• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Zn xCd1-xS納米線的可控合成及其可調(diào)的光學(xué)性質(zhì)

    2014-10-18 05:27:58林旭鋒席燕燕林德蓮
    物理化學(xué)學(xué)報(bào) 2014年3期
    關(guān)鍵詞:重質(zhì)化工學(xué)院石油大學(xué)

    林旭鋒 席燕燕 林德蓮

    (1中國(guó)石油大學(xué)(華東)重質(zhì)油國(guó)家重點(diǎn)實(shí)驗(yàn)室,山東青島 266580;2中國(guó)石油大學(xué)(華東)理學(xué)院,山東青島 266580;3中國(guó)石油大學(xué)(華東)化工學(xué)院,山東青島 266580)

    1 Introduction

    One dimensional semiconductor micro and nano structures have attracted much attention due to their novel properties and potential applications in many fields such as lasers,1-3waveguides,4and optical switches.5For devices in nanoelectronics and nanophotonics,it is very important to fabricate materials with continuous tunable physical properties.Band gap energy is one of the most important parameters that characterize a semiconductor and determine many gross electronic and optical properties.In the past few decades,extensive attention has been devoted to tuning the band gap energy of the nanowires by means of reducing its size to values comparable with or smaller than the corresponding excitonic Bohr diameter.6-10However,progress in this field only gives the ability to generate nanowires with diameters in a limited range,in which the quantum confinement effect is not prominent.

    Alloying of semiconductors is another means that can be applied to achieve semiconductor materials with various band gap energies.Alloy nanostructures of ternary II-VI semiconductors with elementary composition of ZnCdSe,ZnCdS,and CdSSe have been successfully fabricated by metal organic chemical vapor deposition(MOCVD),11-14electrodeposition,15laser-assisted deposition16,17and microwave-assisted synthesis.18,19They present high luminescence nature and well-crystalline structures and have been demonstrated to possess high lasing efficiency in a broad range of compositions.16In recent years,remarkable progress in the growth processes of nanocrystals has put alloy materials(III-V,II-VI)and their technology in a special category that promises versatile applications in photonic,13,20-22and high efficiency photovoltaic23devices.

    ZnxCd1-xS,whose physical and chemical properties can be tuned by changing the constituent stoichiometries,24,25is a good candidate to offer flexible physical parameters suitable for advanced application in nanotechnology.In a previous work26we have reported that Zn0.88Cd0.12S nanowires were synthesized by a simple vapor deposition method in ambient and lower pressures.The nanowires synthesized under ambient pressure grow along the<0001> directions via the tip-growth vapor-liquid-solid(VLS)mechanism.The nanowires synthesized under~1.33×104Pa grow along the<1010> direction via the combined basegrowth VLS and tip-growth vapor-solid(VS)mechanism.

    In this context several interesting questions became open.Firstly,whether or not can the ZnxCd1-xS nanowire be synthesized with tunable x value by this vapor deposition mechanism?Secondly,what are the growth mechanisms?Thirdly,whether does this tunable x value bring tunable physical,especially optical,properties.In this work we aim at answering these questions.

    2 Experimental

    2.1 Synthesis of ternary Zn xCd1-xS powder

    The ternary ZnxCd1-xS powder was prepared before the preparation of its nanowire.The powder was synthesized based on the work of Rincon et al.27Two grams of CdS powder(99.5%,International Laboratory,USA)and 0.94 g of ZnCl2powder(A.R.Fisher Scientific,UK)were mixed and put into an alumina boat.The boat was placed in the center of an alumina tube before it was inserted in a horizontal tube furnace.The mixture was sintered at 450°C for 12 h in an argon atmosphere.The possible reactions during sintering were:

    If the reactions were complete,the sintered product contained ZnxCd1-xS and CdCl2.

    2.2 Synthesis of Zn xCd1-xS nanowires

    Then the as-prepared powder was ground and put into an alumina boat,which was then placed in the center of a quartz tube.The entire assembly was inserted in a horizontal tube furnace.The system was connected to an argon source and a rotary pump.The system was evacuated before a steady Ar flow(at a rate of 60 cm3·min-1)was introduced.The temperature of the furnace was ramped to 900°C and held for 100 min.Several Au-coated Si(100)wafers were placed on the downstream side at the different positions of the quartz tube and separately about 2-18 cm from the source material.Colors for the as-synthesized products vary from white(ZnS)to yellow(CdS)depending on the composition(x value).It is found that the ZnxCd1-xS nanowires of various compositions were deposited at different collection positions,that is,at distinctive deposition temperature.CdCl2which has a lower melting point(576°C)and boiling point(950°C)could evaporate at such a temperature.

    2.3 Characterization

    The crystalline structure of the product was characterized by X-ray diffractometry(XRD,Rigaku RU-300).The microstructural analyses were performed by using scanning electron microscopy(SEM,LEO 1450 VP),transmission electron microscopy(TEM,Philips Tecnai 20),and high-resolution TEM(HRTEM,Philips Tecnai 20).Elemental and composition analyses were carried out by using energy dispersive X-ray spectrometry(EDX,Oxford Link II,UK).The optical properties were studied by Raman spectroscopy(Renishaw,Rm,1000B,excitation line of 514.5 nm)and photoluminescence(PL,Renishaw,Rm,1000B,excitation line of 325 nm).

