• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zn xCd1-xS納米線的可控合成及其可調(diào)的光學(xué)性質(zhì)

    2014-10-18 05:27:58林旭鋒席燕燕林德蓮
    物理化學(xué)學(xué)報(bào) 2014年3期
    關(guān)鍵詞:重質(zhì)化工學(xué)院石油大學(xué)

    林旭鋒 席燕燕 林德蓮

    (1中國(guó)石油大學(xué)(華東)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島 266580;2中國(guó)石油大學(xué)(華東)理學(xué)院,山東青島 266580;3中國(guó)石油大學(xué)(華東)化工學(xué)院,山東青島 266580)

    1 Introduction

    One dimensional semiconductor micro and nano structures have attracted much attention due to their novel properties and potential applications in many fields such as lasers,1-3waveguides,4and optical switches.5For devices in nanoelectronics and nanophotonics,it is very important to fabricate materials with continuous tunable physical properties.Band gap energy is one of the most important parameters that characterize a semiconductor and determine many gross electronic and optical properties.In the past few decades,extensive attention has been devoted to tuning the band gap energy of the nanowires by means of reducing its size to values comparable with or smaller than the corresponding excitonic Bohr diameter.6-10However,progress in this field only gives the ability to generate nanowires with diameters in a limited range,in which the quantum confinement effect is not prominent.

    Alloying of semiconductors is another means that can be applied to achieve semiconductor materials with various band gap energies.Alloy nanostructures of ternary II-VI semiconductors with elementary composition of ZnCdSe,ZnCdS,and CdSSe have been successfully fabricated by metal organic chemical vapor deposition(MOCVD),11-14electrodeposition,15laser-assisted deposition16,17and microwave-assisted synthesis.18,19They present high luminescence nature and well-crystalline structures and have been demonstrated to possess high lasing efficiency in a broad range of compositions.16In recent years,remarkable progress in the growth processes of nanocrystals has put alloy materials(III-V,II-VI)and their technology in a special category that promises versatile applications in photonic,13,20-22and high efficiency photovoltaic23devices.

    ZnxCd1-xS,whose physical and chemical properties can be tuned by changing the constituent stoichiometries,24,25is a good candidate to offer flexible physical parameters suitable for advanced application in nanotechnology.In a previous work26we have reported that Zn0.88Cd0.12S nanowires were synthesized by a simple vapor deposition method in ambient and lower pressures.The nanowires synthesized under ambient pressure grow along the<0001> directions via the tip-growth vapor-liquid-solid(VLS)mechanism.The nanowires synthesized under~1.33×104Pa grow along the<1010> direction via the combined basegrowth VLS and tip-growth vapor-solid(VS)mechanism.

    In this context several interesting questions became open.Firstly,whether or not can the ZnxCd1-xS nanowire be synthesized with tunable x value by this vapor deposition mechanism?Secondly,what are the growth mechanisms?Thirdly,whether does this tunable x value bring tunable physical,especially optical,properties.In this work we aim at answering these questions.

    2 Experimental

    2.1 Synthesis of ternary Zn xCd1-xS powder

    The ternary ZnxCd1-xS powder was prepared before the preparation of its nanowire.The powder was synthesized based on the work of Rincon et al.27Two grams of CdS powder(99.5%,International Laboratory,USA)and 0.94 g of ZnCl2powder(A.R.Fisher Scientific,UK)were mixed and put into an alumina boat.The boat was placed in the center of an alumina tube before it was inserted in a horizontal tube furnace.The mixture was sintered at 450°C for 12 h in an argon atmosphere.The possible reactions during sintering were:

    If the reactions were complete,the sintered product contained ZnxCd1-xS and CdCl2.

    2.2 Synthesis of Zn xCd1-xS nanowires

    Then the as-prepared powder was ground and put into an alumina boat,which was then placed in the center of a quartz tube.The entire assembly was inserted in a horizontal tube furnace.The system was connected to an argon source and a rotary pump.The system was evacuated before a steady Ar flow(at a rate of 60 cm3·min-1)was introduced.The temperature of the furnace was ramped to 900°C and held for 100 min.Several Au-coated Si(100)wafers were placed on the downstream side at the different positions of the quartz tube and separately about 2-18 cm from the source material.Colors for the as-synthesized products vary from white(ZnS)to yellow(CdS)depending on the composition(x value).It is found that the ZnxCd1-xS nanowires of various compositions were deposited at different collection positions,that is,at distinctive deposition temperature.CdCl2which has a lower melting point(576°C)and boiling point(950°C)could evaporate at such a temperature.

    2.3 Characterization

    The crystalline structure of the product was characterized by X-ray diffractometry(XRD,Rigaku RU-300).The microstructural analyses were performed by using scanning electron microscopy(SEM,LEO 1450 VP),transmission electron microscopy(TEM,Philips Tecnai 20),and high-resolution TEM(HRTEM,Philips Tecnai 20).Elemental and composition analyses were carried out by using energy dispersive X-ray spectrometry(EDX,Oxford Link II,UK).The optical properties were studied by Raman spectroscopy(Renishaw,Rm,1000B,excitation line of 514.5 nm)and photoluminescence(PL,Renishaw,Rm,1000B,excitation line of 325 nm).

