• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cs取代對Ni-H3PW12O40/SiO2催化劑結(jié)構(gòu)性質(zhì)和催化性能的影響

    2014-06-23 06:50:14孫曉丹吳義志孫素華杰朱慧紅伊?xí)詵|方維平
    物理化學(xué)學(xué)報 2014年3期
    關(guān)鍵詞:醇醚撫順物理化學(xué)

    金 浩 孫曉丹 董 澍 吳義志 孫素華 劉 杰朱慧紅 楊 光 伊?xí)詵| 方維平

    (1中國石油化工股份有限公司撫順石油化工研究院,遼寧撫順113001;2廈門大學(xué)化學(xué)化工學(xué)院,固體表面物理化學(xué)國家重點實驗室,醇醚酯化工清潔生產(chǎn)國家工程實驗室,福建廈門361005;3中國石油撫順石化公司石油二廠,遼寧撫順113004)

    1 Introduction

    Hydrocracking is a catalytic petroleum refining process that is commonly applied to convert the heavier petroleum fractions such as vacuum distillates into gasoline or middle distillates.1,2As the growing demand for high quality middle distillates and more stringent specifications,hydrocracking becomes a strategic process in a modern refinery.3

    Hydrocracking catalysts are bifunctional,i.e.,the acid sites which provide the cracking function and metal sites with a hydrogenation-dehydrogenation function.4-7The typical acidic supports are amorphous oxides,mixtures of oxides,zeolites,and silicoaluminaphosphates.The metals most commonly used are Pt,Pd or bimetallic systems(i.e.,NiW,NiMo,and CoMo).The balance between the acidity of the support-concentration of acidic sites and their strength-hydro/dehydrogenation activity of the metal is of primary importance in determining the selectivity of hydroisomerization and distribution of cracking products.

    Heteropolyacids(HPAs)with Keggin structure and their salts have been widely investigated as catalysts in many oxidation and acid-catalyzed reactions due to their strong acidity,high oxidation potential,and redox character.8-12The tungstophosphoric acid(H3PW12O40)(HPW)is among the most extensively studied,13-15since it possesses the highest Br?nsted acidity.Nevertheless,the main drawback of such materials for catalytic application is their low specific surface area(<10 m2·g-1).Therefore,for many catalytic applications,they are usually impregnated on different porous materials with high surface area.Among these carriers,silica has been widely favored as the supporting material for HPA,since it interacts weakly with the Keggin anions and thus preserves their structure.16,17Yet in reactions that involve polar media,true heterogenization of H3PW12O40could not be achieved on silica,and the acid leached out into the reaction mixture.18,19

    Heteropolyacid salts are prepared by exchanging part of the protons of HPA with cations with higher ionic radii,like Cs+and NH4+.20,21They have higher surface area(up to 150 m2·g-1compared to 10 m2·g-1of HPA)and improved thermal stability than their parent acids.In addition,they are known to be insoluble even in liquids as polar as water.Consequently,HPA salts should be better suited for practical applications that might involve polar reagents in harsh operating conditions.However,these salts tend to form colloidal suspensions in polar media,resulting in difficulties in the catalyst separation.22Moreover,their small particle size(unit inμm)limits their application for use as catalysts in commercial fixed bed or slurry type reactors.23

    An obvious solution as often applied in industrial practice is to support these HPA salts on a larger particle size(unit in mm)carrier.Unfortunately,the insolubility of HPA salts with big cation makes conventional aqueous impregnation on different supports impossible.Consequently,the catalysts were prepared by sequential impregnation andin situreaction on different types of supports,as reported in previous literature.24-28

    In our previous work,16we reported that non-sulfided supported Ni-H3PW12O40/SiO2catalysts exhibited high hydrocracking activity ofn-decane.But H3PW12O40has an excessive acidity and an overhigh cracking activity,which increases the probability to undergo secondary reactions.We also studied hydrogen spillover on Ni-CsxH3-xPW12O40(x=0,1,2)double-function hydrocracking catalysts by temperature programmed desorption and thermodynamics calculation.29The results show that the hydrogen adsorption amount on the two-component Ni-CsxH3-xPW12O40(x=0,1,2)catalysts is much greater than that on single-component catalysts,such as nickel,tungstophosphoric acid,and its cesium salts.Moreover,the Cs salts of H3PW12O40overcome these disadvantages,which have a more widely tunable acidity,a higher thermal stability,and much lower water solubility.21

    Recently,we30also reported that non-sulfided supported Ni-CsxH3-xPW12O40/SiO2catalysts prepared by direct synthesis using tetraethyl orthosilicate as SiO2source.Taking into account the thermal stability of CsxH3-xPW12O40and the strong interaction between CsxH3-xPW12O40and support by direct synthesis,the calcination temperature of the catalyst could not be too high.The properties of support were restricted by calcination temperature and the pore size of the support was about 4 nm.

    In the present paper,the Ni-CsxH3-xPW12O40/SiO2catalysts were prepared by two-step impregnation andin situreaction on the SiO2support.It avoided the restriction of support properties due to calcination temperature and the strong interaction between CsxH3-xPW12O40and support by direct synthesis.The catalysts were characterized by N2adsorption(BET),inductively coupled plasma atomic emission spectrometry(ICP),X-ray diffraction(XRD),Raman,in situXRD,NH3-temperature programmed desorption(NH3-TPD),H2-temperature programmed reduction(H2-TPR),H2-TPD,and Fourier transform infrared(FTIR)spectra of pyridine adsorption.The influence of Cs substitution on catalytic performance of the catalysts for hydrocracking ofn-decane was investigated.

    2 Experimental

    2.1 Preparation of catalysts

    The catalysts were prepared by two-step impregnation andinsitureaction on the SiO2support.Typical procedures for the preparation of Ni-CsxH3-xPW12O40/SiO2catalysts are as follows:SiO2support(Qingdao Haiyang Chemical Co.,specific surface area(378 m2·g-1),40-60 mesh)was impregnated with a solution containing the desired quantities of Ni(NO3)2(Shanghai Hengxin Chemical Reagent Co.,analyzed grade)and Cs2CO3(Sinopharm Chemical Reagent Co.,3N).Impregnated samples were dried overnight at 110 °C and then calcined in air at 400 °C for 3 h.Then the samples were impregnated with a solution containing the desired quantities of H3PW12O40(Sinopharm Chemical Reagent Co.,analyzed grade).After impregnation,samples were dried overnight at 110°C without calcination.

