of Section 3.1 show that different types of cations have different effects on the phase behavior of microemulsion. The effects of monovalents H+, Na+and K+are compared and analyzed further in this section. The electrolytes used include HCl, NaCl, NaOH, KCl, and KOH, to find any special information about the H+cation or about acidity and alkalinity.

    The phase diagram obtained through salinity scan and alcohol scan are shown in Fig. 4. With the increase of salinity or alcohol concentration, the phase inversion from Winsor type I→II→III can be observed. Fig. 4 (a) shows that each type of monovalent cation has its typical length of salinity for forming Winsor type III microemulsion. Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(SDS)= 0.14 mol·L?1and c(n-butanol)=1.42 mol·L?1, for electrolytes HCl, NaCl, NaOH, KCl and KOH, the concentration for forming Winsor type III microemulsion are 0.15-0.23, 0.22-0.42, 0.22-0.42, 0.17-0.29, 0.17-0.29 mol·L?1, and the length of salinity is 0.54, 0.20, 0.20, 0.12 and 0.12 mol·L?1, respectively. Fig. 4 (b) is the phase diagram obtained from alcohol scan, the alcohol concentration for forming Winsor type III microemulsion is 0.88-1.42, 1.53-2.19, 1.53-2.19, 1.15-1.81 and 1.15-1.81 mol·L?1for HCl, NaCl, NaOH, KCl and KOH, respectively.

    It is interesting that the microemulsion phase diagram using KCl (or NaCl) is almost identical tothat using KOH (or NaOH). That is, for the same monovalent cation (K+or Na+), the type of monovalent anion (Cl?or OH?) has little influence on the state of SDS-n-butanol-kerosene-water microemulsion under the conditions in this work, even though KOH (or NaOH) is alkalis. With the addition of electrolytes into the microemulsion system, the counterion concentration increases, compressing the electrical double layer and depressing the electrostatic repulsion between the polar heads of surfactant. SDS is an anionic surfactant. The cation, Na+or K+, is the conterion that influences the electrical double layer, while the type of monovalent anion (no matter Cl?or OH?) of the electrolyte shows little influence. Extended conditions are still under investigation in our laboratory to justify this observation.

    The results in Fig. 4 show that the effect of the monovalent cations on microemulsion phase behavior decreases in the order of H+>K+>Na+. Puerto and Reed [23] considered that the greater the hydration radius, the higher the optimal salinity at constant cation valence. According to the analysis, the effect of monovalent cations in this work should be K+>Na+>H+, because the hydration radius is in the sequence of K+

    Obvious difference in state exists between the microemulsion systems using HCl and NaCl as electrolyte, as shown in Fig. 4. For the kerosene-water microemulsion system [Vwater︰Vkerosene=1︰1, 10 ml for each, c(SDS)=0.14 mol·L?1and c(n-butanol)= 1.42 mol·L?1], when Winsor type III or II microemulsion is formed using HCl as electrolyte, it may be type I for NaCl. Thus if Winsor type III or II microemulsion is formed using HCl, it will convert into type I with the substitution of H+by Na+.

    A test for phase inversion through acid-base neutralization was carried out. Under the conditions of c(SDS)= 0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1and c(HCl)=0.23 mol·L?1, a Winsor type II microemulsion was formed initially. Then, NaOH was added into the system gradually. The microemulsion phase diagram is given in Fig. 5.

    Figure 4 Effect of acidic and alkaline electrolytes on microemulsion phase state [Vkerosene︰Vwater=1︰1 (10 ml for each), c(SDS)=0.14 mol·L?1]▼ HCl; △ NaCl; ▲ NaOH; ○ KCl; ● KOH

    Figure 5 Phase diagram through acid-base neutralization [Winsor II initially, c(SDS)=0.14 mol·L?1, c(n-butanol)=1.42 mol·L?1, c(HCl)=0.23 mol·L?1] O—oil phase; M—microemulsion phase; W—water phase

    The inversion of Winsor type II→III→I→III→II is observed. With the addition of NaOH, HCl is neutralized and H+is substituted by Na+gradually. With the NaOH added into the system and 0.23 mol·L?1reached, all of H+should combine with OH?. All the effective cations in the system should be Na+at this point and Winsor type I microemulsion is observed, which is consistent with the results in Fig. 4 (a). Duringthis process, the content of kerosene decreases from the initial 71% (by volume) in the Winsor type II microemulsion to 12% (by volume) in the type I microemulsion, with 82% oil releases from the microemulsion phase. With further addition of NaOH, the concentration of Na+cation increases and more oil is solubilized into the microemulsion again. Winsor type II microemulsion is formed in the end.