    3 Results and discussion

    3.1 Morphology and composition

    General SEM morphologies of the as-synthesized ZnxCd1-xS nanowires orienting randomly on the Si substrate are shown in Fig.1(a,c,e,g)with x=0.13,0.31,0.68,0.88(indicated in Fig.1(b,d,f,h)),respectively.The lengths of the wires are up to~100μm,and the diameters of the ZnxCd1-xS nanowires are distributed in the range of 200-350 nm.The samples synthesized at a lower deposition temperature have smaller size.Chemical contents of the ZnxCd1-xS nanowires analyzed from EDX data with their stoichiometric ratios are listed in Table 1.It can be seen that for all samples with different compositions,the atomic ratio of S is smaller than 50%,which indicates the existence of the defect in the as-synthesized ZnxCd1-xS nanowires.

    3.2 Crystal structure

    It is known that for some common ternary compounds,the relationship between the composition value x and the lattice parameters along the c-axis follows the Vegard?s law.28-30Based on the Vegard?s law,the lattice constants along the c-axis of ZnS,CdS,and ZnxCd1-xS crystals,denoted as cZnS,cCdS,and cx,respectively,are subjected to the following equation:

    Fig.1 SEM images of the Zn xCd1-xS nanowires(a,c,e,g)and their corresponding EDS spectra(b,d,f,h)x:(a,b)0.13,(c,d)0.31,(e,f)0.68,(g,h)0.88

    Table 1 Chemical compositions of the Zn xCd1-xS nanowires measured by EDX

    Fig.2 displays typical XRD patterns of the ZnxCd1-xS nanowires synthesized at different conditions.The XRD patterns show that the nanowires with different compositions all have the hexagonal wurtzite structure.The corresponding x values of the nanowires calculated by Vigard?s law were indicated at the right of the curves in Fig.2.For the calculation of the x value,the peaks for the(002)and(101)planes were used,which for ZnS lie at 2θof~28.5°and ~30.6°,respectively,and for CdS at 2θof~26.5°and ~28.2°,respectively.As a result,the positions of the(002)peak in XRD patterns shift from 26.5°to 26.7°,27.1°,27.8°,28.2°,and 28.5°as the fraction of Zn(x)in ZnxCd1-xS increases from 0 to 0.13,0.31,0.68,0.88,and 1.00,respectively.The calculated x values of the ZnxCd1-xS nanowires with x=0.13,0.31,0.68,0.88 are well consistent with those from the EDX results.

    Typical TEM images of the as-synthesized ZnxCd1-xS nanowires with x=0.13,0.31,0.68,0.88 are shown in Fig.3(a,d,g,j),respectively.The selected area electron diffractions(SAED,Fig.3(b,e,h,k))and HRTEM(Fig.3(c,f,i,l))images are correspondingly attached to the TEM images.The SAED and HRTEM images further reveal that the synthesized ZnxCd1-xS nanowires are single crystalline and have hexagonal Wurtzite structure.Lattice constants,growth directions,and lattice spacings calculated from the HRTEM and XRD data are listed in Table 2.Consistently,the lattice constants determined from the SAED data are in good agreement with the XRD results.

    Fig.2 XRD patterns of the Zn xCd1-xS nanowires obtained at different deposition conditions

    3.3 Discussion on the growth mechanism

    There are two well-accepted mechanism for the growth of one dimesional(1D)nanostructures,viz.the vapor-solid(VS)and the vapor-liquid-solid(VLS)mechanisms.For nanowires growing through the VS mechanism,there always has a decrease of the diameter/width of the nanostructures toward their growth end.31,32The VLS mechanism can be divided into two types,viz.tip-growth VLS mechanism and base-growth mechanism.The existence of a metal-alloy droplet on the tip of the 1D nanostructure is the characteristic of the former.31,33,34For the later,an Au nanoparticle may stay at the bottom of the nanowires during the growth process.31,35In this work,the alloy droplet on the tip of the nanowires was not observed(see Fig.3),which indicates that the tip-growth VLS mechanism is not appropriate.Meanwhile,the diameters of the nanowires are rather uniform along the growth direction,except for the case of x=0.68 which is a little cuspidal.Thus the results support that the base-growth mechanism is plausible for the ZnxCd1-xS nanowire growth in our preparation method.

