• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚乙烯吡咯烷酮輔助的水熱法合成形貌可控的銀納米結(jié)構(gòu)

    2014-06-23 06:53:02徐麗紅闞彩俠王長順施大寧
    物理化學學報 2014年3期
    關(guān)鍵詞:吡咯烷酮南京航空航天大學水熱法

    徐麗紅 闞彩俠,2,* 王長順 從 博 倪 媛 施大寧,*

    (1南京航空航天大學理學院應用物理系,南京211106;2南京航空航天大學,納智能材料器件教育部重點實驗室,南京211106)

    1 Introduction

    Metal nanostructures have been of extensive interest in many different areas because of their unique or improved electronic,catalytic,optical properties.1-5The synthesis of shapecontrolled metal nanocrystals has achieved great progress.The top-down solid-state methods,such as sol-gel,6molten salt,7physical grinding,and high energy ball milling,8,9etc.have taken the lead in industrial production of nanomaterials.But preparation cost of these methods is relatively expensive and products are not uniform in size and morphology.Solution-phase chemical approaches provide economic routes to obtain highquality nanomaterials in specified morphology.These include template-assistant deposition approach,10chemical reduction method,11-15irradiation-photoreduction processes.16-18Among these methods,the common chemical reduction method especially the polyol process,which is the most convenient,versatile,and low cost,is usually adopted for the synthesis of noble metal nanoparticles.By changing the preparation parameters in the system,all kinds of nanostructures with different morphologies can be obtained,and the morphology could be further well controlled through introducing surfactant.For example,polyvinylpyrrolidone(PVP)plays a remarkable important role to control the shapes of different nanostructures such as Ag nanowires,19,20Ag nanocubes,21and newly shaped Au nanoplates22etc.It is believed that the selective adsorption of surfactant molecules onto particular crystal facets of nanoparticles results in various morphologies due to different growth rates along different directions.23Moreover,surrounding environment of the reaction system does affect the properties of metal nanocrystals.Many research groups synthesize metal nanostructures mostly in oil bath which can afford uniform heat distribution under a controllable temperature.The reaction solution was placed in a vial or flask,capped as appropriate and heated with stirring.In such an open circumstance,oxygen plays a vital role in the formation of nanostructures.24,25

    Currently,Ag nanostructures are of great interest because of their unique microstructures,optical properties,and potential applications.Shape control provides one of the most powerful means to tailor the optical properties of metal nanostructures.The number,position,and intensity of surface plasma resonance(SPR)have a strong correlation with their exact morphology.The uniformity of size and monodispersity of nanoparticles are important physical parameters for both technological usage and foundational research.

    In this paper,we report a simple way for the synthesis of Ag nanostructures(nanowires and nanodecahedrons)with welldefined shapes by hydrothermal method in a 60 mL stainless steel autoclave.This hydrothermal synthesis process assisted by PVP provides a sealed,high-pressure surrounding.PVP polymers of various average molecular weight(MW)marked asK17,K30,K60,and,K90 are applied(Kis usually used to represent the characteristic value of relative viscosity of PVP solution.The larger MW of PVP,the higher relative viscosity of the PVP solution is).Based on the optical evolution and microscopy results,the effects of PVP and solvents(such as ethylene glycol(EG)and deionized water)on the morphology of Ag nanostructures are studied in detail.Plausible growth mechanisms can be proposed through analyzing the structural characteristics of Ag nanostructures as well as the role of PVP surfactants.

    2 Experimental

    2.1 Synthesis

    2.1.1 Materials

    Silver nitrate(AgNO3,99.8%,Sinopharm Chemical Reagent Co.,Ltd.),sodium chloride(NaCl,99.5%,Nanjing Chemical Reagent Co.,Ltd.),hydrochloric acid(HCl,37%,Sinopharm Chemical Reagent Co.,Ltd.),and ethylene glycol(EG,98%,Nanjing Chemical Reagent Co.,Ltd.)were used in this work.Polyvinylpyrrolidone(PVP,Sinopharm Chemical Reagent Co.,Ltd.)with various average MW values of 8000,40000,160000,and 360000 were chosen,which were marked asK17,K30,K60,andK90,respectively.All reagents were used without further purification.Water was purified using a MilliQ setup(QYFX,Chongqing Qianyan water treatment equipment Co.LTD.)for ultrapure water(18.25 MΩ·cm).

