• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于TiO2納米管陣列的高效正面透光型染料敏化太陽能電池的制備及其光電性能

    2014-10-18 05:27:52高素雯吳晚霞闕蘭芳吳季懷林建明黃妙良
    物理化學(xué)學(xué)報 2014年3期
    關(guān)鍵詞:福建廈門納米管敏化

    高素雯 蘭 章,2,3,* 吳晚霞 闕蘭芳 吳季懷,2,3 林建明,2,3 黃妙良,2,3

    (1華僑大學(xué)材料科學(xué)與工程學(xué)院,福建廈門 361021;2環(huán)境友好功能材料教育部工程中心,福建廈門 361021;3福建省高等教育功能材料重點實驗室,福建廈門 361021)

    1 Introduction

    Dye-sensitized solar cells(DSSCs)have been a researching focus among new types of solar cells since O′Regan and Gr?tzel first reported.1Compared with conventional silicon solar cells,DSSCs have an absolute advantage of low-cost and easy preparation.2,3Generally,the DSSC is composed of a dyesensitized photoanode,an electrolyte typically containing the iodine/iodide redox couple,and a counter electrode.4The photoanode is usually composed of TiO2nanoparticles(TNPs).5However,the TNPs based photoanodes have some drawbacks affecting the photovoltaic performance of DSSCs.For example,the existed random networks and large interfaces will result in serious charge recombination between electrons and iodide ions in the electrolyte;numerous boundaries among TNPs will trap electrons and induce short electron diffusion length.6To solve the problems,researchers have attempted to synthesize and utilize some ordered one-dimensional TiO2nanorods,7nanowires,8and nanotubes in DSSCs.9

    As a promising alternative to traditional TNPs based photoanodes in DSSCs,TiO2nanotubes(TNTs)have been attracting intensive interests.10Highly ordered,one-dimensional TNTs have been widely used in DSSCs,sensors,photocatalysis and water splitting.11-13Applied in DSSCs,TNTs have some outstanding properties.For one hand,one-dimensional TNTs can provide a vertical electron transport path which can effectively reduce charge recombination;for another hand,the less grain boundaries lead to higher electron mobility and faster electron transport speed compared with the TNPs based photoanodes.14However,mainly due to low surface area,the photovoltaic performance of TNTs based DSSCs is still much lower than that of the TNPs based DSSCs.One efficient way to increase the surface area of TNT membranes and further increase the photovoltaic performance of DSSCs is to form secondary or hierarchical structure.15,16However,the as-formed particle-connected secondary structure in the TNT membranes will partly destroy the fast ordered electron transport channels.Here,some improvements are carried out to fabricate highly photovoltaic performance of TNTs based DSSCs through maintaining the fast ordered electron transport channels in the TNT membranes and increasing surface roughness for enhancing dye loading amounts at the same time.

    2 Experimental

    2.1 Materials

    All solvents and reagents were of AR grade quality and were used as received.2-propanol,concentrated nitric acid(65%(w)aqueous solution),ethanol,ethylene glycol,ammonium fluoride,hydrofluoric acid,H2O2(30%(w)aqueous solution),tetra-n-butyl titanate,acetic acid,acetonitrile,titanium tetrachloride,tetrabutyl ammonium iodide,4-tert-butyl pyridine,sodium iodide,iodine,and H2PtCl6·6H2O were purchased from Sinopharm Chemical Reagent Co.Ltd.,China.Ti-foils(0.2 mm thick,99%(w)purity)were purchased from Baoji Yunjie Metal Production Co.Ltd.Conductive glasses FTO glasses(fluorine doped tin oxide over-layer,sheet resistance 15 Ω·□-1)were purchased from Nippon Sheet Glass Co.JP.N719 dye(Ru[LL'-(NCS)2],L=2,2'-bipyridyl-4,4'-dicarboxylic acid,L'=2,2'-bipyridyl-4,4'-ditetrabutylammonium carboxylate)from Dye sol.

    2.2 Preparation of TiO2nanotube membranes

    Ti foils(2 cm×3 cm)were treated with ultrasonic cleanser in deionized water,2-propanol,and ethanol for 5 min,respectively,and then rinsed with ethanol and dried at room temperature.The cleaned Ti foils were polished in a solution containing H2O(50%(volume fraction)),concentrated nitric acid(50%(volume fraction)),and NH4F(1.7%(w)vs the total weight of H2O and concentrated nitric acid).The polished Ti foils were subjected to a two-step anodization in electrolyte containing ethylene glycol,H2O(0.5%(volume fraction)vs ethylene glycol),and ammonium fluoride(0.25%(w)vs ethylene glycol)at room temperature.Namely,the polished Ti foils were firstly anodized at 60 V for 4 h.After thermally treated at 250°C for 2 h and cooled down to room temperature,they were anodized again at 60 V for 5 min.After two-step anodization,the Ti foils were rinsed with ethanol,dried at room temperature,and then immersed into H2O230%(w)aqueous solution for 1 h to detach the TNT membranes.