    Fig.3 TEM(a,d,g,j),SAED(b,e,h,k),and HRTEM(c,f,i,l)images of the as-synthesized Zn0.13Cd0.87S(a,b,c),Zn0.31Cd0.69S(d,e,f),Zn0.68Cd0.32S(g,h,i),and Zn0.88Cd0.12S(j,k,l)nanowires

    Table 2 Lattice spacings,growth directions,and lattice constants in the Zn xCd1-xS nanowires

    3.4 Optical properties

    3.4.1 Raman study

    For the phonons in a mixed crystal of ternary alloys,a modified random element isodisplacement(MREI)model developed by Chan and Mitra36suggests that the criterion for the existence of the one-mode pattern is that there must not be a substituting element whose mass(m)is smaller than the reduced mass(μ)of the compound formed by the other two elements.In the ternary alloy of ZnxCd1-xS,since mCd(=112)>μZnS(=21)and mZn(=64)>μCdS(=25),one mode behavior should be exhibited for the phonons in the ZnxCd1-xS mixed crystal according to the MREI model.It was reported for the ZnxCd1-xS thin film that both cubic and hexagonal ZnxCd1-xS exhibit the one mode behavior,i.e.,one dominant longitudinal optical(LO)phonon peak is observed and its frequency changes smoothly with composition between those two constituent compounds.37,38

    Fig.4A depicts the Raman spectra of the ZnxCd1-xS nano-wires with different compositions.The Raman shifts at 300 and 345 cm-1are attributed to the LO phonon modes of CdS and ZnS,respectively.These phonon frequencies of LO modes agree well with the present observations.15,39In Fig.4A,phonon frequency(proportional to Raman shift)for the LO mode in the ZnxCd1-xS nanowires increases as the Cd composition decreases.Fig.4B shows the variation of the Raman shifts for the LO mode as a function of x value in the ZnxCd1-xS nanowires.The Raman shifts vary continuously and linearly with the variation of the x value,and once more exhibit roughly the one-mode behavior pattern.

    3.4.2 Photoluminescence study

    Fig.4 (A)Raman spectra of the Zn xCd1-xS nanowires with different compositions,with(a)CdS,(b)Zn0.13Cd0.87S,(c)Zn0.31Cd0.68S,(d)Zn0.68Cd0.32S,(e)Zn0.88Cd0.12S,(f)ZnS;(B)the composition dependence of the Raman shifts for the LO vibrational mode of the Zn xCd1-xS nanowires

    Good optical properties are always desired for applications in optoelectronic devices.PL measurements were carried out to characterize the optical properties of the alloy nanowires.Strong emission was found in our experiments from these nanowires.Fig.5A shows the normalized PL spectra of the ZnxCd1-xS nanowires of x=0,0.13,0.31,0.68,0.88,1.00.The x values were calculated from the results of EDX and XRD.Two emission bands were obtained for the wires with all compositions.The one located at the higher energy region is attributed to the near-band-edge(NBE)emission and the other one located at the lower energy region is assigned to the defect-related emission band.The full widths at half-maximum(FWHM)of the NBE PL for these nanowires are 15-20 nm,which is comparable to those of the widely used II-VI spherical quantum dots.40,41Such narrow peaks of the band-edge fluorescent emission imply that the distribution of the composition in these nanowires is quite uniform.Meanwhile,it was also found that the increase of the Cd ratio in the ZnxCd1-xS nanowires leads to the increased PL intensity originating from the increases of band-gap transition,in contrast to the decreased PL intensity originating from the defects.

    Meanwhile,a distinct blue shift of the NBE peak can be seen with increasing Zn composition.The peaks of the NBE emission change from ~340 nm(pure ZnS)to ~515 nm(pure CdS)as the Cd ratio increases.Energy gaps for the ZnxCd1-xS nanowires calculated from the observed PL peaks are shown in Fig.5B as a function of x value.Variation of the energy gaps deviates slightly from linear dependence,displaying a downward bowing,which has also been reported as a general character for many thin films of II-VI alloy semiconductors42,43and 1D nanostructures.15,17The nonlinear variation of the energy gaps can be represented as a function of composition

    Fig.5 (A)PL spectra of the Zn xCd1-xS nanowires with different compositions,with(a)ZnS,(b)Zn0.13Cd0.87S,(c)Zn0.31Cd0.68S,(d)Zn0.68Cd0.32S,(e)Zn0.88Cd0.12S,(f)CdS;(B)the composition dependence of the energy gap of the Zn xCd1-xS nanowires

    where Eg(x)is the energy gap of the AxB1-xC alloy crystal,EACand EBCare the energy gaps of the end-member crystals of AC and BC,respectively,and b is the bowing parameter.In this work,from the Egdata deduced from the PL spectra of the ZnxCd1-xS nanowires,the relationship between Egand x value can be written as:

    From Eq.(5)the bowing parameter b is calculated to be 0.65 eV.The PL results show that the band-gap energy of the ZnxCd1-xS nanowires can be continuously tuned from 2.41 to 3.63 eV.With broadly tunable optical properties and electrical properties,these alloyed nanowires can be used in colortuned nanolasers,biological labels,and nanoelectronics.

    4 Conclusions

    In summary,we have successfully synthesized the ZnxCd1-xS nanowires with single crystal via a simple vapor deposition method with varying compositions.The compositions determined by EDX and XRD are in good consistence.The XRD,HRTEM,and SAED results show that the as-synthesized nanowires are highly single crystalline.Raman measurements for the LO phonon in the ZnxCd1-xS nanowires show that the phonon frequency shifts linearly with the composition.The PL results show that the NBE emission band of the ZnxCd1-xS nanowires can be tuned from 2.41 eV(CdS)to 3.63 eV(ZnS)and this indicates that we have achieved continuous band-gap tuning through composition modulation in highly crystalline ZnxCd1-xS nanowires.