    Samples prepared with 8%amount of nickel and 50%amount of CsxH3-xPW12O40were labeled as 8%Ni-50%CsxH3-xPW/SiO2,wherein“x”stands for the molar of replaced by Cs inthe CsxH3-xPW12O40(x=0-3),while CsxH3-xPW stands for the CsxH3-xPW12O40.

    2.2 Characterization

    The chemical composition of the samples was determined using an IRIS Intrepid II XSP ICP atomic emission spectrometer(Thermo,USA).

    The surface area(BET)and pore volume of the catalysts were determined by means of nitrogen adsorption at-196°C on an adsorption automatic instrument(Micromeritics Tristar 3020,USA).The samples were pretreated at 300°C for 3 h in a vacuum.

    Powder X-ray diffraction(XRD)characterization was carried out on a Panalytical(NetherLands)X2 Pert PRO automatic powder diffractometer operated at 40 kV and 30 mA,using CuKα(λ=0.15406 nm)monochromatized radiation in all cases.Each step of 0.0167°was measured for 10 s from 10°to 90°(2θ).JCPDS file database was used for peak identification.

    Raman spectra were recorded with a Renishaw(UK)inVia Raman System equipped with a charge-coupled device(CCD)detector at room temperature.The 532 nm of diode laser was used as the exciting source with a power of 22 mW.

    In situXRD was performed under the 5%H2/Ar mixture atmosphere.The first spectrum was recorded at room temperature(25°C).The temperature was then raised up to 300,350,400,450,500,550,600,650,700,750,and 800°C,maintained at each value for 0.5 h before recording a new spectrum.

    Acid properties were determined by ammonia temperatureprogrammed desorption in a Micromeritics AutoChem II 2920 analyzer(USA).0.2 g of catalyst sample was filled in a U-shaped quartz reactor tube and a thermocouple was placed onto the top of the sample.All samples were pretreated inAr(20 mL·min-1)at 400 °C for 2 h then in H2(20 mL·min-1)for 1 h.After cooling down to 100°C,10%NH3/Ar was passed over the samples for 30 min.Then,the samples were swept with Ar for 60 min and finally the desorption step was performed from 100 to 700 °C at a heating rate of 10 °C·min-1and 30 mL·min-1of Ar total flow.The desorbed products were monitored by thermal conductivity detector(TCD)and mass spectrometry(MS)equipment simultaneously.

    The H2-temperature programmed reduction experiments were performed with a gas chromatography(GC)-TPR apparatus.The samples(50 mg)were treated in a flow of Ar(20 mL·min-1)at 300 °C for 30 min and then cooled to 50 °C.The samples were subsequently switched to a flow of 5%H2/Ar mixture(20 mL·min-1)and heated from 50 to 900 °C at a rate of 10 °C·min-1.The effluent gas mixture was passed through a cold trap at 0°C to remove water.Hydrogen consumption was monitored by an on-line gas chromatograph equipped with a TCD.

    H2-TPD measurements were done in a Micromeritics Auto-Chem II 2920 analyzer.0.2 g of catalyst sample was filled in a U-shaped quartz reactor tube and a thermocouple was placed onto the top of the sample.All samples were pretreated in Ar(20 mL·min-1)at 400 °C for 2 h then in H2(20 mL·min-1)for 1 h.After cooling down to 50°C,the samples were swept with Ar for 60 min and finally the desorption step was performed from 50 to 700 °C at a heating rate of 10 °C·min-1and 30 mL·min-1ofAr total flow.

    FTIR spectra of pyridine adsorption were recorded using a Thermo Nicolet Nexus spectrometer equipped with a liquidnitrogen-cooled mercury cadmium telluride(MCT)detector.The samples were pressed into self-supporting wafers and treated in H2at 400°C in an IR cell for 1 h followed by evacuation at 400°C for 5 min to remove the gas phase H2.After cooling to 100°C,the samples were exposed to pyridine vapor for 10 min.Then the spectra were recorded after evacuation at high temperatures.The IR spectra were recorded in the spectral range of 1700 to 1400 cm-1with 32 scans and at a resolution of 4 cm-1.

    2.3 Catalytic studies

    n-Decane used in the present study was purchased from Tianjin Kermel Chemical Reagent Co.(analyzed Grade)without further purification.

    The catalytic performance of the catalysts was measured in a down flow fixed-bed quartz tube reactor cased in a stainless steel tube(inner diameter(id)=8 mm;50 cm in length)at 2.0 MPa,T=300°C,liquid hourly space velocity(LHSV)=2.92 h-1and H2/n-decane volume ratio of 1500.Prior to reaction,all the catalysts were reduced by a flow of H2at 400°C for 1 h.0.5 g of the catalyst was used in each experiment.n-Decane was introduced into the reactor using a micro pump(2ZB-1L10).The products were collected and identified when the reaction had begun for 4 h.The activity data were usually obtained after 10 h reaction.The products were directly analyzed on-line in a gas chromatograph with an OV-101 capillary column(30 m)and flame ionization detector(FID).

    For comparison,an industrial hydrocracking catalyst FC-16(NiW/USY zeolite)was also measured for hydrocracking ofndecane under the same conditions.The industrial catalyst was obtained from FuShun Research Institute of petroleum and petrochemicals,SINOPEC.

    3 Results and discussion

    3.1 Catalysts characterization

    The structural information,pore size distribution,and composition of the catalysts are presented in Table 1 and Table 2.The determined chemical composition from ICP is as expected,indicating that the results of chemical analysis of the catalysts are in good agreement with desired stoichiometries for Ni and CsxH3-xPW.It can be observed that the surface area and pore volume of SiO2after supporting Ni and CsxH3-xPW decrease remarkably,while the pore size increases slightly.This may be due to Ni and CsxH3-xPW blocking the micropores of the SiO2support,therefore,the surface area and pore volume decrease,the pore size increases slightly.However,the surface area and pore volume of the 8%Ni-50%CsxH3-xPW/SiO2catalysts increase with increasing the proportion of Cs in CsxH3-xPW.This may be due to the much higher surface area of CsxH3-xPW with increasing proportion of Cs in CsxH3-xPW,which makes the surface area of the catalysts become higher.