    Just as the substitution of Ca2+by Na+in Section 3.1, H+is replaced by Na+during the acid-base neutralization process. Similarly, if effective way of Na+substitution by H+can be provided, the solubilization and release of organic contaminants and thus the reuse of surfactant system can be repeated ideally, which is our aim in the future work.

    3.3 Influence of water/oil ratio on phase behavior

    Under the conditions of Vkerosene︰Vwater=1︰1 (10 ml︰10 ml) and the concentrations of n-butanol, SDS and NaCl being 2.07, 0.14 and 0.32 mol·L?1, respectively, Winsor type I microemulsion was formed, as shown in Fig. 6. Water was then added gradually into the system so as to change the water/oil ratio in the system. It is attractive that the change from microemulsion Winsor type II→III→I occurs and more and more oil is released gradually. When the volume of water increases to 18 ml, 9 ml or 90% (by volume) oil is released from the microemulsion.

    Figure 6 Influence of water volume on phase behavior of SDS-n-butanol-kerosene-water microemulsion system [Vkerosene︰Vwater=1︰1 (10 ml︰10 ml), c(n-butanol)=2.07 mol·L?1, c(SDS)=0.14 mol·L?1, c( NaCl)=0.32mol·L?1]

    Tongcumpoua et al. [8] also found that the interfacial tension between oil and water changed with the ratio of oil to water, so a phase inversion may take place. According to the description of Aarra et al. [31], for Winsor type III microemulsion, electrolyte cations are partitioned in the excess water phase and microemulsion phase, while Na+shows a strong tendency to partition in the excess water phase for a SDS-heptanewater-1-butanol-NaCl system. Bellocq et al. [32] gave similar results for SDS-toluene-water butanol-NaCl system. The results of Aarra et al. [31] were consistent with the calculation results from Robertson’s model [33]. According to Robertson’s model, the water in the surfactant/water pseudocomponent does not contain electrolyte. The remaining bulk water in the microemulsion has the same salinity as the excess water. It is the equilibrium excess-water-phase salinity that controls the phase behavior. The release of oil from Winsor type II or III microemulsion with water addition in this work can be also explained by Robertson’s model [33]. The addition of water reduces the excess-waterphase salinity, and a salinity low enough leads to the phase inversion to Winsor type I.

    These phenomena mean that when organic contaminants are transferred into Winsor type II or III microemulsion for disposal of organic contaminants, water may be added to release the organics from the microemulsion and the surfactants may be reused, although a great amount of water is needed.

    4 CONCLUSIONS

    The experimental results show that the type and valence of electrolyte cations are important factors influencing the phase behavior of the SDS-n-butanolkerosenewater microemulsion system. High surface charge density of bivalent cation (Ca2+) makes it more effective in adjusting the HLB of the SDS surfactant system, and much easier for the formation of Winsor type III and II microemulsion than monovalent cations (K+ and Na+). For the same monovalent cation (Na+), the valence of correspondent anions in the electrolyte show some influence on its effect. Bivalent anion ( 2 CO3? ) leads to a lower activity of the cation (Na+) than monovalent anion (Cl?). For the same type of cation (K+ or Na+), the type of monovalent anion (Cl?or OH?) in the electrolyte has little influence on the microemulsion state under the operation conditions in this work, even though KOH (or NaOH) is alkalis. The cation H+ in the electrolyte HCl has strong effect on the formation of Winsor type III microemulsion. The acidity plays an important role in this process.

    Winsor type III (or II) microemulsion changes to type I with the precipitation of Ca2+ using Na2CO3, neutralization of HCl by NaOH and addition of water into the system. Most of the organics enters into the free phase during this process. These may give us some inspiration for the release of organics from type III (or II) microemulsion and the recycling of surfactants.

    REFERENCES

    1 Rosano, H.L., Cavallo, J.L., Chang, D.L., Whittam, J.H., “Microemulsions: A commentary on their preparation”, J. Soc. Cosmet. Chem., 39, 201-209 (1988).

    2 Salager, J.L., Antón, R.E., Sabatini, D.A., Harwell, J.H., Acosta, E.J., Tolosa, L.I., “Enhancing solubilization in microemulsions—State of the art and current trends”, J. Surfact. Deterg., 8 (1), 3-21 (2005).