    (1)Huang,M.H.;Mao,S.;Feick,H.;Yan,H.Q.;Wu,Y.Y.;Kind,H.;Weber,E.;Russo,R.;Yang,P.D.Science 2001,292,1897.doi:10.1126/science.1060367

    (2)Bando,K.;Sawabe,T.;Asaka,K.;Masumoto,Y.J.Lumin.2004,108,385.doi:10.1016/j.jlumin.2004.01.081

    (3)Hu,C.;Zeng,X.H.;Cui,J.Y.;Chen,H.T.;Lu,J.F.J.Phys.Chem.C 2013,117,20998.doi:10.1021/jp407272u

    (4)Duan,X.;Hu,Y.;Agarwal,R.;Lieber,C.M.Nature 2003,421,24.

    (5)Kind,Y.H.;Messer,B.;Law,M.;Yang,P.D.Adv.Mater.2002,14,158.

    (7)Gudiksen,M.S.;Lieber,C.M.J.Am.Chem.Soc.2000,122,8801.doi:10.1021/ja002008e

    (8)Gudiksen,M.S.;Wang,J.;Lieber,C.M.J.Phys.Chem.B 2002,106,4036.doi:10.1021/jp014392n

    (9)Ma,D.D.D.;Lee,C.S.;Au,F.C.K.;Tong,S.Y.;Lee,S.T.Science 2003,299,1874.doi:10.1126/science.1080313

    (10)Peng,K.Q.;Wang,X.;Li,L.;Hu,Y.;Lee,S.T.Nano Today 2013,8,75.doi:10.1016/j.nantod.2012.12.009

    (11)Shan,C.X.;Liu,Z.;Ng,C.M.;Hark,S.K.Appl.Phys.Lett.2005,87,033108.doi:10.1063/1.1997271

    (12)Zhang,X.T.;Liu,Z.;Liu,Q.;Hark,S.K.J.Phys.Chem.B 2005,109,17913.doi:10.1021/jp0527406

    (13)Averin,S.V.;Kuznetsov,P.I.;Zhitov,V.A.;Alkeev,N.V.;Kotov,V.M.;Zakharov,L.Y.;Gladysheva,N.B.Tech.Phys.2012,82,49.

    (14)Hou,J.W.;Song,B.;Zhang,Z.H.;Wang,W.J.;Wu,R.;Sun,Y.F.;Zheng,Y.F.;Ding,P.;Jian,J.K.Acta Physico-Chimica Sinica 2009,25,724.[侯軍偉,宋 波,張志華,王文軍,吳 榮,孫言飛,鄭毓峰,丁 芃,簡(jiǎn)基康.物理化學(xué)學(xué)報(bào),2009,25,724.]doi:10.3866/PKU.WHXB20090428

    (15)Liang,Y.Q.;Zhai,L.;Zhao,X.S.;Xu,D.S.J.Phys.Chem.B 2005,109,7120.doi:10.1021/jp045566e

    (16)Liu,Y.;Zapien,J.A.;Shan,Y.Y.;Geng,C.Y.;Lee,C.S.;Lee,S.T.Adv.Mater.2005,17,1372.

    (17)Venugopal,R.;Lin,P.I.;Chen,Y.T.J.Phys.Chem.B 2006,110,11691.doi:10.1021/jp056892c

    (18)Wu,H.;Yao,Y.;Li,W.;Zhu,L.;Ni,N.;Zhang,X.J.Nanopart.Res.2011,13,2225.doi:10.1007/s11051-010-9981-7

    (19)Mahdi,M.A.;Hassan,J.J.;Hassan,Z.;Ng,S.S.Journal of Alloys and Compounds 2012,541,227.doi:10.1016/j.jallcom.2012.05.123

    (20)Huang,Y.;Duan,X.F.;Lieber,C.M.Small 2005,1,142.

    (21)Mcalpine,C.M.;Friedman,R.S.;Lieber,C.M.Proc.IEEE 2005,93,1357.doi:10.1109/JPROC.2005.850308

    (22)Sirbuly,D.J.;Law,M.;Yan,H.Q.;Yang,P.D.J.Phys.Chem.B 2005,109,15190.doi:10.1021/jp051813i

    (23)Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D.Nat.Mater.2005,4,455.doi:10.1038/nmat1387

    (24)Bailey,R.E.;Nie,S.J.Am.Chem.Soc.2003,125,7100.doi:10.1021/ja035000o

    (25)Wei,H.;Ren,X.L.;Han,Z.Y.;Li,T.T.;Su,Y.J.;Wei,L.M.;Cong,F.S.;Zhang,Y.F.Mater.Lett.2013,102,94

    (26)Xi,Y.Y.;Cheung,T.L.Y.;Ng,D.H.L.Mater.Lett.2008,62,128.doi:10.1016/j.matlet.2007.04.094

    (27)Rincon,M.E.;Martinez,M.W.;Miranda-Hernandez,M.Solar Energy Materials&Solar Cells 2003,77,25.doi:10.1016/S0927-0248(02)00242-8

    (28)Sainova,D.S.;Zen,A.;Nothofer,H.H.;Asawapirom,U.;Scherf,U.;Hagen,R.;Bieringer,T.;Kostromine,S.;Neher,D.Adv.Funct.Mater.2002,12,49.doi:10.1002/1616-3028(20020101)12:1<49::AID-ADFM49>3.0.CO;2-D

    (29)Ballentyne,D.W.G.;Ray,B.Physica 1961,27,337.doi:10.1016/0031-8914(61)90106-9

    (30)Shimaoka,G.;Suzuki,Y.Appl.Surf.Sci.1997,113,528.