    3 Results and discussion

    3.1 Morphology and composition

    General SEM morphologies of the as-synthesized ZnxCd1-xS nanowires orienting randomly on the Si substrate are shown in Fig.1(a,c,e,g)with x=0.13,0.31,0.68,0.88(indicated in Fig.1(b,d,f,h)),respectively.The lengths of the wires are up to~100μm,and the diameters of the ZnxCd1-xS nanowires are distributed in the range of 200-350 nm.The samples synthesized at a lower deposition temperature have smaller size.Chemical contents of the ZnxCd1-xS nanowires analyzed from EDX data with their stoichiometric ratios are listed in Table 1.It can be seen that for all samples with different compositions,the atomic ratio of S is smaller than 50%,which indicates the existence of the defect in the as-synthesized ZnxCd1-xS nanowires.

    3.2 Crystal structure

    It is known that for some common ternary compounds,the relationship between the composition value x and the lattice parameters along the c-axis follows the Vegard?s law.28-30Based on the Vegard?s law,the lattice constants along the c-axis of ZnS,CdS,and ZnxCd1-xS crystals,denoted as cZnS,cCdS,and cx,respectively,are subjected to the following equation:

    Fig.1 SEM images of the Zn xCd1-xS nanowires(a,c,e,g)and their corresponding EDS spectra(b,d,f,h)x:(a,b)0.13,(c,d)0.31,(e,f)0.68,(g,h)0.88

    Table 1 Chemical compositions of the Zn xCd1-xS nanowires measured by EDX

    Fig.2 displays typical XRD patterns of the ZnxCd1-xS nanowires synthesized at different conditions.The XRD patterns show that the nanowires with different compositions all have the hexagonal wurtzite structure.The corresponding x values of the nanowires calculated by Vigard?s law were indicated at the right of the curves in Fig.2.For the calculation of the x value,the peaks for the(002)and(101)planes were used,which for ZnS lie at 2θof~28.5°and ~30.6°,respectively,and for CdS at 2θof~26.5°and ~28.2°,respectively.As a result,the positions of the(002)peak in XRD patterns shift from 26.5°to 26.7°,27.1°,27.8°,28.2°,and 28.5°as the fraction of Zn(x)in ZnxCd1-xS increases from 0 to 0.13,0.31,0.68,0.88,and 1.00,respectively.The calculated x values of the ZnxCd1-xS nanowires with x=0.13,0.31,0.68,0.88 are well consistent with those from the EDX results.

    Typical TEM images of the as-synthesized ZnxCd1-xS nanowires with x=0.13,0.31,0.68,0.88 are shown in Fig.3(a,d,g,j),respectively.The selected area electron diffractions(SAED,Fig.3(b,e,h,k))and HRTEM(Fig.3(c,f,i,l))images are correspondingly attached to the TEM images.The SAED and HRTEM images further reveal that the synthesized ZnxCd1-xS nanowires are single crystalline and have hexagonal Wurtzite structure.Lattice constants,growth directions,and lattice spacings calculated from the HRTEM and XRD data are listed in Table 2.Consistently,the lattice constants determined from the SAED data are in good agreement with the XRD results.

    Fig.2 XRD patterns of the Zn xCd1-xS nanowires obtained at different deposition conditions

    3.3 Discussion on the growth mechanism

    There are two well-accepted mechanism for the growth of one dimesional(1D)nanostructures,viz.the vapor-solid(VS)and the vapor-liquid-solid(VLS)mechanisms.For nanowires growing through the VS mechanism,there always has a decrease of the diameter/width of the nanostructures toward their growth end.31,32The VLS mechanism can be divided into two types,viz.tip-growth VLS mechanism and base-growth mechanism.The existence of a metal-alloy droplet on the tip of the 1D nanostructure is the characteristic of the former.31,33,34For the later,an Au nanoparticle may stay at the bottom of the nanowires during the growth process.31,35In this work,the alloy droplet on the tip of the nanowires was not observed(see Fig.3),which indicates that the tip-growth VLS mechanism is not appropriate.Meanwhile,the diameters of the nanowires are rather uniform along the growth direction,except for the case of x=0.68 which is a little cuspidal.Thus the results support that the base-growth mechanism is plausible for the ZnxCd1-xS nanowire growth in our preparation method.

    Fig.3 TEM(a,d,g,j),SAED(b,e,h,k),and HRTEM(c,f,i,l)images of the as-synthesized Zn0.13Cd0.87S(a,b,c),Zn0.31Cd0.69S(d,e,f),Zn0.68Cd0.32S(g,h,i),and Zn0.88Cd0.12S(j,k,l)nanowires

    Table 2 Lattice spacings,growth directions,and lattice constants in the Zn xCd1-xS nanowires

    3.4 Optical properties

    3.4.1 Raman study

    For the phonons in a mixed crystal of ternary alloys,a modified random element isodisplacement(MREI)model developed by Chan and Mitra36suggests that the criterion for the existence of the one-mode pattern is that there must not be a substituting element whose mass(m)is smaller than the reduced mass(μ)of the compound formed by the other two elements.In the ternary alloy of ZnxCd1-xS,since mCd(=112)>μZnS(=21)and mZn(=64)>μCdS(=25),one mode behavior should be exhibited for the phonons in the ZnxCd1-xS mixed crystal according to the MREI model.It was reported for the ZnxCd1-xS thin film that both cubic and hexagonal ZnxCd1-xS exhibit the one mode behavior,i.e.,one dominant longitudinal optical(LO)phonon peak is observed and its frequency changes smoothly with composition between those two constituent compounds.37,38