    2.3 Preparation of photoanodes and assembling of front-side illuminated dye-sensitized solar cells

    The detached TNT membranes about 12.5 μm were incised into several pieces with area of 0.1 cm2(0.25 cm×0.4 cm)and adhered to FTO glasses using the paste containing 10-20 nm anatase TiO2nanoparticles prepared with the same method reported in the reference.17The thickness of the TiO2adhesive under-layer was about 1 μm.After sintered at 450 °C for 30 min,the TNT photoanodes were further treated with HF,TiCl4,and HF combining with TiCl4.The details are as follows.HF treatment:the TNT photoanodes were dipped in 0.35%(volume fraction)HF aqueous solution at room temperature for 1 h,and then sintered again at 450°C for 30 min.TiCl4treatment:the TNT photoanodes were dipped in 0.05 mol·L-1TiCl4aqueous solution at 90 °C for 30 min,and then sintered again at 450 °C for 30 min.HF combining with TiCl4treatments:the TNT photoanodes were treated with HF solution and TiCl4solution with the methods as above mentioned in sequence.The as-prepared TNT photoanodes were sensitized in 0.25 mmol·L-1anhydrous ethanol solution of N719 dye for 24 h at room temperature.The sensitized TNT photoanodes were rinsed with anhydrous ethanol and dried in air.Pt counter electrode was prepared with the same method reported in the reference.18The DSSC was assembled as follows.Firstly,a drop of electrolyte was dripped into the sensitized TNT photoanode,and then a piece of Pt counter electrode was placed above the photoanode.Secondly,the two electrodes were clipped together and a cyanoacrylate adhesive was used as sealant to seal the cell.Bisphenol A epoxy resin was used in a further sealing process.The liquid electrolyte contained 0.4 mol·L-1sodium iodide,0.1 mol·L-1tetrabutyl ammonium iodide,0.5 mol·L-14-tert-butylpyridine,and 0.05 mol·L-1iodine in acetonitrile solution.

    2.4 Measurements

    The surface morphologies and thickness of TNT membranes were characterized by a field emission scanning electron microscopy(FESEM,S-4800,HITACHI,Japan).X-ray diffraction(XRD)measurements were carried out with a Bruker D8 ADVANCE(Germany),using Cu Kα1radiation(λ=0.15418 nm).A UV-Vis 2550 spectrophotometer(Shimadzu,Japan)was employed to measure UV-Vis absorption and reflectance spectra.Electrochemical impedance spectroscopy(EIS)measurements were performed using a CHI 660 C electrochemical workstation(CH Instrument Inc.,USA).The impedance spectra were analyzed by an equivalent circuit model interpreting the characteristics of DSSCs with Zview software.19Photovoltaic tests were carried out by measuring photocurrent-voltage(I-V)characteristic curves under simulated AM 1.5G solar illumination at 100 mW·cm-2from a xenon arc lamp(CHFXM500,Trusttech Co.,Ltd,China)in ambient atmosphere and recorded with a CHI 660 C electrochemical workstation.All of the samples were measured three times and the average data were taken.Incident-photon-to-current conversion efficiency(IPCE)curves were measured as a function of wavelength from 300 to 800 nm using the Newport IPCE system(Newport,USA).

    3 Results and discussion

    Fig.1 shows X-ray diffraction patterns of TNT membranes treated with HF and TiCl4solutions,respectively,and the original non-treated sample after sintered at 450°C for 30 min.The standard 2θcharacteristic peaks of anatase TiO2according to the JCPDS#21-1272 are at 25.3°,37.55°,47.85°,53.75°,55.05°,and 62.35°,which are all existed in the three samples,so the crystal structures of the samples are all anatase.20The diffraction intensity of HF solution treated sample is stronger than the other two samples,so its crystallinity is higher than the others.

    Fig.2 shows SEM images of top and cross-sectional views of TNT membranes without and with HF,TiCl4,and HF combining with TiCl4treatments.It is seen that the non-treated TNT membrane is composed with highly ordered TNT array with smooth surfaces.After HF treatment,the top ends of former individual TNTs are connected together to form a thin porous layer on up-side of the membrane;and the original structure of ordered TNT walls does not obviously change except for a little rougher.However,after TiCl4or HF combining with TiCl4treatments the morphologies of TNT membranes are changed significantly compared with that of the non-treated TNT membrane.Firstly,the porous top-side morphology disappears and is substituted by a compact layer composed with nanoparticles.Secondly,there appear many nanoparticles both on the inner and outer surfaces of TNT walls.Comparing Fig.2(e,f)and Fig.2(g,h),one can see that the nanoparticles on the top-side of the membrane in HF combining with TiCl4treated sample are bigger than the others.