    3 Healy, R.N., Reed, R.L., “Physicochemical aspects of microemulsion flooding”, Soc. Pet. Eng. J., 14 (5), 491-501 (1974).

    4 Healy, R.N., Reed, R.L., “Immiscible microemulsion flooding”, Ibid, 17 (2), 129-139 (1977).

    5 Healy, R.N., Reed, R.L., Stenmark, D.G., “Multiphase microemulsion systems”, Ibid, 16 (3), 147-160 (1976).

    6 Santanna, V.C., Curbelo, F.D.S., Dantas, T.N.C., Datas Neto, A.A., Albuquerque, H.S., Garnica, A.I.C., “Microemulsion flooding for enhanced oil recovery”, J. Petrol. Sci. Eng., 66, 117-120 (2009).

    7 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: I. Phase behavior and interfacial tension”, J. Surfact. Deterg., 6 (3), 191-203 (2003).

    8 Tongcumpoua, C., Acosta, E.J., Quencer, L.B., Josephc, A.F., Scamehorn, J.F., Sabatini, D.A., Chavadej, S., Yanumet, N., “Microemulsion formation and detergency with oily soils: II. Detergency formulation and performance”, J. Surfact. Deterg., 6 (3), 205-214 (2003).

    9 Tongcumpou, C., Acosta, E.J., Quencer, L.B., Joseph, A.F., Scamehorn, J.F., Sabatini, D.A., Yanumet, N., Chavadej, S., “Microemulsion formation and detergency with oily soils: III. Performance and mechanisms”, J. Surfact. Deterg., 8 (2), 147-156 (2005).

    10 Tanthakit, P., Chavadej, S., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., “Microemulsion formation and detergency with oily soil: IV. Effect of rinse cycle design”, J. Surfact. Deterg., 11, 117-128 (2008).

    11 Tanthakit, P., Nakrachata-Amorn, A., Scamehorn, J.F., Sabatini, D.A., Tongcumpou, C., Chavadej, S., “Microemulsion formation and detergency with oily soil: V. Effects of water hardness and builder”, J. Surfact. Deterg., 12, 173-183 (2009).

    12 Dantas, T.N.C., Mpura, M.C.P.A., Datas Neto, A.A., Pinherio, F.S.H.T., Barros Neto, E.L., “The use of microemulsion and flushing solutions to remediate diesel-polluted soil”, Brazilian Journal of Petroleum and Gas, 1 (1), 26-33 (2007).

    2.1.5 肥胖 患者身高158 cm,體重74 kg,在化療期間體重減少3 kg左右,后又恢復(fù)正常。肥胖患者廣泛的皮下脂肪術(shù)后容易形成死腔和血腫妨礙血氧向傷口釋放,為感染提供了病灶;脂肪組織的血液供應(yīng)相對(duì)較少,傷口血供不足,易發(fā)生液化壞死;太多的脂肪組織會(huì)導(dǎo)致傷口的張力增加(1期縫合傷口),會(huì)阻礙傷口局部的血液循環(huán),影響傷口的愈合。

    13 Dantas, T.N.C., Datas Neto, A.A., Rossi, C.G.F.T., Gomes, D.A.A., Gurgel, A., “Use of microemulsion systems in the solubilization of petroleum heavy fractions for the prevention of oil sludge formation”, Energ Fuel, 24, 2312-2319 (2010).

    14 Shiau, B., Sabatini, D.A., Harwell, J.H., “Solubilization and microemulsification of chlorinated solvents using direct food additive (edible) surfactants”, Ground Water, 32 (4), 561-569 (1994).

    15 Sabatini, D.A., Knox, R.C., Harwell, J.H., “Emerging technologies in surfactant-enhanced subsurface remediation”, ACS Symp. Ser., 594, 1-7 (1995).

    16 Fountain, J.C., Starr, R.C., Middleton, T., Beikrich, M., Taylor, C., Hodge, D.A., “Controlled field test of surfactant enhanced aquifer remediation”, Ground Water, 34 (5), 910-916 (1996).

    17 Wu, B., Shiau, B.J., Sabatini, D.A., Harwell, J.H., Vu, D.Q., “Formulating microemulsion systems for a weathered jet fuel waste using surfactant/cosurfactant mixtures”, Sep. Sci. Technol., 35 (12), 1917-1937 (2000).