    (31)Kar,S.;Satpati,B.;Satyam,P.V.;Chaudhuri,S.J.Phys.Chem.B 2005,109,19134.doi:10.1021/jp052600w

    (32)Kim,H.W.;Shim,S.H.Chem.Phys.Lett.2006,422,165.doi:10.1016/j.cplett.2006.02.062

    (33)Duan,X.;Lieber,C.M.Adv.Mater.2000,12,298.

    (34)Wu,Z.H.;Sun,M.;Mei,X.Y.;Ruda,H.E.Appl.Phys.Lett.2004,85,657.doi:10.1063/1.1775037

    (35)Fan,S.S.;Chapline,M.G.;Franklin,N.R.;Tombler,T.W.;Cassell,A.M.;Dai,H.Science 1999,283,512.doi:10.1126/science.283.5401.512

    (36)Chan,I.F.;Mitra,S.S.Phys.Rev.1968,172,924.doi:10.1103/PhysRev.172.924

    (37)Lucovsky,G.;Lind,E.;Davis,E.A.Proceedings of the International Conference on the Physics of II-VI Semiconducting Compounds;Benjamin:New York,1967;p 1150.

    (38)Ichimura,M.;Usami,A.;Wada,T.;Funato,M.;Ichino,K.;Fujita,S.;Fujita,S.Phys.Rev.B 1992,46,4273.doi:10.1103/PhysRevB.46.4273

    (39)Lu,H.Y.;Chu,S.Y.;Chang,C.C.J.Crystal Growth 2005,280,173.doi:10.1016/j.jcrysgro.2005.03.032

    (40)Qu,L.H.;Peng,X.G.J.Am.Chem.Soc.2002,124,2049.doi:10.1021/ja017002j

    (41)Murray,C.B.;Norris,D.J.;Bawendi,M.G.J.Am.Chem.Soc.1993,115,8706.doi:10.1021/ja00072a025

    (42)Hill,R.J.J.Phys.C:Solid State Phys.1974,7,521.doi:10.1088/0022-3719/7/3/009

    (43)Richardson,D.;Hill,R.J.Phys.C:Solid State Phys.1972,5,821.doi:10.1088/0022-3719/5/8/008