    Fig.1 X-ray diffraction patterns of TNT membranes after sintered at 450°C for 30 min

    Fig.2 SEM images of top and cross-sectional views of TNT membranes

    Fig.3 SEM images of back-side views of TNT membranes

    Fig.3 shows SEM images of back-side view of TNT membranes as prepared and corroded by 30%(w)H2O2aqueous solution and the cross-sectional image of TNT photoanode.One can observe that the back-side of TNT membrane is composed with ordered close-end semisphere-like TNT layer by the secondary anodization.Due to the miss of thermal treatment,the formed secondary TNT layer can be easily corroded by H2O2reagent.21From Fig.3(b,c),we can see that the thin TNTs under layer disappear after H2O2corrosion;and the newly formed under layer is porous,which is beneficial for strongly adhered to FTO glasses with TiO2nanoparticle paste.Moreover,the through structure as shown in Fig.3(d)can provide a direct electron transport channel to FTO glasses by omitting the closeend under layer in the membrane,and improve the penetrability of electrolyte in the photoanode.22

    Fig.4 UV-Vis diffused reflectance spectra of TNT membranes(A);absorption(B)and LHE(C)spectra of TNT photoanodes

    Fig.4(A,B)shows the UV-Vis diffused reflectance spectra of TNT membranes and absorption spectra of TNT photoanodes.The light scattering ability of the TNT membranes is improved obviously after HF and TiCl4treatments as shown in Fig.4(A).The changed top-side morphologies and the increased rough-ness of the TNT walls as discussed above mainly response for the changed diffused reflectance of the TNT membranes.From Fig.4(B),it is seen that the treated samples all show enhanced light absorbance compared with the non-treated one.The increased roughness of TNTs can increase dye-loading amounts(as listed in Table 1),resulting in the enhanced light absorbance in the short-wavelength region(300-570 nm);and the increased light scattering ability of the TNT membranes is mainly responsible for the enhanced light absorbance in the longwavelength region(570-800 nm).23The light harvesting efficiency(LHE)[LHE(λ)=1-10-ABS(λ),where ABS(λ)is absorbance of the photoanodes of the samples]shown in Fig.4(C)can reflect the effects of the treatments more directly.24

    Photovoltaic performance of DSSCs based on TNT photoanodes with different treatments is presented in Fig.5,and the corresponding parameters:short-circuit current density(Jsc),open-circuit voltage(Voc),fill factor(FF),and power conversion efficiency(PCE)are listed in Table 1.We can see that the values of Jscof DSSCs with the treated photoanodes are all improved compared with the original non-treated one;and the TiCl4treatment shows higher efficiency in enhancing Jscthan that of HF treatment.Moreover,by HF combining with TiCl4treatments,Jscof the DSSC can further attain to a higher value.As aforementioned,the increased dye-loading amounts and light harvesting efficiency are the main reasons for the enhanced Jsc,which can be verified by measuring the IPCE performance of the DSSCs.

    As shown in Fig.6(A),one can observe that the DSSCs with the treated photoanodes show enhanced IPCE;and the change tendencies are consistent with that of Jsc.The absorbed-photonto-current conversion efficiency(APCE),which is derived from the IPCE and LHE[APCE(%)=IPCE(%)/LHE(%)],24,25is also shown in Fig.6(B)to more directly demonstrate the im-proved photon-to-electron conversion ability of DSSCs with the treated photoanodes.From the data,it is seen that TiCl4treatment can efficiently enhance the APCE of the DSSC in all wavelength region;and by combining with HF treatment,a higher APCE is obtained.The TiCl4and HF combining with TiCl4treated samples have maximum APCE about 84.90%at 510 nm and 89.55%at 530 nm,respectively.Moreover,the two samples also show high APCE(exceeding 20%)in the near-infrared long-wavelength region(700-770 nm).However,the DSSC with non-treated one shows a lower APCE(below 10%)in the same wavelength region.

    Table 1 Photovoltaic parameters of DSSCs as shown in Fig.5

    Fig.5 Photocurrent density-voltage curves of DSSCs based on TNT photoanodes

    From the photovoltaic parameters of the DSSCs presented in Table 1,it is found that the changes of Vocare small;whereas the values of FF are decreased obviously after treatments.The reason may be owing to the increased density of the TNT membranes by fitting the new generated TiO2nanoparticles,which results in hindering the deep penetration of electrolyte into TNTs and enhancing the resistance of the DSSCs.Even so,owing to the largely enhanced Jsc,the PCE of the DSSCs with the treated photoanodes is still improved.The best PCE of the DSSCs can attain to 7.30%by HF combining with TiCl4treatments,with 35.69%enhancement compared with the non-treated DSSC(5.38%).

    Fig.6 IPCE(A)and APCE(B)spectra of DSSCs based on TNT photoanodes

    Fig.7 Nyquist plots of DSSCs based on TNT photoanodes at 0.6 V applied forward bias under dark condition(A)and the equivalent circuit model(B)

    The EIS measurements are carried out to deeply detect the electron transport and kinetic properties in the DSSCs with non-treated and treated TNT photoanodes as shown in Fig.7(A).A transmission line model(Fig.7(B))is used to describe the kinetic processes of the DSSCs.The corresponding parameters:charge transport resistance Rtr(Rtr=rtrL),interfacial charge recombination resistance Rr(Rr=rct/L),distributed chemical capacitance Cu(Cu=cuL),electron lifetime τn(τn=RrCu),effective electron diffusion length Ln[Ln=L(Rr/Rtr)0.5],and collection efficiency ηcol=Rr/(Rr+Rtr)are summarized in Table 2(where L is the thickness of the TNT membrane).26