    2.1.2 Synthesis of Ag nanowires

    An improved hydrothermal PVP-directed polyol process was used to synthesize Ag nanowires.Firstly,10 mL EG,2 mL HCl(3 mmol·L-1solution in EG),6 mL PVP(0.15 mol·L-1in terms of the repeating unit,K30,K60,K90 solution respectively in EG)and 6 mLAgNO3(0.1 mol·L-1solution in EG)were respectively added into a 60 mL stainless steel autoclave and heated at 140°C for 15 h.The molar ratio(R)of PVPrepeatunitto AgNO3is 1.5.After cooling to room temperature naturally,the obtained suspensions were washed with acetone and deionized water by centrifugating for several times.

    2.1.3 Synthesis of Ag nanodecahedrons

    In a typical experiment,the reaction solution was prepared by dissolving 0.710 g of PVP(K17)and 0.068 g AgNO3in 40 mL deionized water(R=16).Then,the solution was transferred into the 60 mL stainless steel autoclave and heated at 195°C for 10 h,followed by cooling to room temperature naturally.After the hydrothermal reaction,the obtained suspensions were washed with deionized water and centrifugated for several times.

    2.2 Characterization

    The optical absorption spectra of the prepared samples were collected using a UV-Vis spectrophotometer(UV-6300)in thewavelength range of 200-1100 nm.For transmission electron microscopy(TEM,JEM-1010)analysis,the products were diluted with deionized water,and a droplet of the dispersions placed onto the carbon-coated copper grids.For field emissionscanning electron microscopic(FE-SEM,Nova NanoSEM 230-FEI)measurement,the condensed products were dispersed on copper sheets.All the samples were dried at room temperature.

    3 Results and discussion

    3.1 Ag nanowires

    Fig.1 shows the TEM images of synthesized silver nanowires.It is found that the aspect ratios of the obtained Ag nanowires increased with increasing the MW of PVP.Ag nanowires synthesized with PVP-K30 are not uniform in size and diameter,and a lot of nanocubes and other polyhedral nanostructures appear in the products,as presented in Fig.1(a).With the MW of PVP increasing,the yields of Ag nanowires increase greatly and only few particles could be observed in the products,as shown in Fig.1(b,c).The diameter of these Ag nanowires is quite uniform which is around 85 and 120 nm produced with the existence of PVP-K60 and PVP-K90,respectively.Fig.1(d)shows the typical products synthesized in the same condition except for the absence of HCl.The products are dominated by Ag nanoparticles and other polyhedral nanostructures with size larger than 100 nm,and no Ag nanowires can be seen no matter which PVP was used.We can see the application of HCl is important for the growth of Ag nanowires under the hydrothermal condition,which is quite different from that produced in an open atmosphere,as reported previously.26,27In an open atmosphere,polyhedral Ag nanostructures are the dominant products without the addition of HCl in the reaction system.

    Fig.1 TEM images of the synthesizedAg nanostructures using PVP of different molecular weights(MWs)

    Since Ag nanostructures with different shapes and sizes exhibit different SPR bands at different frequencies,we also carried out UV-Vis spectrum measurements for the samples.Fig.2 shows the optical absorption spectra of Ag colloid solutions synthesized using PVP of different MW values.All of the obtained products show the evident plasma peaks at~350 and~385 nm,which should be attributed to the quadrupole resonance and dipole resonance of the Ag nanowires,respectively.28-30For curve a,there is another obvious peak at~450 nm attributed to the SPR resonance of the polyhedral Ag nanostructures which indicates that the final products should be a mixture of Ag nanowires and polyhedral nanostructures.This is consistent with the results of TEM observations which contain nanocubes and other polyhedral nanostructures.Inset of Fig.2 shows the absorption spectra of Ag nanostructures obtained in the absence of HCl,all of which show one main SPR peak at~425 nm together with a weak absorption shoulder at~350 nm,belonging to Ag nanoparticles and other polyhedral nanostructures.31