    Fig.4A depicts the Raman spectra of the ZnxCd1-xS nano-wires with different compositions.The Raman shifts at 300 and 345 cm-1are attributed to the LO phonon modes of CdS and ZnS,respectively.These phonon frequencies of LO modes agree well with the present observations.15,39In Fig.4A,phonon frequency(proportional to Raman shift)for the LO mode in the ZnxCd1-xS nanowires increases as the Cd composition decreases.Fig.4B shows the variation of the Raman shifts for the LO mode as a function of x value in the ZnxCd1-xS nanowires.The Raman shifts vary continuously and linearly with the variation of the x value,and once more exhibit roughly the one-mode behavior pattern.

    3.4.2 Photoluminescence study

    Fig.4 (A)Raman spectra of the Zn xCd1-xS nanowires with different compositions,with(a)CdS,(b)Zn0.13Cd0.87S,(c)Zn0.31Cd0.68S,(d)Zn0.68Cd0.32S,(e)Zn0.88Cd0.12S,(f)ZnS;(B)the composition dependence of the Raman shifts for the LO vibrational mode of the Zn xCd1-xS nanowires

    Good optical properties are always desired for applications in optoelectronic devices.PL measurements were carried out to characterize the optical properties of the alloy nanowires.Strong emission was found in our experiments from these nanowires.Fig.5A shows the normalized PL spectra of the ZnxCd1-xS nanowires of x=0,0.13,0.31,0.68,0.88,1.00.The x values were calculated from the results of EDX and XRD.Two emission bands were obtained for the wires with all compositions.The one located at the higher energy region is attributed to the near-band-edge(NBE)emission and the other one located at the lower energy region is assigned to the defect-related emission band.The full widths at half-maximum(FWHM)of the NBE PL for these nanowires are 15-20 nm,which is comparable to those of the widely used II-VI spherical quantum dots.40,41Such narrow peaks of the band-edge fluorescent emission imply that the distribution of the composition in these nanowires is quite uniform.Meanwhile,it was also found that the increase of the Cd ratio in the ZnxCd1-xS nanowires leads to the increased PL intensity originating from the increases of band-gap transition,in contrast to the decreased PL intensity originating from the defects.

    Meanwhile,a distinct blue shift of the NBE peak can be seen with increasing Zn composition.The peaks of the NBE emission change from ~340 nm(pure ZnS)to ~515 nm(pure CdS)as the Cd ratio increases.Energy gaps for the ZnxCd1-xS nanowires calculated from the observed PL peaks are shown in Fig.5B as a function of x value.Variation of the energy gaps deviates slightly from linear dependence,displaying a downward bowing,which has also been reported as a general character for many thin films of II-VI alloy semiconductors42,43and 1D nanostructures.15,17The nonlinear variation of the energy gaps can be represented as a function of composition

    Fig.5 (A)PL spectra of the Zn xCd1-xS nanowires with different compositions,with(a)ZnS,(b)Zn0.13Cd0.87S,(c)Zn0.31Cd0.68S,(d)Zn0.68Cd0.32S,(e)Zn0.88Cd0.12S,(f)CdS;(B)the composition dependence of the energy gap of the Zn xCd1-xS nanowires

    where Eg(x)is the energy gap of the AxB1-xC alloy crystal,EACand EBCare the energy gaps of the end-member crystals of AC and BC,respectively,and b is the bowing parameter.In this work,from the Egdata deduced from the PL spectra of the ZnxCd1-xS nanowires,the relationship between Egand x value can be written as:

    From Eq.(5)the bowing parameter b is calculated to be 0.65 eV.The PL results show that the band-gap energy of the ZnxCd1-xS nanowires can be continuously tuned from 2.41 to 3.63 eV.With broadly tunable optical properties and electrical properties,these alloyed nanowires can be used in colortuned nanolasers,biological labels,and nanoelectronics.

    4 Conclusions

    In summary,we have successfully synthesized the ZnxCd1-xS nanowires with single crystal via a simple vapor deposition method with varying compositions.The compositions determined by EDX and XRD are in good consistence.The XRD,HRTEM,and SAED results show that the as-synthesized nanowires are highly single crystalline.Raman measurements for the LO phonon in the ZnxCd1-xS nanowires show that the phonon frequency shifts linearly with the composition.The PL results show that the NBE emission band of the ZnxCd1-xS nanowires can be tuned from 2.41 eV(CdS)to 3.63 eV(ZnS)and this indicates that we have achieved continuous band-gap tuning through composition modulation in highly crystalline ZnxCd1-xS nanowires.