    From the data,one can observe that HF treatment can suppress the recombination reaction efficiently(due to the obviously increased Rrcompared with the non-treated one),so the ηcoland Lnincrease,resulting in the improved photovoltaic performance of the DSSC.For TiCl4treatment,the value of Rris increased greatly.Owing to the increased value of Rtrat the same time,the enhancements of ηcoland Lnare little lower than that of HF treated sample,whereas they are still higher thanthat of the non-treated one,so the DSSC can generate high Jscby combining with the largely increasedτn.Using HF combining with TiCl4treatments,the values of EIS key parameters such as Rr,ηcol,Ln,and τnare all further enhanced,so the PCE of the DSSC can attain to a higher value.It also can be seen that the TiCl4and HF combining with TiCl4treated samples show higher Rtrthan that of the non-treated one,which may result in lower values of FF.The values of Cu,reflecting the surface area variation,are increased in the DSSCs with treated TNT photoanodes,which is consistent with the increased roughness of the TNTs.

    Table 2 Parameters determined by fitting the EIS experimental data to the equivalent circuit shown in Fig.7

    4 Conclusions

    High efficiency front-side illuminated dye-sensitized solar cells based on ordered TNTs have been successfully prepared.It is found that the high temperature sintering process can avoid damage of the ordered TNTs by HF treatment and maintain the fast electron transport channels in the membranes.Following with HF,TiCl4,and HF combining with TiCl4treatments,the TNTs become rougher,resulting in the increased dye loading amounts,light scattering ability,and light harvesting efficiency,which are all beneficial for improving the IPCE of DSSCs.The EIS analysis reveals that some key parameters describing the kinetic processes of DSSCs are made better after the HF or TiCl4treatment,especially the sample treated with HF combining with TiCl4,which can attain to the highest power conversion efficiency about 7.30%,with 35.69%enhancement compared with the non-treated DSSC(5.38%).

    (2)Bella,F.;Bongiovanni,R.;Kumar,R.S.;Kulandainathan,M.A.;Stephanc,A.M.J.Mater.Chem.A 2013,1,9033.doi:10.1039/c3ta12135f

    (3)Xin,X.;He,M.;Han,W.;Jung,J.;Lin,Z.Angew.Chem.Int.Edit.2011,50,11739.doi:10.1002/anie.201104786

    (4)Gr?tzel,M.Nature 2001,414,338.doi:10.1038/35104607

    (5)Shu,W.;Liu,Y.;Peng,Z.;Chen,K.;Zhang,C.;Chen,W.J.Alloy.Compd.2013,563,229.doi:10.1016/j.jallcom.2013.02.086

    (6)Frank,J.;Kopidakis,N.;Lagemaat,J.Coord.Chem.Rev.2004,248,1165.doi:10.1016/j.ccr.2004.03.015

    (7)(a)Liu,R.H.;Zhang,S.;Xia,X.Y.;Yun,D.Q.;Bian,Z.Q.;Zhao,Y.L.Acta Phys.-Chim.Sin.2011,27,1701.[劉潤花,張 森,夏新元,云大欽,卞祖強,趙永亮.物理化學(xué)學(xué)報,2011,27,1701.]doi:10.3866/PKU.WHXB20110734(b)Lan,Z.;Wu,J.H.;Lin,J.M.;Huang,M.L.J.Inorg.Mater.2011,26,119.[蘭 章,吳季懷,林建明,黃妙良.無機材料學(xué)報,2011,26,119.]

    (8)(a)Xiao,Y.M.;Wu,J.H.;Yue,G.T.;Lin,J.M.;Huang,M.L.;Fan,L.Q.;Lan,Z.Acta Phys.-Chim.Sin.2012,28,578.[肖堯明,吳季懷,岳根田,林建明,黃妙良,范樂慶,蘭 章.物理化學(xué)學(xué)報,2012,28,578.]doi:10.3866/PKU.WHXB201201032(b)Feng,X.;Shankar,K.;Varghese,O.K.;Paulose,M.T.;Latempa,J.;Grimes,C.A.Nano Lett.2008,8,3781.

    (9)(a)Zhang,Z.Y.;Sang,L.X.;Sun,B.;Zhang,X.M.;Ma,C.F.Acta Phys.-Chim.Sin.2010,26,2935. [張知宇,桑麗霞,孫 彪,張曉敏,馬重芳.物理化學(xué)學(xué)報,2010,26,2935.]doi:10.3866/PKU.WHXB20101131(b)Hyeokapark,J.;Guakang,M.Chem.Commun.2008,2867.

    (10)(a)Li,H.H.;Chen,R.F.;Ma,Z.;Zhang,S.L.;An,Z.F.;Huang,W.Acta Phys.-Chim.Sin.2011,27,1017.[李歡歡,陳潤鋒,馬 琮,張勝蘭,安眾福,黃 維.物理化學(xué)學(xué)報,2011,27,1017.]doi:10.3866/PKU.WHXB20110514(b)Mor,G.K.;Shankar,K.;Paulose,M.;Varghese,O.K.;Grimes,G.A.Nano Lett.2006,6,215.