    Meanwhile,we also explored the influence of the reaction temperature on the Ag nanostructures.Figs.3(a)and 3(b)show the optical absorption spectra of Ag colloid solution sampled at 160 and 180°C,respectively.With the reaction temperature rising,the absorption peak of the products synthesized by PVPK30 becomes wider and shifts to~420 nm.In the case of PVPK60,the absorption peak drops slowly at a higher temperature and even shows a weak shoulder peak at~410 nm when the temperature rises up to 180°C.As for PVP-K90,we can see red shift of the absorption peak atT=160°C and a new shoulder peak at~410 nm at 180 °C.We can conclude that more nanoparticles appear in the products with the reaction temperature rising that might attribute to a higher reaction rate.As we know,in such a polyol synthesis process,EG serves as solvent as well as reducing agent.To figure out the effect of EG,we replaced EG with deionized water as the solvent at 140°C with-out any other changes.The products were almost Ag nanoparticles in this case,although there is a weak absorption shoulder at~350 nm,as shown in Fig.3(c).When PVP-K60 and PVPK90 were used,only one resonance peak at~405 nm of Ag nanoparticles was observed in the absorption spectra.

    Fig.2 UV-Vis absorption spectra ofAg nanowires synthesized using PVPof different MWs

    Fig.3 UV-Vis absorption spectra ofAg nanostructures synthesized using PVPof different MWs under different conditions(in the presence of HCl)

    Furthermore,we carried our experiment by replacing HCl with NaCl in the same concentration(2 mL of 3 mmol·L-1solution in EG).The SEM images(Fig.4)of the products demonstrate that Ag nanowires are obtained with the application of NaCl.Meanwhile,the aspect ratios of Ag nanowires increase with the MW of PVP as well,as presented in Fig.4(a-c)that were respectively synthesized by PVP-K30,K60,andK90.One can also observe in Fig.4(d)that the Ag nanowires should be five-fold symmetry from the cross section.The UV-Vis absorption spectra(Fig.5)show that the absorption peak ofK60 is narrow and drops more quickly than the other two curves.Compared with Fig.2a,it is worth noting that Fig.5a does not show a peak at 450 nm.That might because of the absence of nanocubes in the products,as we can see in Fig.4(a),all of which are nanowires with some irregular nanoparticles.

    According to the above results,we can conclude that Clplays a critical role in fabricating Ag nanowires.With no Clwas applied,the chemical reactions of the growth and reduction processes are as follows:

    One plausible growth mechanism of Ag nanowires is that,at a high temperature,ethylene glycol can be oxidized to aldehyde(reaction(1))which reduces Ag+to Ag atoms(reaction(2))that will start to nucleate and grow into nanoparticles.At the same time,nitric acid was generatedin situdue to the generation of protons and could dissolve Ag solids into Ag+at high temperature again(reaction(3)).

    The introduction of Cl-could slow down reaction(2)through the formation of colloid AgCl.Therefore,in our synthesis,HCl or NaCl was used to introduce Cl-so as to decrease the concentration of free Ag+ions that will reduce the generation rate of Ag crystal which results in the generation of more small Ag nanoparticles as Ag sources for the formation of nanowires.Furthermore,Ag+ions can be released to the solution and reduced again when the solution is heated to a high temperature(140°C here).32,33It is known that the oxygen may etch multiply twinned seeds since defects inherently present insuch a structure and would provide active sites for oxidative dissolution.25Therefore,the sealed circumstance of the autoclave with little oxygen is benefit for the formation of multiply twinned structure which is required for wire growth.34,35

    Fig.4 FE-SEM images ofAg nanowires synthesized with PVPof different MWs by replacing HCl with NaCl

    Fig.5 UV-Vis absorption spectra ofAg nanowires synthesized with PVPof different MWs by replacing HCl with NaCl

    Bounded by five{111}facets at each end and five{100}facets at the side,the five-fold twinned Ag nanoparticles in the initial stage are of minimized surface-energy.36As we know that the growth morphology is often determined by the surface free energies under thermal equilibrium.However,crystal growth is usually far from the thermal equilibrium;thus,the shape is not characterized by minimizing the surface energy,but rather the growth rate of each face as determined by the kinetics.37It is commonly believed that PVP interacts more strongly with sliver atoms on the{100}facets than those on the{111}facets.38Once the five-fold twinned particles formed,PVP would selectively adsorb onto the{100}facets as a result that{100}facets are completely passivated.Hence,the reduced Ag atoms preferentially deposited onto the{111}facets leading to the anisotropic growth ofAg nanowires.36