    (1)Huang,M.H.;Mao,S.;Feick,H.;Yan,H.Q.;Wu,Y.Y.;Kind,H.;Weber,E.;Russo,R.;Yang,P.D.Science 2001,292,1897.doi:10.1126/science.1060367

    (2)Bando,K.;Sawabe,T.;Asaka,K.;Masumoto,Y.J.Lumin.2004,108,385.doi:10.1016/j.jlumin.2004.01.081

    (3)Hu,C.;Zeng,X.H.;Cui,J.Y.;Chen,H.T.;Lu,J.F.J.Phys.Chem.C 2013,117,20998.doi:10.1021/jp407272u

    (4)Duan,X.;Hu,Y.;Agarwal,R.;Lieber,C.M.Nature 2003,421,24.

    (5)Kind,Y.H.;Messer,B.;Law,M.;Yang,P.D.Adv.Mater.2002,14,158.

    (7)Gudiksen,M.S.;Lieber,C.M.J.Am.Chem.Soc.2000,122,8801.doi:10.1021/ja002008e

    (8)Gudiksen,M.S.;Wang,J.;Lieber,C.M.J.Phys.Chem.B 2002,106,4036.doi:10.1021/jp014392n

    (9)Ma,D.D.D.;Lee,C.S.;Au,F.C.K.;Tong,S.Y.;Lee,S.T.Science 2003,299,1874.doi:10.1126/science.1080313

    (10)Peng,K.Q.;Wang,X.;Li,L.;Hu,Y.;Lee,S.T.Nano Today 2013,8,75.doi:10.1016/j.nantod.2012.12.009

    (11)Shan,C.X.;Liu,Z.;Ng,C.M.;Hark,S.K.Appl.Phys.Lett.2005,87,033108.doi:10.1063/1.1997271

    (12)Zhang,X.T.;Liu,Z.;Liu,Q.;Hark,S.K.J.Phys.Chem.B 2005,109,17913.doi:10.1021/jp0527406

    (13)Averin,S.V.;Kuznetsov,P.I.;Zhitov,V.A.;Alkeev,N.V.;Kotov,V.M.;Zakharov,L.Y.;Gladysheva,N.B.Tech.Phys.2012,82,49.

    (14)Hou,J.W.;Song,B.;Zhang,Z.H.;Wang,W.J.;Wu,R.;Sun,Y.F.;Zheng,Y.F.;Ding,P.;Jian,J.K.Acta Physico-Chimica Sinica 2009,25,724.[侯軍偉,宋 波,張志華,王文軍,吳 榮,孫言飛,鄭毓峰,丁 芃,簡(jiǎn)基康.物理化學(xué)學(xué)報(bào),2009,25,724.]doi:10.3866/PKU.WHXB20090428

    (15)Liang,Y.Q.;Zhai,L.;Zhao,X.S.;Xu,D.S.J.Phys.Chem.B 2005,109,7120.doi:10.1021/jp045566e

    (16)Liu,Y.;Zapien,J.A.;Shan,Y.Y.;Geng,C.Y.;Lee,C.S.;Lee,S.T.Adv.Mater.2005,17,1372.

    (17)Venugopal,R.;Lin,P.I.;Chen,Y.T.J.Phys.Chem.B 2006,110,11691.doi:10.1021/jp056892c

    (18)Wu,H.;Yao,Y.;Li,W.;Zhu,L.;Ni,N.;Zhang,X.J.Nanopart.Res.2011,13,2225.doi:10.1007/s11051-010-9981-7

    (19)Mahdi,M.A.;Hassan,J.J.;Hassan,Z.;Ng,S.S.Journal of Alloys and Compounds 2012,541,227.doi:10.1016/j.jallcom.2012.05.123

    (20)Huang,Y.;Duan,X.F.;Lieber,C.M.Small 2005,1,142.

    (21)Mcalpine,C.M.;Friedman,R.S.;Lieber,C.M.Proc.IEEE 2005,93,1357.doi:10.1109/JPROC.2005.850308

    (22)Sirbuly,D.J.;Law,M.;Yan,H.Q.;Yang,P.D.J.Phys.Chem.B 2005,109,15190.doi:10.1021/jp051813i

    (23)Law,M.;Greene,L.E.;Johnson,J.C.;Saykally,R.;Yang,P.D.Nat.Mater.2005,4,455.doi:10.1038/nmat1387

    (24)Bailey,R.E.;Nie,S.J.Am.Chem.Soc.2003,125,7100.doi:10.1021/ja035000o

    (25)Wei,H.;Ren,X.L.;Han,Z.Y.;Li,T.T.;Su,Y.J.;Wei,L.M.;Cong,F.S.;Zhang,Y.F.Mater.Lett.2013,102,94

    (26)Xi,Y.Y.;Cheung,T.L.Y.;Ng,D.H.L.Mater.Lett.2008,62,128.doi:10.1016/j.matlet.2007.04.094

    (27)Rincon,M.E.;Martinez,M.W.;Miranda-Hernandez,M.Solar Energy Materials&Solar Cells 2003,77,25.doi:10.1016/S0927-0248(02)00242-8

    (28)Sainova,D.S.;Zen,A.;Nothofer,H.H.;Asawapirom,U.;Scherf,U.;Hagen,R.;Bieringer,T.;Kostromine,S.;Neher,D.Adv.Funct.Mater.2002,12,49.doi:10.1002/1616-3028(20020101)12:1<49::AID-ADFM49>3.0.CO;2-D

    (29)Ballentyne,D.W.G.;Ray,B.Physica 1961,27,337.doi:10.1016/0031-8914(61)90106-9

    (30)Shimaoka,G.;Suzuki,Y.Appl.Surf.Sci.1997,113,528.