    (11)Jun,Y.;Park,J.H.;Kang,M.G.Chem.Commun.2012,48,6456.doi:10.1039/c2cc30733b

    (12)(a)Su,Y.L.;Li,Y.;Du,Y.X.;Lei,L.C.Acta Phys.-Chim.Sin.2011,27,939.[蘇雅玲,李 軼,杜瑛珣,雷樂成.物理化學(xué)學(xué)報,2011,27,939.]doi:10.3866/PKU.WHXB20110401(b)Chang,W.T.;Hsueh,Y.C.;Huang,S.H.;Liu,K.I.;Kei,C.C.;Perng,T.P.J.Mater.Chem.A 2013,1,1987.

    (13)Zhang,Z.;Wang,P.Energy Environ.Sci.2012,5,6506.doi:10.1039/c2ee03461a

    (14)Kuang,D.;Brillet,J.;Chen,P.;Takata,M.;Uchida,S.;Miura,H.;Sumioka,K.;Zakeeruddin,S.M.;Gr?tzel,M.ACS Nano 2008,2,1113.doi:10.1021/nn800174y

    (15)Zhang,T.;Hu,X.;Fang,M.;Zhang,L.;Wang,Z.CrystEngComm 2012,14,7656.doi:10.1039/c2ce25323b

    (16)Tao,L.;Xiong,Y.;Liu,H.;Shen,W.J.Mater.Chem.2012,22,7863.doi:10.1039/c2jm00005a

    (17)Lan,Z.;Wu,J.H.;Lin,J.M.;Huang,M.L.J.Mater.Chem.2011,21,15552.doi:10.1039/c1jm12812d

    (18)Lan,Z.;Wu,J.H.;Lin,J.M.;Huang,M.L.J.Mater.Chem.2012,22,3948.doi:10.1039/c2jm15019k

    (19)Wang,Q.;Moser,J.E.;Gr?tzel,M.J.Phys.Chem.B 2005,109,14945.doi:10.1021/jp052768h

    (20)Lan,Z.;Wu,J.H.;Lin,J.M.;Huang,M.L.J.Mater.Sci.:Mater.Electron.2010,21,833.doi:10.1007/s10854-009-0003-4

    (21)Choi,J.;Park,S.H.;Kwon,Y.S.;Lim,J.;Song,I.Y.;Park,T.Chem.Commun.2012,48,8748.doi:10.1039/c2cc33629d

    (22)Yip,C.T.;Guo,M.;Huang,H.;Zhou,L.;Wang,Y.;Huang,C.Nanoscale 2012,4,448.doi:10.1039/c2nr11317a

    (23)Huang,F.;Chen,D.;Zhang,X.L.;Caruso,R.A.;Cheng,Y.B.Adv.Funct.Mater.2010,20,1301.doi:10.1002/adfm.v20:8

    (24)Yanagida,M.;Yamaguchi,T.;Kurashige,M.;Hara,K.;Katoh,R.;Sugihara,H.;Arakawa,H.Inorg.Chem.2003,42,7921.doi:10.1021/ic034674x

    (25)Wang,Z.S.;Li,F.Y.;Huang,C.H.J.Phys.Chem.B 2001,105,9210.doi:10.1021/jp010667n

    (26)Bisquert,J.;Belmonte,G.G.;Santiago,F.F.;Ferriols,N.S.;Bogdanoff,P.;Pereira,E.C.J.Phys.Chem.B 2000,104,2287.doi:10.1021/jp993148h