    18 Childs, J., Costa, E., Annable, M.D., Brooks, M.C., Enfield, C.G., Harwell, J.H., Hasegawa, M., Knox, R.C., Rao, P.S.C., Sabatini, D.A., Shiau, B., Szekeres, E., Wood, A.L., “Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware”, J. Contam. Hydrol., 2, 1-22 (2006)

    19 Cheng, H., Contaminant and Anionic Surfactant Separation Using Solvent Extraction and Anion Exchange, University of Oklahoma (2000).

    20 Cheng, H., Sabatini, D.A., “Separation of organics compounds from surfactant solutions: A review”, Sep. Sci. Technol., 42, 453-475 (2007).

    21 Chai, J., Sun, H., Li, X., Chen, L., Yang, B., Wu, Y., “Effect of inorganic salts on the phase behavior of microemulsion systems containing sodium dodecyl sulfate”, J. Disper. Sci. and Technol., 33 (10),1470-1474 (2012)

    23 Puerto, M.C., Reed, R.L., “Surfactant selection with the three-parameter diagram”, SPE Reservoir Engineering, 5 (2), 198-204 (1990).

    24 Rudolph, E.S.J., Cacao Pedroso, M.A., de Loos, Th. W., Swaan Arons, J. de, “Phase behavior of oil + water + nonionic surfactant systems for various oil-to-water ratios and the representation by a Landau-type model”, J. Phys. Chem. B, 101, 3914-3918 (1997).

    25 Rajib, K.M., Bidyut, K.P., “Effect of temperature and salt on the phase behavior of nonionic and mixed nonionic-ionic microemulsions with fish-tail diagrams”, J. Colloid. Interf. Sci., 291, 550-559 (2005).

    26 Chai, J., Wu, Y., Li, X., Yang, B., Lu, J., “Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecyl sulfate”, J. Solution Chem., 40, 1889-1898 (2011)

    27 Kunieda, H., Shinoda, K., “Solution behavior and hydrophilelipophile balance temperature in the aerosol OT-isooctane-brine system: Correlation between microemulsions and ultralow interfacial tensions”, J. Colloid. Interf. Sci., 75 (2), 601-606 (1980).

    28 Kunieda, H., Nakano, A., Akimaru, M., “The effect of mixing of surfactants on solubilization in a microemulsion system”, J. Colloid. Interf. Sci., 170, 78-84 (1995).

    29 Pizzino, A., Molinier, V., Catte, M., Salager, J., Aubry, J., “Bidimensional analysis of the phase behavior of a well-defined surfactant (C10E4)/oil (n-octane)/water-temperature system”, J. Phys. Chem. B, 113, 16142-16150 (2009)

    30 Cheng, H., Sabatini, D.A., “Phase-behavior-base surfactant-contaminant separation of middle phase microemulsions”, Sep. Sci. Technol., 37 (1), 127-146 (2002).

    31 Aarra, M.G., H?iland, H., Skauge, A., “Phase behavior and salt partitioning in two- and three-phase anionic surfactant microemulsion systems: Part II, partitioning of salt”, J. Colloid. Interf. Sci., 215, 216-225 (1999).

    32 Bellocq, A.M., Biais, J., Clin, B., Gelot, A., Lalanne, P., Lemanceau, B., “Three-dimensional phase diagram of the brine-toluene-butanolsodium dodecyl sulfate system”, J. Colloid. Interf. Sci., 74 ( 2), 311-321 (1980).

    33 Robertson, S.D., “An empirical model for microemulsion phase behavior”, SPE Reservoir Engineering, 8, 1002-1016 (1988).

    2013-01-13, accepted 2013-06-08.

    * Supported by the National Natural Science Foundation of China (21106187), Promotive Research Funds for Excellent Young and Middle-aged Scientists of Shandong Province (BS2011NJ021), the Fundamental Research Funds for the Central Universities (11CX05016A), and the Graduate Innovation Project of CUP 2012 (CX-1214).