    Moreover,as we know that PVP has the structure of polyvinyl skeleton with strong polar group(pyrrolidone ring),it has an affinity toward many chemicals to form coordinative compounds.The polar groups,such as the>C=O groups of PVP chain,can interact with metal ions and form coordinating complex.39The long-chain PVP has higher degree of polymerization compared with the short one,the average number of repeating units in one PVP macromolecule chainnis very high(7207,1802,and 522 respectively of PVP-K90,K60,andK30).Thus,there are more carbonyl groups in one PVP macromolecule and more Ag+coordinated along the long chain of PVP.Combining with our experiment,the heating process followed after all the reaction reagents were added into the stainless steel autoclave and maintained a period of time to heat up to the set temperature.That means Ag+might be reduced after combining with the long-chain PVP macromolecule.This induced the formation of long one-dimensional Ag nanostructures directly.So the previous interaction between Ag+and the PVP chains in the initial stage and the chain length of PVP both are critical factors to the synthesis of Ag nanowires.This interpretation seems more appropriate to explain our experimental results.

    3.2 Ag nanodecahedrons

    Fig.6(a,b)shows the TEM and SEM images for the typical samples of Ag nanodecahedrons,the mean edge length of which is~100 nm.There are also a small amount of nanorods and nanoplates in the products.Fig.6(c)shows a magnified TEM image of one Ag decahedron.It gives obvious evidence of the five-fold twinned structure of the Ag decahedron.We can clearly see the five truncated corners of the decahedrons and the twin boundaries between two neighboring{111}facets.Fig.6(d)is the UV-Vis absorption spectrum of the final products.The weak absorption shoulder located at~350,~415 nm and the broad peak of~510 nm are assigned to be the out-ofplane quadrupole,in-plane quadrupole,and dipole resonances of theAg nanostructures,respectively.40,41

    Since there are only two reagents(AgNO3and PVP-K17)in the synthesis of Ag decahedron,PVP acts as reducing agent as well as surface capping agent.With the presence of high PVP concentration(R=16),the reduction rate of Ag+increases in the closed system,and the rates of nuclei formation and crystal growth increase simultaneously.Under thermodynamic growth,stable five-twinned seeds which are of the lowest surface energy are more easily formed.It is well known that twin boundary is the locus of high energy where defects accumulate due to configurational misfit.42The defect zones in twinned seeds are most susceptible to an oxidative environment,with their atoms being attacked by the etchant,oxidizer,and dissolved into the solution.43While in our experiment,the defect zones are not easily etched because of little oxygen and protected by PVP in the sealed hydrothermal reaction system.The subsequent growth process of Ag decahedrons has been studied by many groups and substantially divided into two ways:fivefold twinned Ag seeds grow into Ag decahedrons uniformly and five tetrahedrons assemble into the Ag decahedrons.42,44Reactions in such a high-pressure and sealed autoclave,it is difficult to track the morphological evolution involved in the growth process.A detailed growth mechanism for Ag decahedrons needs further study.However,it is reasonable to believe that the Ag decahedrons formed in the first way in our experiment since nanorods existed in the final products(seen in Fig.6(b))which were also grown from five-fold twinned nanostructures.Ag atoms reduced by PVP preferentially fall onto the stabilized twin boundaries of five-fold twin seeds which leads to the emergence of five{100}facets,consequently the formation of the truncated decahedrons.

    As for Ag nanorods,PVP-K17 selectively adsorbs onto the{100}facets of few five-fold twinned seeds leading to the existence of rod-like products.Moreover,PVP-K17 acts with the{111}facets of plate-seeds with stacking faults,which directs the growth of a small amount of Ag nanoplates.45However,in the presence of PVP-K30,K60,andK90 in EG solution,no nanorods or nanoplates exist in the final products,all of which are only nanowires and little nanoparticles.In this case,as wehave mentioned previously,PVP also selectively adsorbs onto the{100}facets of five-fold twinned seeds,which directs the formation of nanowires.It is interesting that under the similar growth mechanism,we obtain different nanostructures.The shape evolution is related with the PVP as well as the solvent(EG and deionized water).It is hard to explain why this happens since the growth of crystals depends deeply on the reaction conditions.37And it is difficult to sample in our experiment process to track the morphological evolution under a high-pressure and sealed autoclave condition.More efforts should be taken to enrich our research.