    猜你喜歡
    重質(zhì)化工學(xué)院石油大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    國(guó)家公園建設(shè)重質(zhì)不重量
    《化工學(xué)報(bào)》贊助單位
    東北石油大學(xué)簡(jiǎn)介
    重質(zhì)高酸原油高效破乳劑研究
    重質(zhì)純堿不同生產(chǎn)工藝的對(duì)比
    看黄色毛片网站| 天天操日日干夜夜撸| 国产在视频线精品| 中国美女看黄片| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 精品亚洲成国产av| 91国产中文字幕| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| 国产深夜福利视频在线观看| 国产精品免费大片| 国产成人影院久久av| 国产精品一区二区在线观看99| 国产精品九九99| 在线观看免费视频网站a站| 午夜影院日韩av| 国产99白浆流出| 女同久久另类99精品国产91| 国产亚洲精品一区二区www | 国产单亲对白刺激| av超薄肉色丝袜交足视频| 深夜精品福利| av一本久久久久| 1024视频免费在线观看| 久久人妻熟女aⅴ| 国产一区二区三区综合在线观看| 人妻 亚洲 视频| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看影片大全网站| 久久婷婷成人综合色麻豆| 亚洲一区二区三区不卡视频| 亚洲成国产人片在线观看| 香蕉国产在线看| 欧美精品一区二区免费开放| 国产成人影院久久av| a在线观看视频网站| 欧美激情高清一区二区三区| 精品久久久久久久毛片微露脸| 久久香蕉国产精品| 韩国精品一区二区三区| 老司机深夜福利视频在线观看| 欧美国产精品一级二级三级| 国产成人一区二区三区免费视频网站| 狠狠婷婷综合久久久久久88av| www.999成人在线观看| 国产av一区二区精品久久| 日本黄色视频三级网站网址 | 人妻 亚洲 视频| 99re在线观看精品视频| 国产野战对白在线观看| 国产精品久久久av美女十八| 涩涩av久久男人的天堂| 老熟女久久久| 日韩 欧美 亚洲 中文字幕| tube8黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 美女午夜性视频免费| 久热这里只有精品99| 亚洲精品久久成人aⅴ小说| 亚洲国产精品sss在线观看 | av国产精品久久久久影院| 黄色怎么调成土黄色| 伦理电影免费视频| svipshipincom国产片| av一本久久久久| 国产人伦9x9x在线观看| 精品第一国产精品| 久久久久视频综合| 免费av中文字幕在线| 国产国语露脸激情在线看| 女人被狂操c到高潮| 99热国产这里只有精品6| 在线观看午夜福利视频| 一边摸一边抽搐一进一小说 | 黄色片一级片一级黄色片| 麻豆国产av国片精品| 黄色片一级片一级黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁裸乳无遮挡免费网站照片 | 国产精品一区二区在线不卡| 久久性视频一级片| 99riav亚洲国产免费| 国产一区二区三区综合在线观看| 国产精品二区激情视频| 91成人精品电影| 美女视频免费永久观看网站| 成年版毛片免费区| 色老头精品视频在线观看| 欧美日韩av久久| 黄网站色视频无遮挡免费观看| 欧美 日韩 精品 国产| 亚洲专区中文字幕在线| 国产在线一区二区三区精| 精品亚洲成a人片在线观看| 久久中文看片网| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区91| 桃红色精品国产亚洲av| 久久性视频一级片| 美女 人体艺术 gogo| 久久精品国产99精品国产亚洲性色 | 中文亚洲av片在线观看爽 | 国产精品 国内视频| 十八禁人妻一区二区| 18禁黄网站禁片午夜丰满| 国产男女内射视频| 国产免费男女视频| 欧美日韩亚洲高清精品| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 午夜视频精品福利| 免费看a级黄色片| 男女午夜视频在线观看| 精品国产一区二区三区四区第35| 国产三级黄色录像| 亚洲黑人精品在线| 久久久国产成人免费| 最近最新免费中文字幕在线| 在线观看免费日韩欧美大片| 99精品久久久久人妻精品| 两人在一起打扑克的视频| 欧美成人免费av一区二区三区 | 午夜日韩欧美国产| 老司机亚洲免费影院| 天天躁夜夜躁狠狠躁躁| videos熟女内射| av欧美777| 欧美激情极品国产一区二区三区| 一个人免费在线观看的高清视频| 午夜精品久久久久久毛片777| 久久久久精品国产欧美久久久| 不卡av一区二区三区| 国产男靠女视频免费网站| 女性生殖器流出的白浆| 一区在线观看完整版| 国产精品 欧美亚洲| 中文字幕高清在线视频| a级毛片黄视频| 黄网站色视频无遮挡免费观看| 极品少妇高潮喷水抽搐| 天堂动漫精品| 免费女性裸体啪啪无遮挡网站| 天天操日日干夜夜撸| 99久久精品国产亚洲精品| 首页视频小说图片口味搜索| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三区在线| 久久久精品区二区三区| 新久久久久国产一级毛片| 女人久久www免费人成看片| 日韩人妻精品一区2区三区| 成人国语在线视频| 黑人操中国人逼视频| 超碰97精品在线观看| 精品人妻在线不人妻| 亚洲中文av在线| 这个男人来自地球电影免费观看| 免费在线观看黄色视频的| 婷婷丁香在线五月| 精品国产乱子伦一区二区三区| 免费在线观看视频国产中文字幕亚洲| 少妇 在线观看| 精品电影一区二区在线| 精品亚洲成国产av| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 久久99一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲avbb在线观看| 一级毛片精品| 亚洲色图av天堂| 久久久久久久国产电影| 久久狼人影院| 国产午夜精品久久久久久| 亚洲一码二码三码区别大吗| 国产熟女午夜一区二区三区| 老司机午夜福利在线观看视频| 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 久久久精品国产亚洲av高清涩受| svipshipincom国产片| 成人永久免费在线观看视频| 一二三四在线观看免费中文在| 亚洲国产欧美日韩在线播放| 日本欧美视频一区| 99re6热这里在线精品视频| 国产成人精品久久二区二区91| 亚洲欧美一区二区三区黑人| 久久亚洲真实| 国产一区二区激情短视频| 日韩欧美免费精品| 性色av乱码一区二区三区2| 免费观看a级毛片全部| 国产亚洲欧美98| 久久ye,这里只有精品| 亚洲国产欧美网| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 