    The XRD patterns of 8%Ni-50%CsxH3-xPW/SiO2and CsxH3-xPW catalysts are presented in Fig.1.It is clear that the intensity of the diffraction peaks of the 8%Ni-50%CsxH3-xPW/SiO2catalysts decreased compared to the CsxH3-xPW due to the interaction of CsxH3-xPW with Ni species and SiO2support.The 8%Ni-50%H3PW/SiO2catalyst shows the presence of characteristic peaks of NiO(37.0°,43.1°,and 62.6°)and Keggin structure of H3PW.27It is interesting to notice that the diffraction peaks of the Keggin structure of CsxH3-xPW(18.2°,23.7°,25.9°,29.9°,35.4°,43.2°,54.3°,and 62.2°)appeared and the intensities of these peaks increased with increasing the proportion of Cs in CsxH3-xPW on the catalysts.This could be attributed to the interaction of CsxH3-xPW with Ni species and SiO2support.

    Fig.1 XRD patterns of 8%Ni-50%CsxH3-xPW/SiO2catalysts

    The Raman spectra of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are presented in Fig.2.Raman scattering spectroscopy is an effective method to study the structure of the supported CsxH3-xPW because it is extremely sensitive to the Keggin unit,and the support has no significant interference on the Raman signals originating from the Keggin unit.All the 8%Ni-50%CsxH3-xPW/SiO2catalysts display similar Raman spectra.The sharp and intense peak at 1009 cm-1can be assigned to stretching vibrations of P―O bond of P―O4,whereas peaks at lower wavenumbers can be assigned to W=O(990 cm-1)and W―O―W(905 cm-1)stretching vibrations.31,32The strong interaction between H3PW and SiO2support reduces the symmetry of Keggin unit.Furthermore,it can be speculated that the intro-duction of Cs also will weaken the interaction between CsxH3-xPW and the SiO2support becomes weaker,reducing the influence on Keggin unit′s symmetry.Therefore,the intensity of these peaks increases with increasing the proportion of Cs in CsxH3-xPW on the catalysts.The Raman results are consistent with XRD characterization.

    Table 1 Chemical composition and textural information of the catalysts

    Table 2 Pore size distribution of the catalysts

    Fig.2 Raman spectra of 8%Ni-50%CsxH3-xPW/SiO2catalysts

    The thermal stabilities of 8%Ni-50%Cs1.5H1.5PW/SiO2and 8%Ni-50%H3PW/SiO2catalysts under the hydrogen atmosphere were studied byin situXRD and the patterns are shown in Fig.3.When the temperature is lower than 500°C,the XRD patterns of the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst only present the characteristic peaks of the Keggin structure.Compared with the XRD pattern of the catalyst at 25°C,the characteristic diffraction peaks of the catalyst calcined at higher temperature have no change.In the XRD patterns of the catalyst calcined at temperature higher than 500°C,the new intense diffraction peaks of H0.5WO3(23.5°,34°)and Cs0.3WO3(44°)are observed.While for the 8%Ni-50%H3PW/SiO2catalyst calcined at 500°C,the new intense diffraction peak of H0.5WO3(23.5°)is observed.The 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst has improved thermal stability than 8%Ni-50%H3PW/SiO2catalyst.These results indicate that Cs1.5H1.5PW decomposes when the calcination temperature exceeds 500°C.

    Fig.3 In situ XRD patterns of the catalysts calcined at different temperatures under the 5%H2/Ar mixture atmosphere

    The acidity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts was characterized by NH3-TPD and the FTIR of pyridine adsorption.The NH3-TPD profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.4.All the catalysts show two desorption peaks of ammonia near 170 and 540°C,respectively.It is evident from Fig.4 that the amount of NH3desorbed of the catalysts decreases with increasing the proportion of Cs in CsxH3-xPW.

    In other words,the acid amount of the catalysts decreases with decreasing the H+content in CsxH3-xPW on the catalysts.The 8%Ni-50%CsxH3-xPW/SiO2catalysts show relatively higher acidity compared to the industrial catalyst.

    The FTIR spectra of pyridine adsorbed on reduced 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.5.The use of IR spectroscopy to detect the adsorbed pyridine enables to distinguish different acid sites.The band at 1446 cm-1is due to the pyridine adsorbed on the Lewis acid sites.On the other hand,the band at 1538 cm-1is due to the pyridine adsorbed on the Br?nsted acid sites.The band at 1488 cm-1is due to the contributions of Lewis and Br?nsted acid sites.33,34The characteristic absorption bands of pyridine adsorbed on Lewis acid sites and Br?nsted acid sites were observed for 8%Ni-50%CsxH3-xPW/SiO2catalysts.The IR results show that the intensities of absorption bands for Br?nsted acid sites(1538 cm-1)and Lewis acid sites(1446 cm-1)decrease with increasing the proportion of Cs in CsxH3-xPW,and relative amount of Lewis acid sites is higher than that of Br?nsted acid sites.The results are consistent with NH3-TPD characterization.

    Fig.4 NH3-TPD profiles of reduced catalysts

    Fig.5 FTIR spectra of pyridine adsorbed and desorbed on reduced catalysts

    The H2-TPR profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.6.The 8%Ni-50%H3PW/SiO2catalyst displays three reduction peaks.The first reduction peak near 400°C corresponds to the reduction of NiO species,which had weak interaction with the H3PW.Thein situXRD results showed that the CsxH3-xPW begins to decompose when the calcinations temperature exceeds 500°C.The second reduction peak near 580°C is mainly attributed to the reduction of NiO species,which had strong interaction with the W species of the catalysts.The third reduction peak near 700°C corresponds to the reduction of W species.However,the 8%Ni-50%CsxH3-xPW/SiO2(x=0.5,1,1.5,2)catalysts show two reduction peaks.The first reduction peak near 400°C corresponds to the reduction of NiO species and the peak area becomes larger.The second reduction peak near 690°C corresponds to the reduction of W species.This may be due to the interaction between NiO and CsxH3-xPW gradually weakened with increasing the proportion of Cs in CsxH3-xPW.The reduction peak(580°C)shifts to lower temperature(400 °C)and the peak area(around 400 °C)becomes larger.The phenomenon is consistent with the result of Raman characterization.