    Fig.6 (a)TEM and(b)SEM images ofAg nanostructures including decahedron and a small amount of truncated nanorods and nanoplates;(c)magnified TEM image of a typical five-fold twinned decahedron;(d)UV-Vis absorption spectrum of theAg nanostructures

    4 Conclusions

    In summary,we developed a convenient,versatile,and low cost hydrothermal process for the synthesis of Ag nanostructures in different solution systems with the presence of PVP.PVP of higher MW,such asK30,K60,andK90,plays a critical role in directing the growth of Ag nanowires while PVPK17 is benefit for the synthesis of Ag nanodecahedrons.The results show that PVP plays a critical role in the process of ion reduction,nuclei formation,and further crystal growth.Plausible growth mechanisms of Ag nanowires and nanodecahedrons have been put forward.More efforts should be taken to track the morphological evolution which is required both in technological usage and foundational research.

    (1) Lu,W.;Lieber,C.M.Nat.Mater.2007,6,841.doi:10.1038/nmat2028

    (2) Lal,S.;Link,S.;Halas,N.J.Nat.Photonics2007,1,641.doi:10.1038/nphoton.2007.223

    (3)Xiong,Y.;Wiley,B.J.;Xia,Y.Angew.Chem.Int.Edit.2007,46,7157.

    (4) Feng,M.;Zhang,M.;Song,J.;Li,X.;Yu,S.ACS Nano2011,5,6726.doi:10.1021/nn202296h

    (5) Pedireddy,S.;Li,A.;Bosman,M.;Phang,I.Y.;Li,S.;Ling,X.Y.J.Phys.Chem.C2013,117,16640.doi:10.1021/jp4063077

    (6) Mackenzie,J.D.;Bescher,E.P.Accounts Chem.Res.2007,40,810.doi:10.1021/ar7000149

    (7) Reddy,M.V.;Jose,R.;Teng,T.H.;Chowdari,B.V.R.;Ramakrishna,S.Electrochim.Acta2010,55,3109.doi:10.1016/j.electacta.2009.12.095

    (8) Koch,C.C.Rev.Adv.Mater.Sci.2003,5,91.

    (9) Zhang,D.L.Prog.Mater.Sci.2004,49,537.doi:10.1016/S0079-6425(03)00034-3

    (10) Fang,J.Y.;Qin,S.Q.;Zhang,X.A.;Wang,G.;Wang,F.;Chang,S.L.Micro&Nano Lett.2011,6,971.doi:10.1049/mnl.2011.0480

    (11) Duan,J.Y.;Zhang,Q.X.;Wang,Y.L.;Guan,J.G.Acta Phys.-Chim.Sin.2009,25,1405.[段君元,章橋新,王一龍,官建國.物理化學學報,2009,25,1405.]doi:10.3866/PKU.WHXB20090731

    (12)Wu,H.;Kuo,C.;Huang,M.H.Langmuir2010,26,12307.doi:10.1021/la1015065

    (13) Li,Z.C.;Shang,T.M.;Zhou,Q.F.;Feng,K.Micro&Nano Lett.2011,6,90.doi:10.1049/mnl.2010.0183

    (14) Silva,J.N.;Saade,J.;Farias,P.M.A.;Falc?o,E.H.L.Advances in Nanoparticles2013,2,217.doi:10.4236/anp.2013.23030

    (15)Wang,Y.;Zheng,Y.;Huang,C.Z.;Xia,Y.J.Am.Chem.Soc.2013,135,1941.doi:10.1021/ja311503q

    (16) Zhang,Q.;Ge,J.;Pham,T.;Goebl,J.;Hu,Y.;Lu,Z.;Yin,Y.Angew.Chem.Int.Edit.2009,48,3516.doi:10.1002/anie.v48:19

    (17) Huang,X.;Qi,X.;Huang,Y.;Li,S.;Xue,C.;Gan,C.L.;Boey,F.;Zhang,H.ACS Nano2010,4,6196.doi:10.1021/nn101803m

    (18) Bordenave,M.D.;Scarpettini,A.F.;Roldán,M.V.;Pellegri,N.;Bragas,A.V.Mater.Chem.Phys.2013,139,100.doi:10.1016/j.matchemphys.2012.12.061

    (19) Korte,K.E.;Skrabalak,S.E.;Xia,Y.J.Mater.Chem.2008,18,437.doi:10.1039/b714072j

    (20) Chen,D.;Qiao,X.;Qiu,X.;Chen,J.G.;Jiang,R.J.Colloid Interface Sci.2010,344,286.doi:10.1016/j.jcis.2009.12.055

    (21) Im,S.H.;Lee,Y.T.;Wiley,B.;Xia,Y.Angew.Chem.Int.Edit.2005,117,2192.