午夜福利乱码中文字幕| 午夜福利在线免费观看网站| 如日韩欧美国产精品一区二区三区| 大片电影免费在线观看免费| 国产精品电影一区二区三区 | 久久狼人影院| 久久久国产精品麻豆| 国产黄色免费在线视频| 女警被强在线播放| 搡老乐熟女国产| 超碰成人久久| 纯流量卡能插随身wifi吗| 国产精品香港三级国产av潘金莲| 大陆偷拍与自拍| 亚洲精品中文字幕一二三四区| 黄片大片在线免费观看| 黑人猛操日本美女一级片| 欧美精品啪啪一区二区三区| 国产在线观看jvid| 人妻一区二区av| 久久99一区二区三区| 国产精品 欧美亚洲| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 50天的宝宝边吃奶边哭怎么回事| 国产视频一区二区在线看| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 国产国语露脸激情在线看| 免费观看精品视频网站| 欧美国产精品va在线观看不卡| 女人高潮潮喷娇喘18禁视频| 黄频高清免费视频| 成人三级做爰电影| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 多毛熟女@视频| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| 女警被强在线播放| 久久久精品国产亚洲av高清涩受| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 色94色欧美一区二区| x7x7x7水蜜桃| 天天躁日日躁夜夜躁夜夜| 老熟女久久久| 国产成人精品无人区| 成人影院久久| 国产精品乱码一区二三区的特点 | 免费女性裸体啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 91老司机精品| 国产亚洲一区二区精品| 国产精品二区激情视频| 国产精品偷伦视频观看了| 久久人妻av系列| 亚洲精品成人av观看孕妇| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 国产欧美日韩一区二区三区在线| 岛国在线观看网站| 久久中文看片网| 国产精品秋霞免费鲁丝片| 久久精品亚洲精品国产色婷小说| 国产不卡av网站在线观看| 制服诱惑二区| 在线观看舔阴道视频| 国产av一区二区精品久久| 高清毛片免费观看视频网站 | 亚洲av欧美aⅴ国产| 亚洲综合色网址| 激情视频va一区二区三区| 露出奶头的视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 久久久国产精品麻豆| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕制服av| 亚洲国产精品一区二区三区在线| 国产激情久久老熟女| 水蜜桃什么品种好| 久久亚洲精品不卡| 黄片大片在线免费观看| 窝窝影院91人妻| 午夜影院日韩av| 精品免费久久久久久久清纯 | 韩国精品一区二区三区| 成在线人永久免费视频| 女人被狂操c到高潮| 曰老女人黄片| 精品国产美女av久久久久小说| 男人操女人黄网站| 国产成人精品久久二区二区免费| 悠悠久久av| 欧美激情极品国产一区二区三区| 国产精品美女特级片免费视频播放器 | 中文字幕av电影在线播放| 国产亚洲av高清不卡| 人妻 亚洲 视频| 亚洲av欧美aⅴ国产| 高清av免费在线| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 大陆偷拍与自拍| 免费观看a级毛片全部| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 丁香欧美五月| 少妇裸体淫交视频免费看高清 | 人人妻人人澡人人爽人人夜夜| 精品欧美一区二区三区在线| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 操美女的视频在线观看| 亚洲专区国产一区二区| 欧美激情极品国产一区二区三区| 久久精品国产99精品国产亚洲性色 | 999久久久国产精品视频| 成年人免费黄色播放视频| 青草久久国产| 中文字幕高清在线视频| 精品久久久久久,| 亚洲黑人精品在线| 欧美久久黑人一区二区| www.自偷自拍.com| 亚洲精品中文字幕一二三四区| 伦理电影免费视频| 国产一区二区三区视频了| 亚洲第一青青草原| 欧美人与性动交α欧美精品济南到| 99久久99久久久精品蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 视频在线观看一区二区三区| 两个人看的免费小视频| 纯流量卡能插随身wifi吗| 免费观看人在逋| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| 亚洲美女黄片视频| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 国产亚洲一区二区精品| 色94色欧美一区二区| 女人被狂操c到高潮| 国产视频一区二区在线看| 国产男女超爽视频在线观看| 操美女的视频在线观看| 91精品国产国语对白视频| 两个人免费观看高清视频| 国产精品 国内视频| 久久久久久亚洲精品国产蜜桃av| 国产免费男女视频| 在线免费观看的www视频| 超色免费av| 久久影院123| 黑人巨大精品欧美一区二区mp4| 午夜免费观看网址| 又大又爽又粗| 国产片内射在线| 麻豆乱淫一区二区| a级片在线免费高清观看视频| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 午夜激情av网站| 一区二区日韩欧美中文字幕| a级毛片在线看网站| 在线播放国产精品三级| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 夫妻午夜视频| 成人av一区二区三区在线看| 久久中文字幕一级| 美女扒开内裤让男人捅视频| 不卡一级毛片| 91av网站免费观看| 夫妻午夜视频| 国产在线一区二区三区精| 一级作爱视频免费观看| 超碰成人久久| 18禁国产床啪视频网站| 18禁黄网站禁片午夜丰满| 老熟妇乱子伦视频在线观看| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 午夜91福利影院| 国产淫语在线视频| 99riav亚洲国产免费| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 亚洲av欧美aⅴ国产| 国产精品永久免费网站| 国产亚洲一区二区精品| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 在线观看免费视频日本深夜| 少妇被粗大的猛进出69影院| 男人的好看免费观看在线视频 | 国产精品av久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 