    (31)Kar,S.;Satpati,B.;Satyam,P.V.;Chaudhuri,S.J.Phys.Chem.B 2005,109,19134.doi:10.1021/jp052600w

    (32)Kim,H.W.;Shim,S.H.Chem.Phys.Lett.2006,422,165.doi:10.1016/j.cplett.2006.02.062

    (33)Duan,X.;Lieber,C.M.Adv.Mater.2000,12,298.

    (34)Wu,Z.H.;Sun,M.;Mei,X.Y.;Ruda,H.E.Appl.Phys.Lett.2004,85,657.doi:10.1063/1.1775037

    (35)Fan,S.S.;Chapline,M.G.;Franklin,N.R.;Tombler,T.W.;Cassell,A.M.;Dai,H.Science 1999,283,512.doi:10.1126/science.283.5401.512

    (36)Chan,I.F.;Mitra,S.S.Phys.Rev.1968,172,924.doi:10.1103/PhysRev.172.924

    (37)Lucovsky,G.;Lind,E.;Davis,E.A.Proceedings of the International Conference on the Physics of II-VI Semiconducting Compounds;Benjamin:New York,1967;p 1150.

    (38)Ichimura,M.;Usami,A.;Wada,T.;Funato,M.;Ichino,K.;Fujita,S.;Fujita,S.Phys.Rev.B 1992,46,4273.doi:10.1103/PhysRevB.46.4273

    (39)Lu,H.Y.;Chu,S.Y.;Chang,C.C.J.Crystal Growth 2005,280,173.doi:10.1016/j.jcrysgro.2005.03.032

    (40)Qu,L.H.;Peng,X.G.J.Am.Chem.Soc.2002,124,2049.doi:10.1021/ja017002j

    (41)Murray,C.B.;Norris,D.J.;Bawendi,M.G.J.Am.Chem.Soc.1993,115,8706.doi:10.1021/ja00072a025

    (42)Hill,R.J.J.Phys.C:Solid State Phys.1974,7,521.doi:10.1088/0022-3719/7/3/009

    (43)Richardson,D.;Hill,R.J.Phys.C:Solid State Phys.1972,5,821.doi:10.1088/0022-3719/5/8/008