    The H2-TPD profiles of the 8%Ni-50%CsxH3-xPW/SiO2catalysts are shown in Fig.7.All the catalysts present two H2-desorbed peaks near 160 and 450°C,respectively.The amount of H2desorbed decreases with increasing the proportion of Cs in CsxH3-xPW.In other words,the amount of H2desorbed increases with increasing content of H+in the CsxH3-xPW on the catalysts.

    This phenomenon may be explained by the hydrogen spillover,which has been found in our past work.16,17,27,35The dissociated hydrogen molecule on the metal Ni can spill to the acid sites(CsxH3-xPW)and combine with the H+.Both the dissociated molecule hydrogen and the H+of the CsxH3-xPW are highly reactive hydrogen species,which will produce the relatively stable species Hn+.It seems that there is a balance on the surface of the CsxH3-xPW,that is

    Fig.6 H2-TPR profiles of the catalysts

    Fig.7 H2-TPD profiles of the catalysts

    As the concentration of Hn+species on the surface of CsxH3-xPW increases,the reactive hydrogen species H·can reversely spill over back to the Ni0sites.This process can form a reactive hydrogen species layer covering the catalyst′s surface.The CsxH3-xPW can not only act as the acid sites but also act as the hydro-dehydrogenation sites.This is a non-classical bifunctional mechanism which was reported in some papers.16,27,35,36

    3.2 Catalytic activity

    The activity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts for hydrocracking ofn-decane is shown in Table 3,wherein the conversion ofn-decane and the C+5selectivity were taken to express the activity of the catalyst.The catalytic performance of the prepared catalysts was compared with that of a typical NiW/zeolite industrial catalyst.It is evident from Table 3 that the 8%Ni-50%CsxH3-xPW/SiO2catalysts and the industrial catalyst all exhibit high activity for the hydrocracking ofn-decane.Among the catalysts tested,8%Ni-50%H3PW/SiO2catalyst shows highest conversion ofn-decane and lower C5+selectivity.Moreover,after the introduction of Cs species,the conversion ofndecane decreases while the C5+selectivity is improved for 8%Ni-50%CsxH3-xPW/SiO2catalysts.Furthermore,the 8%Ni-50%CsxH3-xPW/SiO2catalysts show higher activity compared to the industrial catalyst.

    With increasing the proportion of Cs in CsxH3-xPW,the conversion ofn-decane decreases from 99.2%to 89.5%for 8%Ni-50%CsxH3-xPW/SiO2catalysts.The reduced 8%Ni-50%H3PW/SiO2catalyst shows the highest activity,superior to the 8%Ni-50%CsxH3-xPW/SiO2(x≠0)catalyst and the industrial catalyst.Combined with the results of H2-TPD and H2-TPR characterization,it can be inferred that the hydrogenation ability of the catalysts is gradually weakened with increasing the proportion of Cs in CsxH3-xPW.

    With increasing the proportion of Cs in CsxH3-xPW,the C5+selectivity of the catalysts increases from 74.1%to 85.2%.The reduced 8%Ni-50%Cs2HPW/SiO2shows the highest C5+selectivity,superior to the 8%Ni-50%H3PW/SiO2catalyst and the industrial catalyst.Based on the results of NH3-TPD and FTIR spectra of pyridine adsorption,it can be concluded that the acidity of the 8%Ni-50%CsxH3-xPW/SiO2catalysts is in line with their C5+selectivity,which is ascribed to the gradually lower cracking activity of the catalysts with increasing the proportion of Cs in CsxH3-xPW owing to their weaker acidity.According to bifunctional reaction scheme,37the hydroisomerization and hydrocracking go through the formation of carbonium ions,the lower the acid strength of the acid sites,the lower will be the average lifetime of the carbonium ions on the acid sites.This will decrease the probability to undergo secondary reactions.In addition,the pore size of the 8%Ni-50%CsxH3-xPW/SiO2catalysts increases slightly with increasing the proportion of Cs in CsxH3-xPW.Indeed,it is well-known that the micropore of zeolite is beneficial for secondary reactions.Therefore,it can be expected that large pore size of the 8%Ni-50%CsxH3-xPW/SiO2catalysts would favor the diffusion of liquid products while decreasing the probability of secondary reactions.Moreover,the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst shows the highest C5+yield of 80.3%in the 8%Ni-50%CsxH3-xPW/SiO2catalysts,which is much higher than the yield of 73.5%on the 8%Ni-50%H3PW/SiO2catalyst and the yield of 62.1%on the industrial catalyst.

    Table 3 Catalytic performance of the catalysts for n-decane hydrocracking

    4 Conclusions

    The results obtained in the present work indicate that the 8%Ni-50%CsxH3-xPW/SiO2catalysts?acidityviaNH3-TPD and FTIR spectra of pyridine adsorption,and hydrogenation-dehydrogenation functionviaH2-TPR and H2-TPD decrease with Cs gradual substituting in CsxH3-xPW.The conversion ofn-decane decreases slightly and the C5+selectivity of the catalysts increases with increasing the proportion of Cs in CsxH3-xPW.The best result was obtained on the 8%Ni-50%Cs1.5H1.5PW/SiO2catalyst with the C5+selectivity of 83.8%at then-decane conversion of 95.8%,which is much higher than that of the industrial catalyst.

    (1) Morawski,I.;Mosio-Mosiewski,J.Fuel Process.Technol.2006,87,659.doi:10.1016/j.fuproc.2006.01.006

    (2) Ancheyta,J.;Sánchez,S.;Rodríguez,M.A.Catal.Today2005,109,76.doi:10.1016/j.cattod.2005.08.015

    (3) Roussel,M.;Lemberton,J.L.;Guisnet,M.;Cseri,T.;Benazzi,E.J.Catal.2003,218,427.doi:10.1016/S0021-9517(03)00164-7

    (4) Calemma,V.;Peratello,S.;Perego,C.Appl.Catal.A:Gen.2000,190,207.doi:10.1016/S0926-860X(99)00292-6

    (5)Ren,X.T.;Li,N.;Cao,J.Q.;Wang,Z.Y.;Liu,S.Y.;Xiang,S.H.Appl.Catal.A:Gen.2006,298,144.doi:10.1016/j.apcata.2005.09.031

    (6) Zeng,S.Q.;Blanchard,J.;Breysse,M.;Shi,Y.H.;Su,X.T.;Nie,H.Appl.Catal.A:Gen.2005,294,59.doi:10.1016/j.apcata.2005.07.015