    (22) Kan,C.;Wang,C.;Li,H.;Qi,J.;Zhu,J.;Li,Z.;Shi,D.Small2010,6,1768.doi:10.1002/smll.201000600

    (23) Sun,Y.;Xia,Y.Science2002,298,2176.doi:10.1126/science.1077229

    (24) Wiley,B.;Herricks,T.;Sun,Y.;Xia,Y.Nano Lett.2004,4,1733.doi:10.1021/nl048912c

    (25) Tang,X.;Tsuji,M.;Jiang,P.;Nishio,M.;Jang,S.;Yoon,S.Colloid Surface A2009,338,33.doi:10.1016/j.colsurfa.2008.12.029

    (26) Zhu,J.;Kan,C.;Zhu,X.;Wan,J.;Han,M.;Zhao,Y.;Wang,B.;Wang,G.J.Mater.Res.2007,22,1479.doi:10.1557/JMR.2007.0222

    (27) Zhao,T.;Sun,R.;Yu,S.;Zhang,Z.;Zhou,L.;Huang,H.;Du,R.Colloid Surface A2010,366,197.doi:10.1016/j.colsurfa.2010.06.005

    (28) Kottmann,J.P.;Martin,O.J.F.;Smith,D.R.;Schultz,S.Phys.Rev.B2001,64,235402.doi:10.1103/PhysRevB.64.235402

    (29) Kottmann,J.P.;Martin,O.J.F.;Smith,D.R.;Schultz,S.Opt.Express2000,6,213.doi:10.1364/OE.6.000213

    (30) Rycenga,M.;Cobley,C.M.;Zeng,J.;Li,W.;Moran,C.H.;Zhang,Q.;Qin,D.;Xia,Y.Chem.Rev.2011,111,3669.doi:10.1021/cr100275d

    (31) Kan,C.;Wang,C.;Zhu,J.;Li,H.J.Solid State Chem.2010,183,858.doi:10.1016/j.jssc.2010.01.021

    (32) Gou,L.;Chipara,M.;Zaleski,J.M.Chem.Mater.2007,19,1755.doi:10.1021/cm070160a

    (33) Hu,M.;Gao,J.;Dong,Y.;Yang,S.;Li,R.K.Y.RSC Adv.2012,2,2055.doi:10.1039/c2ra01162j

    (34) Chen,D.;Qiao,X.;Qiu,X.;Chen,J.;Jiang,R.J.Mater.Sci-Mater.El.2011,22,6.doi:10.1007/s10854-010-0074-2

    (35) Zhang,W.C.;Wu,X.L.;Chen,H.T.;Gao,Y.J.;Zhu,J.;Huang,G.S.;Chu,P.K.Acta Mater.2008,56,2508.doi:10.1016/j.actamat.2008.01.043

    (36) Mao,H.;Feng,J.;Ma,X.;Wu,C.;Zhao,X.J.Nanopart.Res.2012,14,1.

    (37) Wang,Z.L.J.Phys.Chem.B2000,104,1153.doi:10.1021/jp993593c

    (38) Sun,Y.;Mayers,B.;Herricks,T.;Xia,Y.Nano Lett.2003,3,955.doi:10.1021/nl034312m

    (39) Jiang,P.;Li,S.;Xie,S.;Gao,Y.;Song,L.Chem.-Eur.J.2004,10,4817.

    (40) Sosa,I.O.;Noguez,C.;Barrera,R.G.J.Phys.Chem.B2003,107,6269.doi:10.1021/jp0274076

    (41) Kan,C.;Zhu,J.;Zhu,X.J.Phys.D:Appl.Phys.2008,41,155304.doi:10.1088/0022-3727/41/15/155304

    (42) Li,C.R.;Lu,N.P.;Xu,Q.;Mei,J.;Dong,W.J.;Fu,J.L.;Cao,Z.X.J.Cryst.Growth2011,319,88.doi:10.1016/j.jcrysgro.2011.01.068

    (43) Xia,Y.;Xiong,Y.;Lim,B.;Skrabalak,S.E.Angew.Chem.Int.Edit.2009,48,60.doi:10.1002/anie.200802248

    (44) Gao,Y.;Jiang,P.;Song,L.;Wang,J.X.;Liu,L.F.;Xiang,Y.J.;Zhang,Z.X.;Zhao,X.W.;Dou,X.Y.;Luo,S.D.;Zhou,W.Y.;Xie,S.S.J.Cryst.Growth2006,289,376.doi:10.1016/j.jcrysgro.2005.11.123