    ** To whom correspondence should be addressed. E-mail: liuhuie@upc.edu.cn

    猜你喜歡
    脂肪組織傷口體重
    給鯨測(cè)體重,總共分幾步
    傷口
    青年文摘(2021年17期)2021-12-11 18:23:02
    高脂肪飲食和生物鐘紊亂會(huì)影響體內(nèi)的健康脂肪組織
    中老年保健(2021年9期)2021-08-24 03:49:52
    雙源CT對(duì)心臟周圍脂肪組織與冠狀動(dòng)脈粥樣硬化的相關(guān)性
    稱體重
    意林·全彩Color(2019年7期)2019-08-13 00:53:50
    你的體重超標(biāo)嗎
    小學(xué)生作文(中高年級(jí)適用)(2016年3期)2016-11-11 06:30:22
    傷口“小管家”
    再不去傷口就好了等3 則
    av福利片在线| 人人妻人人看人人澡| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 波多野结衣高清无吗| 丁香欧美五月| 亚洲 欧美 日韩 在线 免费| 最新美女视频免费是黄的| 亚洲精品久久国产高清桃花| 亚洲av成人av| 韩国av一区二区三区四区| 精品免费久久久久久久清纯| 国内精品一区二区在线观看| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看| 怎么达到女性高潮| 免费在线观看视频国产中文字幕亚洲| 香蕉丝袜av| 久久中文字幕一级| 欧美在线一区亚洲| 婷婷精品国产亚洲av| 男插女下体视频免费在线播放| 亚洲av电影在线进入| 精品国产乱码久久久久久男人| 久久精品影院6| 国产男靠女视频免费网站| 一本大道久久a久久精品| www.熟女人妻精品国产| 99精品久久久久人妻精品| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 久久天躁狠狠躁夜夜2o2o| 久久久久久免费高清国产稀缺| 久99久视频精品免费| 国产野战对白在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 国产在线精品亚洲第一网站| 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 一夜夜www| 亚洲成人免费电影在线观看| 操出白浆在线播放| 亚洲国产精品999在线| 蜜桃久久精品国产亚洲av| 丰满的人妻完整版| 怎么达到女性高潮| 国产精品av久久久久免费| www日本在线高清视频| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 成人18禁在线播放| 亚洲精品美女久久av网站| 老司机靠b影院| 可以在线观看的亚洲视频| 无遮挡黄片免费观看| 亚洲第一电影网av| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 国产单亲对白刺激| 波多野结衣高清作品| 国产精品亚洲美女久久久| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 一卡2卡三卡四卡精品乱码亚洲| 国产91精品成人一区二区三区| 国产aⅴ精品一区二区三区波| 欧美一区二区国产精品久久精品 | 成人国产综合亚洲| 久久精品成人免费网站| 日本免费一区二区三区高清不卡| 久久久国产成人精品二区| 香蕉av资源在线| 中文字幕高清在线视频| av视频在线观看入口| 亚洲精品中文字幕在线视频| 欧美3d第一页| 欧美黑人欧美精品刺激| 国产免费男女视频| 午夜福利视频1000在线观看| av天堂在线播放| 脱女人内裤的视频| 禁无遮挡网站| 成人三级黄色视频| 日日夜夜操网爽| 夜夜爽天天搞| 欧美+亚洲+日韩+国产| www.熟女人妻精品国产| 天天添夜夜摸| 熟女电影av网| 欧美黄色淫秽网站| 亚洲熟妇中文字幕五十中出| 亚洲自偷自拍图片 自拍| 国产熟女午夜一区二区三区| 丁香欧美五月| 精品久久久久久久人妻蜜臀av| 国产精品 国内视频| av天堂在线播放| 夜夜躁狠狠躁天天躁| 国产成人精品久久二区二区91| 午夜视频精品福利| 国产精品 欧美亚洲| 国产精品自产拍在线观看55亚洲| 亚洲精品在线美女| 色av中文字幕| 两个人看的免费小视频| 精品国内亚洲2022精品成人| 国产精品 欧美亚洲| 久久精品国产99精品国产亚洲性色| 国产真实乱freesex| 制服诱惑二区| www.999成人在线观看| 黑人巨大精品欧美一区二区mp4| 国产v大片淫在线免费观看| 90打野战视频偷拍视频| 两个人的视频大全免费| 欧美大码av| 亚洲精华国产精华精| 美女高潮喷水抽搐中文字幕| 在线a可以看的网站| 久久草成人影院| 国产一区二区三区在线臀色熟女| 欧美乱妇无乱码| 欧美中文日本在线观看视频| 国产亚洲精品一区二区www| 国产精品影院久久| 国产精品日韩av在线免费观看| 国产精华一区二区三区| 色尼玛亚洲综合影院| 