    (7) Roussel,M.;Norsic,S.;Lemberton,J.L.;Guisnet,M.;Cseri,T.;Benazzi,E.Appl.Catal.A:Gen.2005,279,53.doi:10.1016/j.apcata.2004.10.011

    (8) Timofeeva,M.N.Appl.Catal.A:Gen.2003,256,19.doi:10.1016/S0926-860X(03)00386-7

    (9)Zhang,Q.D.;Tan,Y.S.;Yang,C.H.;Han,Y.Z.J.Mol.Catal.A:Chem.2007,263,149.doi:10.1016/j.molcata.2006.08.044

    (10) Zhang,P.;Huang,M.;Chu,W.;Luo,S.Z.;Li,T.Acta Phys.-Chim.Sin.2013,29,770.[張 坡,黃 明,儲 偉,羅仕忠,李 通.物理化學(xué)學(xué)報,2013,29,770.]doi:10.3866/PKU.WHXB201301152

    (11) Gu,L.Y.;Gao,B.J.;Fang,X.L.Acta Phys.-Chim.Sin.2013,29,191.[顧來沅,高保嬌,房曉琳.物理化學(xué)學(xué)報,2013,29,191.]doi:10.3866/PKU.WHXB201210266

    (12) Yuan,C.Y.;Chen,J.Chin.J.Catal.2011,32,1191.doi:10.1016/S1872-2067(10)60236-7

    (13) Kumar,G.S.;Vishnuvarthan,M.;Palanichamy,M.;Murugesan,V.J.Mol.Catal.A:Chem.2006,260,49.doi:10.1016/j.molcata.2006.07.050

    (14) Yang,X.K.;Chen,L.F.;Wang,J.A.;Nore?a,L.E.;Novaro,O.Catal.Today2009,148,160.doi:10.1016/j.cattod.2009.03.022

    (15) Wang,J.A.;Chen,L.F.;Nore?a,L.E.;Navarrete,J.Appl.Catal.A:Gen.2009,357,223.doi:10.1016/j.apcata.2009.01.023

    (16)Qiu,B.;Yi,X.D.;Lin,L.;Fang,W.P.;Wan,H.L.Catal.Today2008,131,464.doi:10.1016/j.cattod.2007.10.095

    (17) Qiu,B.;Yi,X.D.;Lin,L.;Fang,W.P.;Wan,H.L.Catal.Commun.2009,10,1296.doi:10.1016/j.catcom.2009.02.007

    (18) Vazquez,P.;Pizzio,L.;Romanelli,G.;Autino,J.;Caceres,C.;Blanco,M.Appl.Catal.A:Gen.2002,235,233,doi:10.1016/S0926-860X(02)00266-1

    (19) Haber,J.;Pamin,K.;Matachowski,L.;Mucha,D.Appl.Catal.A:Gen.2003,256,141.doi:10.1016/S0926-860X(03)00395-8

    (20)Narasimharao,K.;Brown,D.R.;Lee,A.F.;Newman,A.D.;Siril,P.F.;Tavener,S.J.;Wilson,K.J.Catal.2007,248,226.doi:10.1016/j.jcat.2007.02.016

    (21)Luzgin,M.V.;Kazantsev,M.S.;Volkova,G.G.;Wang,W.;Stepanov,A.G.J.Catal.2011,277,72.doi:10.1016/j.jcat.2010.10.015

    (22) Okuhara,T.;Kimura,M.;Kawai,T.;Xu,Z.;Nakato,T.Catal.Today1998,45,73.doi:10.1016/S0920-5861(98)00251-X

    (23) Choi,S.;Wang,Y.;Nie,Z.;Liu,J.;Peden,C.H.F.Catal.Today2000,55,117.doi:10.1016/S0920-5861(99)00231-X

    (24) Soled,S.;Miseo,S.;McVicker,G.;Gates,W.E.;Gutierrez,A.;Paes,J.Catal.Today1997,36,441.doi:10.1016/S0920-5861(96)00235-0

    (25) Yang,W.;Billy,J.;Taarit,Y.B.;Védrine,J.C.;Essayem,N.Catal.Today2002,73,153.doi:10.1016/S0920-5861(01)00508-9

    (26)Gao,R.H.;Chen,H.;Le,Y.Y.;Dai,W.L.;Fan,K.N.Appl.Catal.A:Gen.2009,352,61.doi:10.1016/j.apcata.2008.09.031

    (27) Jin,H.;Yi,X.D.;Sun,S.H.;Liu,J.;Yang,G.;Zhu,H.H.;Fang,W.P.Fuel Process.Technol.2012,97,52.doi:10.1016/j.fuproc.2012.01.011

    (28) Popa,A.;Sasca,V.;Holclajtner-Antunovi,I.Microporous Mesoporous Mat.2012,156,127.doi:10.1016/j.micromeso.2012.02.030

    (29)Yuan,S.H.;Ji,N.H.;Xia,W.S.;Yi,X.D.;Fang,W.P.React.Kinet.Mech.Catal.2012,106,475.doi:10.1007/s11144-012-0448-y

    (30) Jin,H.;Guo,D.Y.;Sun,X.D.;Sun,S.H.;Liu,J.;Zhu,H.H.;Yang,G.;Yi,X.D.;Fang,W.P.Fuel2013,112,134.doi:10.1016/j.fuel.2013.05.007

    (31) Rocchiccioli-Deltcheff,C.;Fournier,M.;Franck,R.;Thouvenot,R.Inorg.Chem.1983,22,207.doi:10.1021/ic00144a006

    (32)Qu,X.S.;Guo,Y.H.;Hu,C.W.J.Mol.Catal.A:Chem.2007,262,128.doi:10.1016/j.molcata.2006.08.026

    (33) Chen,L.F.;Nore?a,L.E.;Wang,J.A.;Zhou,X.L.;Navarrete,J.;Hernández,I.;Montoya,A.;Pérez Romo,P.;Salas,P.;Castella Pergher,S.Catal.Today2008,133-135,331.