    猜你喜歡
    福建廈門納米管敏化
    開學(xué)第一課
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻計量學(xué)分析
    最近鄰弱交換相互作用對spin-1納米管磁化強度的影響
    福建廈門
    雕塑藝術(shù)在食品造型中的應(yīng)用研究
    耦聯(lián)劑輔助吸附法制備CuInS2量子點敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    二氧化鈦納米管的制備及其應(yīng)用進展
    TiO2納米管負載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    亚洲人成伊人成综合网2020| 国内久久婷婷六月综合欲色啪| 国产精品野战在线观看| 黄色成人免费大全| 丁香欧美五月| 国产一区二区亚洲精品在线观看| 亚洲精品久久国产高清桃花| 亚洲av不卡在线观看| 中文字幕av在线有码专区| 亚洲人成网站在线播放欧美日韩| 国产精品香港三级国产av潘金莲| 99精品欧美一区二区三区四区| 一个人观看的视频www高清免费观看| 亚洲国产色片| 亚洲人成电影免费在线| 在线播放国产精品三级| 久久久久精品国产欧美久久久| 特级一级黄色大片| 神马国产精品三级电影在线观看| 99精品欧美一区二区三区四区| 欧美xxxx黑人xx丫x性爽| 久久精品国产99精品国产亚洲性色| 成人欧美大片| 精品一区二区三区人妻视频| 色吧在线观看| 69av精品久久久久久| 成人鲁丝片一二三区免费| 久久久久久久久中文| 欧美日韩黄片免| 高清日韩中文字幕在线| 国产伦人伦偷精品视频| 午夜激情福利司机影院| 成人欧美大片| 好男人电影高清在线观看| 久久精品影院6| 99riav亚洲国产免费| 亚洲国产精品久久男人天堂| 成人国产综合亚洲| 五月伊人婷婷丁香| 一个人免费在线观看电影| 国产69精品久久久久777片| 久久久久久久久中文| 嫩草影视91久久| 少妇的逼好多水| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| av福利片在线观看| 男女下面进入的视频免费午夜| 久久6这里有精品| 免费看光身美女| 午夜福利在线在线| 少妇的逼好多水| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕 | 麻豆成人av在线观看| 热99在线观看视频| 亚洲国产精品成人综合色| 老司机福利观看| 日本熟妇午夜| 18禁黄网站禁片免费观看直播| 免费看美女性在线毛片视频| 国产69精品久久久久777片| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| a级毛片a级免费在线| av女优亚洲男人天堂| 啦啦啦韩国在线观看视频| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 午夜精品一区二区三区免费看| 身体一侧抽搐| 老汉色av国产亚洲站长工具| 别揉我奶头~嗯~啊~动态视频| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| 日韩欧美三级三区| 久9热在线精品视频| 免费观看精品视频网站| 久久久久久人人人人人| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 日韩欧美在线乱码| 久久人人精品亚洲av| 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 婷婷亚洲欧美| 久久久久久久久大av| 午夜老司机福利剧场| 国产aⅴ精品一区二区三区波| 日本成人三级电影网站| 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽| 男女床上黄色一级片免费看| 男人的好看免费观看在线视频| 久久国产精品人妻蜜桃| 精品一区二区三区视频在线观看免费| 老汉色av国产亚洲站长工具| 操出白浆在线播放| 18+在线观看网站| 无遮挡黄片免费观看| av视频在线观看入口| 色av中文字幕| 免费av不卡在线播放| 亚洲激情在线av| 久久天躁狠狠躁夜夜2o2o| 久久伊人香网站| 久久国产精品影院| 亚洲av美国av| 操出白浆在线播放| 国产成+人综合+亚洲专区| 美女免费视频网站| 母亲3免费完整高清在线观看| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区 | 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 欧美日本视频| av国产免费在线观看| 丝袜美腿在线中文| 中文在线观看免费www的网站| 日本成人三级电影网站| 哪里可以看免费的av片| 51国产日韩欧美| 国产成+人综合+亚洲专区| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 国产aⅴ精品一区二区三区波| 国产极品精品免费视频能看的| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 国产成+人综合+亚洲专区| www日本黄色视频网| 天天躁日日操中文字幕| 中文字幕人妻熟人妻熟丝袜美 | 一进一出抽搐动态| 国产成人啪精品午夜网站| 婷婷亚洲欧美| 男女午夜视频在线观看| 亚洲狠狠婷婷综合久久图片| 欧美一级毛片孕妇| 九九在线视频观看精品| 有码 亚洲区| 国产日本99.免费观看| 国产午夜精品论理片| 亚洲美女视频黄频| 成年人黄色毛片网站| 色综合婷婷激情| 国产一区在线观看成人免费| 日韩高清综合在线| 精品国内亚洲2022精品成人| 精品人妻1区二区| 91在线精品国自产拍蜜月 | 国产精品日韩av在线免费观看| 久久久国产成人精品二区| 欧美激情久久久久久爽电影| 国产精品免费一区二区三区在线| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 色吧在线观看| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 波多野结衣高清作品| 一级黄片播放器| 亚洲无线观看免费| eeuss影院久久| 色精品久久人妻99蜜桃| 国产精品野战在线观看| 国产不卡一卡二| 男插女下体视频免费在线播放| 午夜免费男女啪啪视频观看 | 国产色爽女视频免费观看| 老熟妇仑乱视频hdxx| 国产伦人伦偷精品视频| xxx96com| 久久国产乱子伦精品免费另类| 天天躁日日操中文字幕| 99热精品在线国产| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 欧美成人性av电影在线观看| 日韩欧美在线二视频| 不卡一级毛片| 久久久精品欧美日韩精品| 法律面前人人平等表现在哪些方面| 欧美日韩综合久久久久久 | 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 精品99又大又爽又粗少妇毛片 | 欧美日韩瑟瑟在线播放| 亚洲av免费在线观看| 