熟妇人妻久久中文字幕3abv| 日韩欧美国产一区二区入口| 亚洲熟妇中文字幕五十中出| 亚洲一区中文字幕在线| 99久久久亚洲精品蜜臀av| 久久这里只有精品中国| 国产高清有码在线观看视频 | 一级毛片女人18水好多| 亚洲熟女毛片儿| 亚洲国产看品久久| 叶爱在线成人免费视频播放| 黄片大片在线免费观看| 欧美一级毛片孕妇| 色综合婷婷激情| 国产高清视频在线播放一区| 丰满的人妻完整版| 久久亚洲真实| 免费看日本二区| 成人一区二区视频在线观看| 在线观看免费视频日本深夜| 好男人电影高清在线观看| 琪琪午夜伦伦电影理论片6080| 久久性视频一级片| 久久久久国产一级毛片高清牌| 国产激情久久老熟女| 欧美另类亚洲清纯唯美| 中文资源天堂在线| 悠悠久久av| 丰满人妻一区二区三区视频av | 婷婷丁香在线五月| 亚洲人成网站高清观看| 日本成人三级电影网站| 无遮挡黄片免费观看| 99热只有精品国产| 欧美黑人巨大hd| 校园春色视频在线观看| 国产免费男女视频| 久久国产乱子伦精品免费另类| 90打野战视频偷拍视频| 国产成人一区二区三区免费视频网站| 在线国产一区二区在线| 小说图片视频综合网站| 男人舔女人下体高潮全视频| 亚洲国产精品成人综合色| 精品欧美一区二区三区在线| 香蕉久久夜色| 国产精品亚洲一级av第二区| av中文乱码字幕在线| av在线天堂中文字幕| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 嫩草影视91久久| 长腿黑丝高跟| 午夜精品在线福利| 亚洲电影在线观看av| 国产真人三级小视频在线观看| a级毛片在线看网站| 制服人妻中文乱码| 一边摸一边做爽爽视频免费| 日韩欧美三级三区| 国产精品精品国产色婷婷| av视频在线观看入口| 1024视频免费在线观看| 99久久综合精品五月天人人| www日本在线高清视频| 午夜两性在线视频| 国产三级在线视频| 国产91精品成人一区二区三区| videosex国产| 可以在线观看的亚洲视频| 一级毛片精品| 不卡一级毛片| 国产三级在线视频| 国产精品av久久久久免费| 无人区码免费观看不卡| 一个人免费在线观看电影 | 国产三级在线视频| 久久久国产欧美日韩av| 久久久久久大精品| 别揉我奶头~嗯~啊~动态视频| 99久久综合精品五月天人人| 9191精品国产免费久久| 悠悠久久av| 欧美黄色片欧美黄色片| 啪啪无遮挡十八禁网站| 老司机福利观看| 757午夜福利合集在线观看| 国产野战对白在线观看| 成在线人永久免费视频| 国产成人av教育| 一本综合久久免费| 五月玫瑰六月丁香| 亚洲国产中文字幕在线视频| 91字幕亚洲| 69av精品久久久久久| 欧美最黄视频在线播放免费| 日韩精品免费视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 免费无遮挡裸体视频| 国产三级黄色录像| www.精华液| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 亚洲狠狠婷婷综合久久图片| 制服人妻中文乱码| 村上凉子中文字幕在线| 免费在线观看黄色视频的| 成年版毛片免费区| 男女床上黄色一级片免费看| 91国产中文字幕| 窝窝影院91人妻| 全区人妻精品视频| 久久久久久久久久黄片| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 久久久国产欧美日韩av| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 免费一级毛片在线播放高清视频| 999久久久精品免费观看国产| 亚洲av美国av| 亚洲欧美日韩高清专用| 成人欧美大片| 在线视频色国产色| 国产精品美女特级片免费视频播放器 | 亚洲国产精品999在线| 最近在线观看免费完整版| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 色综合亚洲欧美另类图片| 国产视频内射| 国产99白浆流出| 69av精品久久久久久| 日韩欧美在线乱码| 亚洲精品国产精品久久久不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产野战对白在线观看| 国内精品久久久久久久电影| 日韩免费av在线播放| 久久久久九九精品影院| 国产精品免费视频内射| 久久久久久久精品吃奶| 亚洲自偷自拍图片 自拍| 国产一区二区激情短视频| 国产高清videossex| 成人三级黄色视频| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 一本精品99久久精品77| 在线永久观看黄色视频| 亚洲avbb在线观看| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 母亲3免费完整高清在线观看| 国产精品亚洲美女久久久| 99在线人妻在线中文字幕| 日本在线视频免费播放| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 亚洲精品在线观看二区| 