    猜你喜歡
    重質(zhì)化工學(xué)院石油大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    國(guó)家公園建設(shè)重質(zhì)不重量
    《化工學(xué)報(bào)》贊助單位
    東北石油大學(xué)簡(jiǎn)介
    重質(zhì)高酸原油高效破乳劑研究
    重質(zhì)純堿不同生產(chǎn)工藝的對(duì)比
    麻豆国产97在线/欧美| 欧美一区二区精品小视频在线| 午夜免费男女啪啪视频观看 | 国产乱人伦免费视频| 日日夜夜操网爽| 国产在视频线在精品| 精品久久久久久成人av| 亚洲欧美精品综合久久99| 最新在线观看一区二区三区| 99在线视频只有这里精品首页| 日韩高清综合在线| 久久久久国内视频| 亚洲欧美日韩卡通动漫| 少妇裸体淫交视频免费看高清| 69人妻影院| 69人妻影院| 日韩av在线大香蕉| 听说在线观看完整版免费高清| 免费看美女性在线毛片视频| 嫩草影院精品99| 一个人免费在线观看的高清视频| 久久精品影院6| 九色成人免费人妻av| 国产亚洲欧美在线一区二区| 色综合站精品国产| av在线天堂中文字幕| 舔av片在线| 欧美zozozo另类| 午夜福利在线观看吧| 国产成人影院久久av| 毛片女人毛片| 午夜免费激情av| av视频在线观看入口| 亚州av有码| 亚洲av美国av| 美女免费视频网站| 每晚都被弄得嗷嗷叫到高潮| 国产精品人妻久久久久久| 成熟少妇高潮喷水视频| 精品日产1卡2卡| 老司机福利观看| 一级av片app| 国产精品久久电影中文字幕| 国内久久婷婷六月综合欲色啪| 精品久久久久久久久久久久久| 免费人成在线观看视频色| 91在线观看av| 老司机深夜福利视频在线观看| 国产精品一区二区三区四区免费观看 | 中文字幕人妻熟人妻熟丝袜美| 亚洲第一欧美日韩一区二区三区| 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 尤物成人国产欧美一区二区三区| 午夜久久久久精精品| 99热这里只有是精品50| 高潮久久久久久久久久久不卡| 国产精品一区二区免费欧美| 十八禁国产超污无遮挡网站| 国内精品久久久久精免费| 人妻丰满熟妇av一区二区三区| 乱码一卡2卡4卡精品| 又黄又爽又刺激的免费视频.| 别揉我奶头 嗯啊视频| 国产精品一区二区免费欧美| 9191精品国产免费久久| 天堂av国产一区二区熟女人妻| 中文字幕久久专区| 成人欧美大片| 久久久久久久久中文| 中文资源天堂在线| 成人国产综合亚洲| 永久网站在线| 一进一出抽搐gif免费好疼| 亚洲 国产 在线| 少妇丰满av| 一进一出好大好爽视频| 欧美黄色片欧美黄色片| 国产国拍精品亚洲av在线观看| 久久久久久国产a免费观看| 女人十人毛片免费观看3o分钟| 99国产精品一区二区蜜桃av| 男人的好看免费观看在线视频| 日韩有码中文字幕| 久久精品国产99精品国产亚洲性色| 天堂影院成人在线观看| 国产在线男女| 欧美精品啪啪一区二区三区| 小说图片视频综合网站| 好男人电影高清在线观看| 精品99又大又爽又粗少妇毛片 | 色视频www国产| 精品熟女少妇八av免费久了| 国产真实乱freesex| 一级黄片播放器| 内地一区二区视频在线| 啦啦啦观看免费观看视频高清| 在线播放无遮挡| 欧美不卡视频在线免费观看| 免费在线观看影片大全网站| 2022亚洲国产成人精品| 黄片wwwwww| 18禁裸乳无遮挡动漫免费视频 | 99热这里只有是精品50| 人人妻人人看人人澡| 国产毛片在线视频| www.av在线官网国产| 国产精品.久久久| 亚洲精品aⅴ在线观看| 一区二区三区精品91| 亚洲伊人久久精品综合| 日韩制服骚丝袜av| 又大又黄又爽视频免费| 亚洲伊人久久精品综合| 寂寞人妻少妇视频99o| 永久网站在线| 免费看a级黄色片| 色吧在线观看| 男女国产视频网站| 久久精品久久精品一区二区三区| 性色avwww在线观看| 亚洲欧美日韩另类电影网站 | 欧美激情在线99| 18禁裸乳无遮挡免费网站照片| 午夜爱爱视频在线播放| 蜜桃亚洲精品一区二区三区| 亚洲久久久久久中文字幕| 久久久久久久久久久丰满| 欧美潮喷喷水| 黄色一级大片看看| 亚洲国产高清在线一区二区三| 男人舔奶头视频| eeuss影院久久| 国产成年人精品一区二区| 国产高清国产精品国产三级 | 亚洲综合精品二区| 免费在线观看成人毛片| 老女人水多毛片| 小蜜桃在线观看免费完整版高清| 看十八女毛片水多多多| 大话2 男鬼变身卡| 在线观看一区二区三区| 男女边吃奶边做爰视频| 欧美zozozo另类| 精品人妻熟女av久视频| 九九爱精品视频在线观看| 午夜精品一区二区三区免费看| 91狼人影院| 在线天堂最新版资源| 亚洲精品,欧美精品| av国产免费在线观看| 啦啦啦在线观看免费高清www| 欧美一区二区亚洲| 好男人视频免费观看在线| 99热6这里只有精品| av黄色大香蕉| 亚洲精品一二三| 免费观看av网站的网址| 国产精品国产三级专区第一集| 各种免费的搞黄视频| 亚洲精品影视一区二区三区av| 在线 av 中文字幕| 国产精品一二三区在线看| 丝袜喷水一区| 亚洲欧美日韩东京热| 午夜日本视频在线| 一本色道久久久久久精品综合| 一级二级三级毛片免费看| 禁无遮挡网站| 免费黄网站久久成人精品| 欧美老熟妇乱子伦牲交| 午夜福利在线观看免费完整高清在| 哪个播放器可以免费观看大片| 亚洲自偷自拍三级| 亚洲aⅴ乱码一区二区在线播放| 热re99久久精品国产66热6| 夜夜爽夜夜爽视频| 肉色欧美久久久久久久蜜桃 | 日韩一区二区三区影片| 观看免费一级毛片| 99精国产麻豆久久婷婷| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 乱系列少妇在线播放| 国产精品麻豆人妻色哟哟久久| 波野结衣二区三区在线| 国产爱豆传媒在线观看| 亚洲av.av天堂| 久久午夜福利片| 亚洲久久久久久中文字幕| 人妻制服诱惑在线中文字幕| 国产精品国产三级专区第一集| 欧美性感艳星| 日本黄色片子视频| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 观看美女的网站| 久久久久性生活片| 亚洲色图av天堂| av播播在线观看一区| 国产一区二区亚洲精品在线观看| 一级毛片我不卡| 国产精品久久久久久久久免| 国产成人午夜福利电影在线观看| 日本-黄色视频高清免费观看| 国产伦精品一区二区三区视频9| 