色视频www国产| 婷婷精品国产亚洲av| 老汉色av国产亚洲站长工具| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 色综合站精品国产| 日韩欧美在线二视频| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 国产精品久久视频播放| 午夜视频国产福利| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 精品福利观看| 亚洲国产欧美人成| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 在线观看美女被高潮喷水网站 | 国产亚洲精品综合一区在线观看| 亚洲美女视频黄频| 精品无人区乱码1区二区| 一个人看的www免费观看视频| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲av一区麻豆| 在线观看免费视频日本深夜| 免费大片18禁| 天堂网av新在线| 国产av在哪里看| 国模一区二区三区四区视频| 国产亚洲精品综合一区在线观看| 黄色女人牲交| 99久久精品国产亚洲精品| 在线天堂最新版资源| 听说在线观看完整版免费高清| 国产精品永久免费网站| 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影| 精品国内亚洲2022精品成人| 国产伦精品一区二区三区视频9 | 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月 | 亚洲七黄色美女视频| 成人一区二区视频在线观看| 日本 av在线| 亚洲人与动物交配视频| 亚洲成人免费电影在线观看| 欧美成人性av电影在线观看| 人人妻人人看人人澡| 99久久精品热视频| 又爽又黄无遮挡网站| 1000部很黄的大片| 亚洲欧美日韩卡通动漫| 国产亚洲精品综合一区在线观看| 男女床上黄色一级片免费看| 99久国产av精品| 色哟哟哟哟哟哟| 夜夜爽天天搞| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 一卡2卡三卡四卡精品乱码亚洲| 1000部很黄的大片| 欧美成人一区二区免费高清观看| 内射极品少妇av片p| 波多野结衣高清作品| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 久久中文看片网| 亚洲精品456在线播放app | 一级黄色大片毛片| 国产伦人伦偷精品视频| 少妇的逼水好多| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式 | 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 两个人看的免费小视频| 少妇丰满av| xxxwww97欧美| 一进一出抽搐gif免费好疼| 免费看十八禁软件| 国产精品一区二区三区四区免费观看 | 禁无遮挡网站| 日韩精品中文字幕看吧| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 国内揄拍国产精品人妻在线| 色视频www国产| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 欧美+日韩+精品| 99久久精品热视频| 日韩亚洲欧美综合| 婷婷精品国产亚洲av| 波多野结衣高清作品| 亚洲人与动物交配视频| av在线蜜桃| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 一夜夜www| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| 成人18禁在线播放| 在线观看一区二区三区| 少妇的丰满在线观看| 日韩精品青青久久久久久| 男人和女人高潮做爰伦理| av福利片在线观看| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 国产探花极品一区二区| 18禁在线播放成人免费| 麻豆一二三区av精品| 99热只有精品国产| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 在线看三级毛片| 国产免费一级a男人的天堂| 十八禁人妻一区二区| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 国产激情偷乱视频一区二区| 天堂动漫精品| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| 久久久国产成人精品二区| 波多野结衣高清无吗| av女优亚洲男人天堂| 精品国产亚洲在线| 日本一二三区视频观看| 久久国产精品影院| 免费搜索国产男女视频| 欧美精品啪啪一区二区三区| 精品免费久久久久久久清纯| 在线播放无遮挡| 国产黄a三级三级三级人| 国产成人a区在线观看| 久久99热这里只有精品18| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 色综合欧美亚洲国产小说| 久久精品人妻少妇| 在线观看日韩欧美| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 免费av不卡在线播放| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 亚洲一区二区三区不卡视频| 啦啦啦韩国在线观看视频| ponron亚洲| 亚洲七黄色美女视频| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 深爱激情五月婷婷| 国产久久久一区二区三区| 全区人妻精品视频| 宅男免费午夜| 精品欧美国产一区二区三| 亚洲中文日韩欧美视频| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 少妇的逼水好多| 午夜a级毛片| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 最近视频中文字幕2019在线8| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 男女床上黄色一级片免费看| 一卡2卡三卡四卡精品乱码亚洲| 国产高潮美女av| 国产精品久久久久久人妻精品电影| 99热这里只有是精品50| 亚洲精品在线观看二区| 少妇的逼好多水| 18禁黄网站禁片午夜丰满| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 午夜激情欧美在线| 国产精品99久久99久久久不卡| 在线免费观看的www视频| 亚洲精华国产精华精| 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 草草在线视频免费看| 国产淫片久久久久久久久 | 欧美另类亚洲清纯唯美| avwww免费| 色视频www国产| 国内少妇人妻偷人精品xxx网站| 天天躁日日操中文字幕| 亚洲专区国产一区二区| 国产亚洲精品久久久com| 