    (34) Varisli,D.;Dogu,T.;Dogu,G.Ind.Eng.Chem.Res.2008,47,4071.doi:10.1021/ie800192t

    (35) Jin,H.;Yi,X.D.;Sun,X.D.;Qiu,B.;Fang,W.P.;Weng,W.Z.;Wan,H.L.Fuel2010,89,1953.doi:10.1016/j.fuel.2009.11.031

    (36) Kuba,S.;Lukinskas,P.;Grasselli,R.K.;Gates,B.C.;Kn?zinger,H.J.Catal.2003,216,353.doi:10.1016/S0021-9517(02)00125-2

    (37) Corma,A.;Martinez,A.;Pergher,S.;Peratello,S.;Perego,C.;Bellusi,G.Appl.Catal.A:Gen.1997,152,107.doi:10.1016/S0926-860X(96)00338-9

    猜你喜歡
    醇醚撫順物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    撫順平頂山慘案紀念館
    仲烷基醇醚及其在濃縮洗衣液中的應(yīng)用性能研究
    圖說撫順琥珀(六)
    中國寶玉石(2018年3期)2018-07-09 03:14:02
    Chemical Concepts from Density Functional Theory
    異構(gòu)醇醚在超濃縮洗衣液中的應(yīng)用探索
    兩種乙氧基化技術(shù)及其對醇醚性能的影響
    《農(nóng)用醇醚柴油燃料》行業(yè)標準近期有望出臺
    河南化工(2014年1期)2014-04-03 12:09:27
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    日本 av在线| 欧美性猛交黑人性爽| 久久久久久久精品吃奶| 国产日本99.免费观看| 国产又黄又爽又无遮挡在线| 三级男女做爰猛烈吃奶摸视频| 美女大奶头视频| 亚洲精品国产精品久久久不卡| 色精品久久人妻99蜜桃| 精品人妻一区二区三区麻豆 | 欧美性猛交黑人性爽| 久久久色成人| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av| 两个人视频免费观看高清| 丝袜美腿在线中文| 久久久久久久精品吃奶| 成人鲁丝片一二三区免费| 脱女人内裤的视频| 日韩人妻高清精品专区| 99久久精品热视频| 成年女人看的毛片在线观看| 国产乱人伦免费视频| 国产av在哪里看| 午夜免费男女啪啪视频观看 | 久久久久久久亚洲中文字幕 | 久久久久久久久大av| 听说在线观看完整版免费高清| 精品欧美国产一区二区三| 国产综合懂色| 精品一区二区三区人妻视频| 亚洲av日韩精品久久久久久密| 窝窝影院91人妻| 日本黄色视频三级网站网址| 变态另类丝袜制服| 国产中年淑女户外野战色| 欧美中文日本在线观看视频| 免费观看的影片在线观看| 桃红色精品国产亚洲av| 日本一本二区三区精品| 免费在线观看影片大全网站| 免费高清视频大片| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 色综合亚洲欧美另类图片| 偷拍熟女少妇极品色| 动漫黄色视频在线观看| 成人无遮挡网站| 日本在线视频免费播放| 日本成人三级电影网站| 久久久久久久久久黄片| 女警被强在线播放| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 性色avwww在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲av五月六月丁香网| 黄片小视频在线播放| 免费看十八禁软件| 看免费av毛片| 亚洲av熟女| 精品日产1卡2卡| 亚洲va日本ⅴa欧美va伊人久久| 午夜影院日韩av| 俄罗斯特黄特色一大片| 亚洲avbb在线观看| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| 最近在线观看免费完整版| 一级毛片女人18水好多| 国产精品影院久久| а√天堂www在线а√下载| 人妻久久中文字幕网| www日本在线高清视频| 搡老岳熟女国产| 欧美成人性av电影在线观看| 欧美大码av| 99视频精品全部免费 在线| 香蕉av资源在线| 亚洲五月婷婷丁香| 淫妇啪啪啪对白视频| 午夜福利在线观看免费完整高清在 | 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 亚洲精品影视一区二区三区av| 国产高清三级在线| 国产探花极品一区二区| 久久亚洲精品不卡| 毛片女人毛片| 一级毛片高清免费大全| 美女免费视频网站| 午夜免费激情av| 亚洲人成网站高清观看| 久久久久亚洲av毛片大全| 亚洲狠狠婷婷综合久久图片| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 国产一区二区三区在线臀色熟女| 婷婷丁香在线五月| 夜夜看夜夜爽夜夜摸| 五月玫瑰六月丁香| 国产日本99.免费观看| 内射极品少妇av片p| 啦啦啦免费观看视频1| 免费搜索国产男女视频| 久久久精品大字幕| 国产三级在线视频| 最近最新免费中文字幕在线| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 极品教师在线免费播放| www.熟女人妻精品国产| 国产一级毛片七仙女欲春2| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 午夜视频国产福利| 一级a爱片免费观看的视频| 一个人观看的视频www高清免费观看| 久久伊人香网站| 亚洲国产高清在线一区二区三| 亚洲av成人av| 日韩有码中文字幕| 色老头精品视频在线观看| 丰满的人妻完整版| 无人区码免费观看不卡| 欧美不卡视频在线免费观看| 男女床上黄色一级片免费看| 欧美色欧美亚洲另类二区| 亚洲最大成人中文| 99热只有精品国产| 欧美中文日本在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 人人妻人人澡欧美一区二区| 婷婷精品国产亚洲av在线| 黄片小视频在线播放| 欧美激情在线99| 老司机午夜十八禁免费视频| 夜夜躁狠狠躁天天躁| 欧美最新免费一区二区三区 | 91九色精品人成在线观看| 午夜福利高清视频| 深夜精品福利| 丝袜美腿在线中文| 国产精品久久久久久久久免 | 亚洲国产精品久久男人天堂| 亚洲成av人片免费观看| 一a级毛片在线观看| 噜噜噜噜噜久久久久久91| 狠狠狠狠99中文字幕| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 最新美女视频免费是黄的| 日韩精品中文字幕看吧| 亚洲精品一区av在线观看| 亚洲熟妇中文字幕五十中出| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 成人欧美大片| 在线天堂最新版资源| 