狂野欧美白嫩少妇大欣赏| 亚洲成人免费电影在线观看| 久久久久国内视频| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 一本大道久久a久久精品| 欧美日韩中文字幕国产精品一区二区三区| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 精品一区二区三区四区五区乱码| 大型黄色视频在线免费观看| bbb黄色大片| 精品国产亚洲在线| 老鸭窝网址在线观看| 国产免费男女视频| 黄频高清免费视频| 久久久久免费精品人妻一区二区| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看 | 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 午夜福利在线在线| 国内精品久久久久久久电影| 国产精品影院久久| 国产日本99.免费观看| 亚洲全国av大片| tocl精华| 成人av一区二区三区在线看| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| 免费看十八禁软件| 在线a可以看的网站| 亚洲国产精品成人综合色| 超碰成人久久| 精品免费久久久久久久清纯| 在线十欧美十亚洲十日本专区| 久久中文字幕人妻熟女| 99久久99久久久精品蜜桃| АⅤ资源中文在线天堂| 日日爽夜夜爽网站| 九色成人免费人妻av| 国产在线精品亚洲第一网站| 99精品欧美一区二区三区四区| 精品久久久久久久久久久久久| 男女下面进入的视频免费午夜| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 操出白浆在线播放| 18禁观看日本| 免费在线观看亚洲国产| 亚洲真实伦在线观看| 精品无人区乱码1区二区| 天天躁夜夜躁狠狠躁躁| 午夜老司机福利片| 波多野结衣高清无吗| 狂野欧美白嫩少妇大欣赏| 午夜福利高清视频| 可以在线观看的亚洲视频| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 午夜两性在线视频| 久久午夜亚洲精品久久| 久久婷婷成人综合色麻豆| 日本一二三区视频观看| 不卡一级毛片| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 操出白浆在线播放| 午夜福利高清视频| 制服诱惑二区| 日本熟妇午夜| 免费看a级黄色片| 一级黄色大片毛片| 久久精品国产清高在天天线| 久久亚洲真实| 国产激情偷乱视频一区二区| 欧美黑人精品巨大| 国产视频内射| 成人av一区二区三区在线看| 大型av网站在线播放| 在线国产一区二区在线| 88av欧美| www.熟女人妻精品国产| 欧美在线黄色| 免费在线观看黄色视频的| 欧美乱色亚洲激情| 国产免费av片在线观看野外av| 好男人在线观看高清免费视频| 99精品在免费线老司机午夜| av国产免费在线观看| 久久香蕉激情| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 最近最新中文字幕大全电影3| 亚洲欧美日韩无卡精品| 国产欧美日韩一区二区精品| 757午夜福利合集在线观看| 两个人视频免费观看高清| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看 | 少妇粗大呻吟视频| 久久久久性生活片| 欧美在线黄色| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 免费高清视频大片| 国产激情偷乱视频一区二区| 欧美日韩亚洲综合一区二区三区_| 久久久久免费精品人妻一区二区| 国产成人精品久久二区二区91| 国产黄片美女视频| 男插女下体视频免费在线播放| 欧美日韩黄片免| 麻豆成人午夜福利视频| 亚洲中文字幕一区二区三区有码在线看 | www日本黄色视频网| 麻豆成人午夜福利视频| 国产精品免费视频内射| 男女之事视频高清在线观看| 久久精品国产综合久久久| 国产av一区二区精品久久| 国产av又大| 好看av亚洲va欧美ⅴa在| 国产精品一及| 亚洲第一欧美日韩一区二区三区| 国内少妇人妻偷人精品xxx网站 | 一进一出抽搐动态| 一边摸一边做爽爽视频免费| а√天堂www在线а√下载| 男男h啪啪无遮挡| 高清毛片免费观看视频网站| 精品福利观看| 人成视频在线观看免费观看| 色老头精品视频在线观看| 99国产综合亚洲精品| 淫妇啪啪啪对白视频| 亚洲自拍偷在线| 亚洲人成电影免费在线| 精品国产亚洲在线| 99riav亚洲国产免费| 一本久久中文字幕| 校园春色视频在线观看| 最好的美女福利视频网| 在线观看免费午夜福利视频| 成年版毛片免费区| 免费观看人在逋| 国产成人精品久久二区二区免费| 香蕉av资源在线| 国产v大片淫在线免费观看| 国产精品久久久久久亚洲av鲁大| 久久九九热精品免费| 手机成人av网站| 免费看美女性在线毛片视频| 久久 成人 亚洲| 国产精品,欧美在线| 亚洲国产精品久久男人天堂| 深夜精品福利| 男男h啪啪无遮挡| 