嫩草影院精品99| 亚洲成人久久爱视频| 亚洲av在线观看美女高潮| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 国国产精品蜜臀av免费| 2021少妇久久久久久久久久久| 久久精品国产a三级三级三级| 久久久久久久久久成人| 日韩av不卡免费在线播放| 五月玫瑰六月丁香| 久久久精品欧美日韩精品| 久久久色成人| 精品亚洲乱码少妇综合久久| 国产伦理片在线播放av一区| 亚洲精品视频女| 中文精品一卡2卡3卡4更新| av国产久精品久网站免费入址| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 亚洲精品自拍成人| 久久久久久国产a免费观看| 男人爽女人下面视频在线观看| 成人综合一区亚洲| 亚洲第一区二区三区不卡| 国产精品av视频在线免费观看| 亚洲内射少妇av| 亚洲va在线va天堂va国产| 亚洲图色成人| 国产欧美亚洲国产| 哪个播放器可以免费观看大片| 欧美一区二区亚洲| 午夜激情福利司机影院| 国产午夜精品一二区理论片| 22中文网久久字幕| 国产亚洲最大av| 在线 av 中文字幕| 午夜精品一区二区三区免费看| 制服丝袜香蕉在线| 在线观看三级黄色| 免费观看的影片在线观看| 久久午夜福利片| 日韩伦理黄色片| 黄色日韩在线| 国产高清三级在线| 建设人人有责人人尽责人人享有的 | 男人爽女人下面视频在线观看| 99久久人妻综合| 成人亚洲精品一区在线观看 | 最新中文字幕久久久久| 综合色av麻豆| 国产美女午夜福利| 国产欧美日韩精品一区二区| 亚洲第一区二区三区不卡| 国产精品一及| 少妇猛男粗大的猛烈进出视频 | 亚洲精品日韩av片在线观看| 精品少妇久久久久久888优播| 国产视频内射| 久久久欧美国产精品| 亚洲精品久久久久久婷婷小说| 久久ye,这里只有精品| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 免费看a级黄色片| 欧美性感艳星| 特大巨黑吊av在线直播| 在线精品无人区一区二区三 | 亚洲电影在线观看av| 亚洲av成人精品一二三区| 性色avwww在线观看| 观看免费一级毛片| 欧美日韩一区二区视频在线观看视频在线 | 国产真实伦视频高清在线观看| 免费大片18禁| 韩国高清视频一区二区三区| 久久久久久久久久成人| 日韩欧美精品v在线| 久久精品久久精品一区二区三区| 国产精品久久久久久久久免| 黄色配什么色好看| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| 麻豆精品久久久久久蜜桃| 国产成人午夜福利电影在线观看| 久久99蜜桃精品久久| 18禁在线播放成人免费| 热re99久久精品国产66热6| 亚洲在久久综合| 精品人妻视频免费看| 久久99热这里只频精品6学生| 熟妇人妻不卡中文字幕| 九九在线视频观看精品| 亚洲av免费在线观看| videossex国产| 亚洲图色成人| 欧美xxⅹ黑人| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 天美传媒精品一区二区| 国产91av在线免费观看| 最近中文字幕2019免费版| 高清日韩中文字幕在线| 亚洲最大成人手机在线| 久久久a久久爽久久v久久| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 黄色配什么色好看| 大码成人一级视频| 亚洲精品中文字幕在线视频 | 色婷婷久久久亚洲欧美| 欧美97在线视频| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 久久精品国产鲁丝片午夜精品| 日韩av不卡免费在线播放| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 午夜激情久久久久久久| av线在线观看网站| 制服丝袜香蕉在线| 午夜免费鲁丝| 成人综合一区亚洲| 日本与韩国留学比较| 婷婷色综合www| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女人妻精品中文字幕| 天天一区二区日本电影三级| 免费黄网站久久成人精品| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 大片电影免费在线观看免费| 狂野欧美白嫩少妇大欣赏| 免费看光身美女| 免费av毛片视频| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 在线观看一区二区三区| 日本欧美国产在线视频| 国产色婷婷99| 国产午夜精品久久久久久一区二区三区| 啦啦啦中文免费视频观看日本| 观看免费一级毛片| 久久久久久九九精品二区国产| 久久久久久久精品精品| 国产久久久一区二区三区| 身体一侧抽搐| 美女xxoo啪啪120秒动态图| 直男gayav资源| 亚洲第一区二区三区不卡| 久久影院123| 熟妇人妻不卡中文字幕| 日韩欧美 国产精品| 国产综合精华液| 国产 一区 欧美 日韩| 国产亚洲5aaaaa淫片| 国产免费视频播放在线视频| 天堂网av新在线| 黄片无遮挡物在线观看| 插阴视频在线观看视频| 国产伦精品一区二区三区四那| av国产免费在线观看| 免费观看的影片在线观看| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 亚洲国产色片| 国产精品不卡视频一区二区| 亚洲av.av天堂| 人妻系列 视频| 成人亚洲精品一区在线观看 | 日韩,欧美,国产一区二区三区| 97超视频在线观看视频| 麻豆精品久久久久久蜜桃| 夜夜看夜夜爽夜夜摸| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 国产爱豆传媒在线观看| 国精品久久久久久国模美| 国产淫语在线视频| 少妇被粗大猛烈的视频| 久久久色成人| 国产成人freesex在线| 少妇的逼好多水| 如何舔出高潮| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频| 99热这里只有是精品50| 国产永久视频网站| 久久久久久久精品精品| 夜夜爽夜夜爽视频| 亚洲精品日韩av片在线观看| 毛片女人毛片| 人妻一区二区av| 国产一区亚洲一区在线观看| 国产亚洲一区二区精品| 插逼视频在线观看| 欧美少妇被猛烈插入视频| 极品少妇高潮喷水抽搐| 只有这里有精品99| 