中文字幕人成人乱码亚洲影| 俄罗斯特黄特色一大片| 黄色片一级片一级黄色片| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 18禁黄网站禁片免费观看直播| 亚洲精品影视一区二区三区av| 看免费av毛片| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 国产一区二区三区视频了| 天天添夜夜摸| 最新美女视频免费是黄的| 日韩精品青青久久久久久| 免费人成视频x8x8入口观看| 天堂av国产一区二区熟女人妻| 国产真实伦视频高清在线观看 | 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 又黄又爽又免费观看的视频| 亚洲国产精品999在线| 九九热线精品视视频播放| 亚洲成av人片免费观看| 国产精品永久免费网站| 成人高潮视频无遮挡免费网站| 2021天堂中文幕一二区在线观| АⅤ资源中文在线天堂| 午夜老司机福利剧场| 亚洲第一欧美日韩一区二区三区| 久久精品国产综合久久久| av天堂中文字幕网| 美女大奶头视频| 综合色av麻豆| tocl精华| 男女那种视频在线观看| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看 | 桃色一区二区三区在线观看| 啦啦啦观看免费观看视频高清| 国产老妇女一区| 久久99热这里只有精品18| 亚洲精华国产精华精| 人妻久久中文字幕网| 天天一区二区日本电影三级| 午夜福利在线在线| 国产一区二区在线av高清观看| 亚洲五月婷婷丁香| 国产aⅴ精品一区二区三区波| 精品福利观看| 日韩欧美精品v在线| 日本免费a在线| 又爽又黄无遮挡网站| 搡老熟女国产l中国老女人| 亚洲精品一区av在线观看| 舔av片在线| xxxwww97欧美| 91九色精品人成在线观看| 九色国产91popny在线| 日韩精品中文字幕看吧| 少妇丰满av| 一夜夜www| 狂野欧美激情性xxxx| 日韩国内少妇激情av| 五月伊人婷婷丁香| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 国产免费男女视频| 久久国产乱子伦精品免费另类| 18禁美女被吸乳视频| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 一边摸一边抽搐一进一小说| 尤物成人国产欧美一区二区三区| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区免费观看 | 亚洲精品亚洲一区二区| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 老司机在亚洲福利影院| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频| 亚洲在线观看片| 午夜福利18| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式 | 91久久精品国产一区二区成人 | 岛国在线观看网站| 一进一出好大好爽视频| 亚洲av免费高清在线观看| 国产色婷婷99| 欧美+亚洲+日韩+国产| 18禁在线播放成人免费| 在线免费观看不下载黄p国产 | АⅤ资源中文在线天堂| 男人的好看免费观看在线视频| 99热这里只有是精品50| 激情在线观看视频在线高清| 久久久成人免费电影| 国产欧美日韩一区二区精品| 校园春色视频在线观看| 可以在线观看毛片的网站| 亚洲av二区三区四区| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 日本一二三区视频观看| 9191精品国产免费久久| 国产午夜精品久久久久久一区二区三区 | 国产精品久久久久久久电影 | 国产精品电影一区二区三区| 在线国产一区二区在线| 亚洲自拍偷在线| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 悠悠久久av| 亚洲av电影在线进入| 99精品久久久久人妻精品| 成人欧美大片| 亚洲精品在线观看二区| 制服丝袜大香蕉在线| 在线观看免费午夜福利视频| 国产欧美日韩精品一区二区| 老熟妇仑乱视频hdxx| 久久99热这里只有精品18| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕 | 麻豆成人av在线观看| 午夜免费成人在线视频| 18禁美女被吸乳视频| 日韩欧美在线二视频| 中文亚洲av片在线观看爽| 亚洲精品粉嫩美女一区| 亚洲成a人片在线一区二区| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| 成人av在线播放网站| 无限看片的www在线观看| 久久婷婷人人爽人人干人人爱| 麻豆国产av国片精品| 欧美乱码精品一区二区三区| 国产一区在线观看成人免费| 午夜免费激情av| 国产激情欧美一区二区| 男女床上黄色一级片免费看| 亚洲第一电影网av| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| 一级a爱片免费观看的视频| 在线看三级毛片| 成人av一区二区三区在线看| 欧美成狂野欧美在线观看| 在线观看66精品国产| 男女之事视频高清在线观看| 国产探花极品一区二区| 欧美一区二区亚洲| 国产亚洲精品av在线| 成年女人永久免费观看视频| 亚洲av中文字字幕乱码综合| 欧美日韩中文字幕国产精品一区二区三区| 真人做人爱边吃奶动态| 国产精品三级大全| 久久久精品大字幕| 哪里可以看免费的av片| 日日摸夜夜添夜夜添小说| 亚洲熟妇中文字幕五十中出| 免费观看精品视频网站| 国产欧美日韩精品亚洲av| 观看免费一级毛片| 香蕉av资源在线| 亚洲不卡免费看| 色噜噜av男人的天堂激情| 亚洲精品456在线播放app | 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看| 又紧又爽又黄一区二区| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 国产精品一区二区三区四区免费观看 | 免费看美女性在线毛片视频| 日本黄色片子视频| av天堂中文字幕网| 亚洲精品国产精品久久久不卡| 色av中文字幕| 日韩中文字幕欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区 | 亚洲电影在线观看av| 亚洲av美国av| 国产97色在线日韩免费| 女同久久另类99精品国产91| 露出奶头的视频| 欧美国产日韩亚洲一区| 97碰自拍视频| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 国产av不卡久久| 淫妇啪啪啪对白视频| 深夜精品福利| 可以在线观看毛片的网站| 99在线人妻在线中文字幕| 免费在线观看日本一区| 成人特级av手机在线观看| 天堂av国产一区二区熟女人妻| 国产一区二区激情短视频| 丁香六月欧美| 乱人视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 国模一区二区三区四区视频| 