性色av乱码一区二区三区2| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 久久精品人妻少妇| 老司机午夜福利在线观看视频| 国产免费av片在线观看野外av| 淫妇啪啪啪对白视频| a级毛片a级免费在线| 国内精品一区二区在线观看| 黄片大片在线免费观看| 人人妻,人人澡人人爽秒播| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 亚洲精品av麻豆狂野| 国产亚洲精品久久久久5区| 久热爱精品视频在线9| 国产熟女午夜一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久久久久久久| 变态另类丝袜制服| 日本熟妇午夜| 午夜福利视频1000在线观看| 婷婷精品国产亚洲av在线| 99热这里只有精品一区 | 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 俺也久久电影网| 日韩精品青青久久久久久| 老司机福利观看| 亚洲男人天堂网一区| 午夜日韩欧美国产| a级毛片在线看网站| 成人av一区二区三区在线看| 久久草成人影院| 免费电影在线观看免费观看| 亚洲成av人片在线播放无| 啪啪无遮挡十八禁网站| 欧美一区二区精品小视频在线| 首页视频小说图片口味搜索| 国产精品一及| 欧美日本视频| www.www免费av| 男人舔女人的私密视频| 国产激情久久老熟女| 久久精品影院6| 日韩国内少妇激情av| 在线观看免费日韩欧美大片| 好男人电影高清在线观看| 午夜福利成人在线免费观看| 一二三四社区在线视频社区8| 欧美乱色亚洲激情| 青草久久国产| www.自偷自拍.com| 欧美国产日韩亚洲一区| 亚洲国产欧美人成| 看黄色毛片网站| 久久久精品欧美日韩精品| 黑人操中国人逼视频| 黄色视频,在线免费观看| 香蕉久久夜色| 日日干狠狠操夜夜爽| 亚洲一区中文字幕在线| 精品久久久久久久末码| 成人特级黄色片久久久久久久| 青草久久国产| 成人av一区二区三区在线看| 午夜老司机福利片| 村上凉子中文字幕在线| 老司机福利观看| 亚洲片人在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人国产一区在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 久久人妻福利社区极品人妻图片| 在线十欧美十亚洲十日本专区| 亚洲aⅴ乱码一区二区在线播放 | a级毛片在线看网站| 精品不卡国产一区二区三区| 久久九九热精品免费| 国产精品99久久99久久久不卡| 久久久精品欧美日韩精品| 99热这里只有是精品50| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 久久精品夜夜夜夜夜久久蜜豆 | 欧美日韩亚洲国产一区二区在线观看| 少妇粗大呻吟视频| 亚洲精品久久国产高清桃花| 一本大道久久a久久精品| 亚洲精品美女久久av网站| svipshipincom国产片| 久久精品91蜜桃| 久久国产精品影院| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 久久久久九九精品影院| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 成人高潮视频无遮挡免费网站| 18禁裸乳无遮挡免费网站照片| 12—13女人毛片做爰片一| 国产区一区二久久| 久久婷婷人人爽人人干人人爱| 久久热在线av| 九色成人免费人妻av| netflix在线观看网站| 亚洲av熟女| 国产精品亚洲一级av第二区| 欧美人与性动交α欧美精品济南到| 久久久久亚洲av毛片大全| 特大巨黑吊av在线直播| 18禁国产床啪视频网站| 99精品在免费线老司机午夜| 久久中文字幕人妻熟女| 午夜激情av网站| 午夜精品在线福利| 99国产极品粉嫩在线观看| 99久久综合精品五月天人人| 国产欧美日韩一区二区三| 一级毛片女人18水好多| 国产精品精品国产色婷婷| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 亚洲av成人不卡在线观看播放网| 精品欧美一区二区三区在线| 宅男免费午夜| 一区二区三区国产精品乱码| 两个人视频免费观看高清| 久热爱精品视频在线9| 老鸭窝网址在线观看| 亚洲国产高清在线一区二区三| 中亚洲国语对白在线视频| 三级国产精品欧美在线观看 | 男女之事视频高清在线观看| 白带黄色成豆腐渣| 丝袜人妻中文字幕| 日本黄大片高清| 国产成人一区二区三区免费视频网站| 国产三级在线视频| 亚洲欧洲精品一区二区精品久久久| 国产午夜精品久久久久久| 欧美日韩国产亚洲二区| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 欧美色欧美亚洲另类二区| www日本黄色视频网| 制服人妻中文乱码| 亚洲中文av在线| 天天一区二区日本电影三级| 在线观看午夜福利视频| 国产三级中文精品| 日韩欧美在线二视频| 久久婷婷成人综合色麻豆| 免费在线观看成人毛片|