最近手机中文字幕大全| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| 国产午夜福利久久久久久| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 99热国产这里只有精品6| 亚洲欧美日韩另类电影网站 | 免费看不卡的av| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 国产在视频线精品| 岛国毛片在线播放| 97在线视频观看| 免费黄频网站在线观看国产| av播播在线观看一区| 69av精品久久久久久| 国产伦理片在线播放av一区| 在线观看三级黄色| 亚洲图色成人| 国产一区二区三区av在线| 好男人在线观看高清免费视频| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 男人添女人高潮全过程视频| 亚洲av男天堂| 91精品国产九色| 婷婷色麻豆天堂久久| 国产亚洲精品久久久com| 国产精品一区二区三区四区免费观看| 免费不卡的大黄色大毛片视频在线观看| 成人亚洲精品av一区二区| 国产亚洲5aaaaa淫片| 国产淫片久久久久久久久| 国产精品久久久久久久电影| 一二三四中文在线观看免费高清| 成人欧美大片| 亚洲自偷自拍三级| 别揉我奶头 嗯啊视频| 日韩中字成人| 啦啦啦啦在线视频资源| 久久久久久久久久久免费av| 身体一侧抽搐| 午夜老司机福利剧场| 伦精品一区二区三区| 国产男女内射视频| 日日啪夜夜爽| 黄片wwwwww| 三级国产精品片| 22中文网久久字幕| 99久久精品国产国产毛片| 黄色日韩在线| 久久99热这里只频精品6学生| kizo精华| 一级a做视频免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 国产精品蜜桃在线观看| 自拍偷自拍亚洲精品老妇| 亚洲综合精品二区| 一个人看的www免费观看视频| 少妇的逼好多水| 涩涩av久久男人的天堂| 久久精品久久久久久噜噜老黄| 美女高潮的动态| 日韩av在线免费看完整版不卡| 老司机影院成人| 最近中文字幕2019免费版| 午夜福利视频精品| 欧美激情国产日韩精品一区| 男女国产视频网站| 免费人成在线观看视频色| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av专区在线播放| 18禁裸乳无遮挡动漫免费视频 | 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 国产真实伦视频高清在线观看| 少妇熟女欧美另类| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 高清视频免费观看一区二区| 亚洲精品国产成人久久av| 夜夜爽夜夜爽视频| 18禁裸乳无遮挡动漫免费视频 | 菩萨蛮人人尽说江南好唐韦庄| 成人亚洲精品av一区二区| 哪个播放器可以免费观看大片| 日本黄色片子视频| 免费高清在线观看视频在线观看| 久久精品夜色国产| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 亚洲国产色片| 我的老师免费观看完整版| 男人爽女人下面视频在线观看| 国产免费一级a男人的天堂| 高清欧美精品videossex| 亚洲第一区二区三区不卡| 亚洲最大成人手机在线| av.在线天堂| 春色校园在线视频观看| 国产老妇女一区| 一级毛片我不卡| 伦理电影大哥的女人| 亚洲aⅴ乱码一区二区在线播放| 特级一级黄色大片| 听说在线观看完整版免费高清| 免费av观看视频| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 舔av片在线| 国产毛片在线视频| 欧美性猛交╳xxx乱大交人| 中国美白少妇内射xxxbb| 青春草亚洲视频在线观看| 91精品一卡2卡3卡4卡| 在线观看国产h片| 在线播放无遮挡| 99九九线精品视频在线观看视频| kizo精华| 综合色丁香网| 国产一区二区三区综合在线观看 | 亚洲自拍偷在线| 亚洲精品456在线播放app| 欧美日韩视频精品一区| 蜜桃亚洲精品一区二区三区| 美女主播在线视频| 丝瓜视频免费看黄片| 国产精品av视频在线免费观看| 亚洲国产精品国产精品| 少妇人妻久久综合中文| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件| 亚洲精品一区蜜桃| 久久久久久久久大av| 久久久久久久久久久丰满| 久久久成人免费电影| 日日啪夜夜爽| 一本色道久久久久久精品综合| 天堂网av新在线| 夫妻午夜视频| 人妻一区二区av| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 一个人看的www免费观看视频| 欧美日韩国产mv在线观看视频 | 日韩欧美 国产精品| 少妇人妻精品综合一区二区| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 欧美高清性xxxxhd video| 七月丁香在线播放| 丝袜喷水一区| 色哟哟·www| 色5月婷婷丁香| 丝袜美腿在线中文| 老司机影院毛片| 老司机影院成人| 亚洲精品日韩在线中文字幕| 成年免费大片在线观看| 久久精品国产自在天天线| av黄色大香蕉| 国产亚洲91精品色在线| 国产精品人妻久久久久久| 日本av手机在线免费观看| 白带黄色成豆腐渣| 亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 久久久久国产精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 91精品国产九色| www.色视频.com| 中文字幕久久专区| 色哟哟·www| 伦精品一区二区三区| 久久韩国三级中文字幕| 夫妻性生交免费视频一级片| 色婷婷久久久亚洲欧美| 亚洲av国产av综合av卡| 晚上一个人看的免费电影| 一区二区av电影网| 18禁动态无遮挡网站| 18禁裸乳无遮挡动漫免费视频 | 自拍欧美九色日韩亚洲蝌蚪91 | 最近手机中文字幕大全| 成人毛片a级毛片在线播放| 少妇 在线观看| av免费观看日本| av黄色大香蕉| 有码 亚洲区| 一个人看视频在线观看www免费| 王馨瑶露胸无遮挡在线观看| 成人毛片60女人毛片免费| 三级国产精品片| 国产伦精品一区二区三区视频9| 欧美97在线视频|