国产99白浆流出| 久久午夜亚洲精品久久| 亚洲成人久久性| 国产欧美日韩一区二区精品| 国产乱人视频| 99久国产av精品| 免费看a级黄色片| av片东京热男人的天堂| 亚洲成人中文字幕在线播放| 亚洲不卡免费看| 日韩欧美一区二区三区在线观看| 国产高清三级在线| 亚洲精品粉嫩美女一区| 亚洲成av人片在线播放无| 欧美性猛交╳xxx乱大交人| 国产亚洲精品综合一区在线观看| 偷拍熟女少妇极品色| 久久精品亚洲精品国产色婷小说| 一夜夜www| 岛国在线观看网站| 日本 欧美在线| 女同久久另类99精品国产91| 日韩亚洲欧美综合| 日韩精品青青久久久久久| 在线看三级毛片| 色在线成人网| 少妇高潮的动态图| 嫩草影院入口| 精品国产超薄肉色丝袜足j| 好男人在线观看高清免费视频| 一区二区三区高清视频在线| 在线看三级毛片| 欧美av亚洲av综合av国产av| 美女高潮的动态| 亚洲成人中文字幕在线播放| 在线播放国产精品三级| 亚洲精品美女久久久久99蜜臀| 啦啦啦观看免费观看视频高清| 有码 亚洲区| 日韩欧美在线乱码| 最近最新中文字幕大全免费视频| 国产精品1区2区在线观看.| 中国美女看黄片| 精品国产亚洲在线| 三级毛片av免费| 亚洲美女黄片视频| 亚洲精品乱码久久久v下载方式 | 日本一本二区三区精品| 国产三级黄色录像| 久久精品亚洲精品国产色婷小说| 天天躁日日操中文字幕| 国产一级毛片七仙女欲春2| 国产真实乱freesex| 亚洲 国产 在线| 亚洲一区高清亚洲精品| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 久久亚洲真实| 日本黄大片高清| 国产麻豆成人av免费视频| 午夜免费成人在线视频| 中文字幕av在线有码专区| 高清在线国产一区| 亚洲熟妇中文字幕五十中出| netflix在线观看网站| 搡老妇女老女人老熟妇| 日本成人三级电影网站| 午夜精品久久久久久毛片777| 欧美又色又爽又黄视频| 亚洲人成网站在线播| 国产精品一及| 麻豆一二三区av精品| 香蕉丝袜av| 国产精品99久久99久久久不卡| 男人的好看免费观看在线视频| 久久久久久人人人人人| 色视频www国产| 国产不卡一卡二| 精品久久久久久久久久久久久| 国产高清视频在线观看网站| 中文字幕av在线有码专区| 国产黄色小视频在线观看| 国产精品1区2区在线观看.| 欧美乱妇无乱码| 好男人电影高清在线观看| 免费看日本二区| 男女做爰动态图高潮gif福利片| 久久久精品大字幕| 偷拍熟女少妇极品色| 国产亚洲精品av在线| 女人十人毛片免费观看3o分钟| 国产精品亚洲一级av第二区| 亚洲人与动物交配视频| 午夜福利欧美成人| 精品99又大又爽又粗少妇毛片 | 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 国产精品亚洲美女久久久| 日本 欧美在线| 国产免费一级a男人的天堂| 免费在线观看成人毛片| 草草在线视频免费看| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 亚洲av二区三区四区| 99在线视频只有这里精品首页| 免费看a级黄色片| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具| 内射极品少妇av片p| 最后的刺客免费高清国语| 中文字幕av成人在线电影| 99久国产av精品| 97超视频在线观看视频| 欧美高清成人免费视频www| 国产精品久久久久久人妻精品电影| 国产午夜福利久久久久久| 国产日本99.免费观看| 热99在线观看视频| 99久久精品一区二区三区| 观看美女的网站| 小说图片视频综合网站| 三级毛片av免费| 最新中文字幕久久久久| 成人欧美大片| 69av精品久久久久久| 欧美三级亚洲精品| 亚洲一区高清亚洲精品| 97超视频在线观看视频| 亚洲一区二区三区不卡视频| 日韩高清综合在线| av天堂在线播放| 日本三级黄在线观看| 99在线人妻在线中文字幕| 久久精品国产亚洲av涩爱 | 看免费av毛片| 狠狠狠狠99中文字幕| 不卡一级毛片| 国产成人av教育| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 麻豆成人午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 久久久色成人| 国产高清视频在线播放一区| 欧美日韩一级在线毛片| 一区二区三区高清视频在线| 99在线视频只有这里精品首页| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 亚洲精品一区av在线观看| 国产成人欧美在线观看| 啦啦啦免费观看视频1| 精品99又大又爽又粗少妇毛片 | 女警被强在线播放| 悠悠久久av| 女警被强在线播放| 日韩免费av在线播放| 18禁黄网站禁片午夜丰满| 在线播放无遮挡| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 91在线精品国自产拍蜜月 | 欧美zozozo另类| av福利片在线观看| 男人的好看免费观看在线视频| 亚洲一区二区三区色噜噜| 久99久视频精品免费| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 黄色丝袜av网址大全| 亚洲,欧美精品.| 脱女人内裤的视频| 午夜激情欧美在线| 一进一出好大好爽视频| 国产亚洲精品一区二区www| 国产亚洲av嫩草精品影院| 午夜福利18| 午夜精品一区二区三区免费看| 亚洲av熟女| 在线观看av片永久免费下载| 亚洲第一电影网av| 18禁在线播放成人免费| 日本黄大片高清| 校园春色视频在线观看| 久久久久久大精品| 中文亚洲av片在线观看爽| 国产单亲对白刺激| 19禁男女啪啪无遮挡网站| 国产精品99久久99久久久不卡| 很黄的视频免费| 日韩欧美三级三区| 少妇熟女aⅴ在线视频| 一级作爱视频免费观看| 久久99热这里只有精品18| 韩国av一区二区三区四区| 久久九九热精品免费| 久久精品国产自在天天线| 小蜜桃在线观看免费完整版高清| 最后的刺客免费高清国语| 久久国产乱子伦精品免费另类| 啦啦啦观看免费观看视频高清| 一个人观看的视频www高清免费观看| 亚洲av成人不卡在线观看播放网| 九色国产91popny在线| 亚洲七黄色美女视频| 久久久久久人人人人人| 黄色丝袜av网址大全| 免费观看人在逋| 欧美一区二区精品小视频在线| 国内久久婷婷六月综合欲色啪| 国产精品女同一区二区软件 | 九九在线视频观看精品| 免费看日本二区| 久久精品综合一区二区三区| 亚洲成人免费电影在线观看| 91麻豆av在线| 国产三级黄色录像| 国产亚洲精品久久久久久毛片| 91麻豆av在线| 综合色av麻豆| 不卡一级毛片| 日本在线视频免费播放| 亚洲av一区综合| 精品人妻偷拍中文字幕| 国产又黄又爽又无遮挡在线| 成人午夜高清在线视频| 午夜福利在线在线| 日韩大尺度精品在线看网址| 久久天躁狠狠躁夜夜2o2o| 国产午夜精品久久久久久一区二区三区 | 成人特级黄色片久久久久久久| 成熟少妇高潮喷水视频| 久久久精品欧美日韩精品| 我的老师免费观看完整版| 尤物成人国产欧美一区二区三区|