欧美日韩黄片免| 久久久国产成人免费| 午夜福利高清视频| aaaaa片日本免费| 亚洲自拍偷在线| 首页视频小说图片口味搜索| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 少妇丰满av| 久久伊人香网站| 久久精品国产自在天天线| 久久草成人影院| 亚洲精品成人久久久久久| 精品日产1卡2卡| 草草在线视频免费看| 天堂影院成人在线观看| 波多野结衣高清作品| av专区在线播放| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| а√天堂www在线а√下载| 手机成人av网站| 亚洲精品影视一区二区三区av| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 国产精品综合久久久久久久免费| 国产中年淑女户外野战色| 午夜福利18| 亚洲avbb在线观看| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 国产精品香港三级国产av潘金莲| 亚洲第一电影网av| 男女床上黄色一级片免费看| 色综合婷婷激情| 观看美女的网站| 成年版毛片免费区| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 美女高潮的动态| 在线观看一区二区三区| av黄色大香蕉| 男女做爰动态图高潮gif福利片| av黄色大香蕉| 女生性感内裤真人,穿戴方法视频| 9191精品国产免费久久| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 欧美日韩福利视频一区二区| 男女午夜视频在线观看| svipshipincom国产片| 俄罗斯特黄特色一大片| 日日夜夜操网爽| 91麻豆精品激情在线观看国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 变态另类丝袜制服| 一本综合久久免费| 亚洲黑人精品在线| 动漫黄色视频在线观看| 黄色片一级片一级黄色片| 国产男靠女视频免费网站| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| 国产高清有码在线观看视频| 日本黄色视频三级网站网址| 国产麻豆成人av免费视频| 成人三级黄色视频| 久久人妻av系列| 久久精品综合一区二区三区| 搞女人的毛片| 午夜福利在线观看吧| 两个人的视频大全免费| 亚洲成a人片在线一区二区| 少妇人妻一区二区三区视频| 国产aⅴ精品一区二区三区波| 国产三级黄色录像| 两性午夜刺激爽爽歪歪视频在线观看| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 91麻豆av在线| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影| 精品国产亚洲在线| av片东京热男人的天堂| 精品国产三级普通话版| xxx96com| 90打野战视频偷拍视频| 成人国产综合亚洲| 午夜精品久久久久久毛片777| 国产av在哪里看| svipshipincom国产片| 变态另类丝袜制服| 成人高潮视频无遮挡免费网站| 男插女下体视频免费在线播放| 日韩精品青青久久久久久| 校园春色视频在线观看| 国产欧美日韩一区二区三| 夜夜躁狠狠躁天天躁| 欧美性猛交╳xxx乱大交人| h日本视频在线播放| 亚洲国产色片| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区av网在线观看| 国产精品精品国产色婷婷| 成年版毛片免费区| 操出白浆在线播放| 男女下面进入的视频免费午夜| 高潮久久久久久久久久久不卡| 香蕉丝袜av| 午夜两性在线视频| 夜夜夜夜夜久久久久| 亚洲激情在线av| 色综合婷婷激情| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| 免费在线观看成人毛片| 国产主播在线观看一区二区| a级一级毛片免费在线观看| 亚洲七黄色美女视频| 亚洲中文字幕一区二区三区有码在线看| 非洲黑人性xxxx精品又粗又长| 很黄的视频免费| 亚洲片人在线观看| 麻豆一二三区av精品| 99久久无色码亚洲精品果冻| 一进一出抽搐gif免费好疼| 老司机福利观看| 少妇的逼好多水| 一个人看视频在线观看www免费 | av中文乱码字幕在线| 尤物成人国产欧美一区二区三区| 精品久久久久久久毛片微露脸| 欧美乱色亚洲激情| a在线观看视频网站| 国产av在哪里看| 一本精品99久久精品77| or卡值多少钱| 在线天堂最新版资源| 97超级碰碰碰精品色视频在线观看| 男女做爰动态图高潮gif福利片| 真人做人爱边吃奶动态| 久久精品91无色码中文字幕| 成人国产一区最新在线观看| 在线播放国产精品三级| 黄色视频,在线免费观看| 在线观看免费视频日本深夜| 桃色一区二区三区在线观看| 久久精品国产清高在天天线| 国产亚洲精品一区二区www| 日韩欧美精品免费久久 | 黄色视频,在线免费观看| 久久国产精品影院| 国产97色在线日韩免费| 国产高清视频在线观看网站| 又黄又爽又免费观看的视频| 国产精品美女特级片免费视频播放器| 男女做爰动态图高潮gif福利片| 在线国产一区二区在线| 高清毛片免费观看视频网站| 日本与韩国留学比较| xxx96com| 亚洲七黄色美女视频| 日韩欧美 国产精品| 欧美极品一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 国产精品1区2区在线观看.| 亚洲人成电影免费在线| 久久99热这里只有精品18| 在线播放无遮挡| 久久性视频一级片| eeuss影院久久| 看片在线看免费视频| 母亲3免费完整高清在线观看| 久久欧美精品欧美久久欧美| 九色国产91popny在线| 性色av乱码一区二区三区2| 不卡一级毛片| 国产精品久久电影中文字幕| 国产一区二区三区在线臀色熟女| 一区二区三区激情视频| 久久久久性生活片| 精品国产美女av久久久久小说| 亚洲成av人片在线播放无| 18禁裸乳无遮挡免费网站照片| 最好的美女福利视频网| 中文在线观看免费www的网站| 天美传媒精品一区二区| 午夜福利高清视频| 日本在线视频免费播放| 超碰av人人做人人爽久久 | 欧美激情在线99| 日韩免费av在线播放| 日本在线视频免费播放| 国内毛片毛片毛片毛片毛片| 12—13女人毛片做爰片一| 婷婷丁香在线五月| 欧美性猛交黑人性爽| 女同久久另类99精品国产91| 免费看日本二区| 变态另类丝袜制服| 国产老妇女一区| 亚洲第一欧美日韩一区二区三区| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 免费看日本二区| 欧美一区二区国产精品久久精品| 亚洲中文字幕日韩| 一卡2卡三卡四卡精品乱码亚洲| 亚洲狠狠婷婷综合久久图片| 色哟哟哟哟哟哟| www.熟女人妻精品国产| 国产黄色小视频在线观看| 国产高清视频在线播放一区| 级片在线观看| 最近最新中文字幕大全免费视频| 日本免费一区二区三区高清不卡| 制服人妻中文乱码| 成人午夜高清在线视频| 成人国产一区最新在线观看|