热re99久久精品国产66热6| 久久久久精品人妻al黑| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| 国产在线观看jvid| 亚洲五月婷婷丁香| 99精品在免费线老司机午夜| videos熟女内射| 18在线观看网站| 亚洲午夜理论影院| 国产主播在线观看一区二区| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| 天堂动漫精品| 精品久久蜜臀av无| 三上悠亚av全集在线观看| 色精品久久人妻99蜜桃| 黑人操中国人逼视频| 亚洲久久久国产精品| 777米奇影视久久| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 久久国产精品人妻蜜桃| 亚洲国产欧美日韩在线播放| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 一二三四社区在线视频社区8| 国产精华一区二区三区| 一本大道久久a久久精品| www.999成人在线观看| av超薄肉色丝袜交足视频| 看片在线看免费视频| av在线播放免费不卡| 最近最新中文字幕大全免费视频| 麻豆国产av国片精品| 窝窝影院91人妻| 欧美精品高潮呻吟av久久| 一级片免费观看大全| 精品国产一区二区久久| 99国产精品一区二区三区| 亚洲国产精品sss在线观看 | a级毛片黄视频| 日本精品一区二区三区蜜桃| 精品一区二区三区四区五区乱码| 午夜91福利影院| 午夜福利乱码中文字幕| 别揉我奶头~嗯~啊~动态视频| 欧美国产精品va在线观看不卡| 啦啦啦 在线观看视频| 国产男女内射视频| 黑人巨大精品欧美一区二区蜜桃| 久久天躁狠狠躁夜夜2o2o| 中文字幕av电影在线播放| 国产精品香港三级国产av潘金莲| 99精品久久久久人妻精品| 97人妻天天添夜夜摸| 女人久久www免费人成看片| 日韩欧美在线二视频 | 国产黄色免费在线视频| 色综合婷婷激情| 精品乱码久久久久久99久播| 国产成人欧美在线观看 | 69av精品久久久久久| 亚洲 欧美一区二区三区| 亚洲国产毛片av蜜桃av| 99久久国产精品久久久| 亚洲成人免费电影在线观看| 男女之事视频高清在线观看| 国产成人免费无遮挡视频| 人妻 亚洲 视频| 成熟少妇高潮喷水视频| 久久久国产欧美日韩av| 极品人妻少妇av视频| 999久久久国产精品视频| 一边摸一边抽搐一进一小说 | 亚洲成人国产一区在线观看| 狂野欧美激情性xxxx| 国产深夜福利视频在线观看| 亚洲精华国产精华精| 亚洲欧美一区二区三区久久| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 免费看a级黄色片| 在线观看日韩欧美| 手机成人av网站| 一个人免费在线观看的高清视频| 国产aⅴ精品一区二区三区波| 久久精品熟女亚洲av麻豆精品| 国产区一区二久久| 纯流量卡能插随身wifi吗| 人成视频在线观看免费观看| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 91av网站免费观看| 看免费av毛片| 一区福利在线观看| 国产成人av教育| 建设人人有责人人尽责人人享有的| videosex国产| 亚洲精品久久午夜乱码| 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 飞空精品影院首页| 高清毛片免费观看视频网站 | 夜夜夜夜夜久久久久| 老熟妇仑乱视频hdxx| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 久久亚洲真实| 欧美日韩av久久| 免费人成视频x8x8入口观看| 午夜福利影视在线免费观看| 久久久国产精品麻豆| 国产精品电影一区二区三区 | 国产激情久久老熟女| 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| 丝瓜视频免费看黄片| 精品无人区乱码1区二区| 免费在线观看影片大全网站| 男人操女人黄网站| 黑人巨大精品欧美一区二区mp4| 久久亚洲真实| 亚洲自偷自拍图片 自拍| 免费高清在线观看日韩| 免费一级毛片在线播放高清视频 | 国产精品秋霞免费鲁丝片| 黄色成人免费大全| 大型av网站在线播放| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 五月开心婷婷网| 夜夜躁狠狠躁天天躁| 人妻一区二区av| 久久影院123| 国产精品国产av在线观看| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 麻豆国产av国片精品| 国产一区二区三区视频了| 一区二区三区精品91| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 超碰成人久久| 国产亚洲精品久久久久5区| 欧美乱码精品一区二区三区| 国产成人精品在线电影| 丁香六月欧美| 亚洲中文av在线| 国产99久久九九免费精品| www.999成人在线观看| 国产在线精品亚洲第一网站| 宅男免费午夜| 人人澡人人妻人| 精品人妻熟女毛片av久久网站| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 亚洲精品在线观看二区| 一进一出抽搐动态| 免费在线观看影片大全网站| 老司机午夜福利在线观看视频| 老熟妇乱子伦视频在线观看| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜制服| 91在线观看av| 久久精品人人爽人人爽视色| 亚洲精品av麻豆狂野| 亚洲熟妇中文字幕五十中出 | 久久午夜亚洲精品久久| 天堂俺去俺来也www色官网| 天天操日日干夜夜撸| av不卡在线播放| 99国产综合亚洲精品| 黑人操中国人逼视频| 成人免费观看视频高清| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| а√天堂www在线а√下载 | 老汉色av国产亚洲站长工具| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 两个人免费观看高清视频| 国产精品欧美亚洲77777| 久久精品国产亚洲av香蕉五月 | 波多野结衣av一区二区av| 国产97色在线日韩免费| 午夜福利视频在线观看免费| av片东京热男人的天堂| ponron亚洲| 久99久视频精品免费| 国产成人欧美| 别揉我奶头~嗯~啊~动态视频| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 老熟妇仑乱视频hdxx| 视频区图区小说| 久久久久久久国产电影| 国产精品美女特级片免费视频播放器 | bbb黄色大片| 国产在线一区二区三区精| 国产区一区二久久| 亚洲美女黄片视频| 久久草成人影院| 亚洲国产看品久久|