    (45)Mo,B.;Kan,C.X.;Ke,S.L.;Cong,B.;Xu,L.H.Acta Phys.-Chim.Sin.2012,28,2511.[莫 博,闞彩俠,柯善林,從 博,徐麗紅.物理化學學報,2012,28,2511.]doi:10.3866/PKU.WHXB201208132

    猜你喜歡
    吡咯烷酮南京航空航天大學水熱法
    N-甲基吡咯烷酮降解菌株的篩選鑒定及應用
    南京航空航天大學機電學院
    聚乙烯吡咯烷酮分子三級中紅外光譜研究
    南京航空航天大學機電學院
    南京航空航天大學
    水熱法原位合成β-AgVO3/BiVO4復合光催化劑及其催化性能
    陶瓷學報(2021年5期)2021-11-22 06:35:00
    南京航空航天大學生物醫(yī)學光子學實驗室
    歐盟重新評估聚乙烯吡咯烷酮(E1201)和聚乙烯聚吡咯烷酮(E1202)作為食品添加劑的安全性
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    應用化工(2014年4期)2014-08-16 13:23:09
    琪琪午夜伦伦电影理论片6080| 精品久久蜜臀av无| 一级作爱视频免费观看| 成年人黄色毛片网站| 日本一二三区视频观看| 免费看十八禁软件| 国内久久婷婷六月综合欲色啪| 亚洲一区二区三区不卡视频| 久久欧美精品欧美久久欧美| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 最近最新中文字幕大全电影3| 欧美日韩瑟瑟在线播放| 国产不卡一卡二| 久久中文字幕人妻熟女| 国产精品亚洲av一区麻豆| 亚洲av中文字字幕乱码综合| 国产精品影院久久| 亚洲九九香蕉| 可以在线观看的亚洲视频| 国产在线精品亚洲第一网站| 亚洲人成网站在线播放欧美日韩| 在线免费观看的www视频| 亚洲国产欧美一区二区综合| 亚洲avbb在线观看| 亚洲专区国产一区二区| 一进一出好大好爽视频| 欧美成狂野欧美在线观看| 伦理电影免费视频| 国产精品日韩av在线免费观看| 国产精华一区二区三区| 国产激情欧美一区二区| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区三| 母亲3免费完整高清在线观看| 99久久精品国产亚洲精品| 免费一级毛片在线播放高清视频| av天堂在线播放| 久久久久久久午夜电影| xxxwww97欧美| 成人高潮视频无遮挡免费网站| 国产三级在线视频| 日本免费a在线| 国内精品久久久久久久电影| 国产1区2区3区精品| 两个人的视频大全免费| or卡值多少钱| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 免费看十八禁软件| 国产久久久一区二区三区| 天堂av国产一区二区熟女人妻| 每晚都被弄得嗷嗷叫到高潮| 久久久久久大精品| 欧美3d第一页| 精品一区二区三区av网在线观看| 99热精品在线国产| 中文在线观看免费www的网站| 蜜桃久久精品国产亚洲av| 国产久久久一区二区三区| 高潮久久久久久久久久久不卡| 天堂av国产一区二区熟女人妻| 在线观看舔阴道视频| 欧美日韩精品网址| 亚洲成人久久性| 日韩免费av在线播放| 一级a爱片免费观看的视频| 91麻豆精品激情在线观看国产| 国产午夜精品久久久久久| 少妇裸体淫交视频免费看高清| 观看美女的网站| 精品一区二区三区视频在线 | 我要搜黄色片| 极品教师在线免费播放| 国产成人欧美在线观看| 亚洲专区字幕在线| 亚洲欧美日韩无卡精品| 91久久精品国产一区二区成人 | 亚洲av成人精品一区久久| 欧美三级亚洲精品| 久久香蕉国产精品| 18禁黄网站禁片午夜丰满| 国产精品野战在线观看| 国产精品久久久av美女十八| 亚洲五月天丁香| 国产精品 欧美亚洲| 婷婷精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 18禁美女被吸乳视频| 观看美女的网站| 国产精品1区2区在线观看.| 黑人巨大精品欧美一区二区mp4| 成人永久免费在线观看视频| 国产精品亚洲美女久久久| 成人特级黄色片久久久久久久| 91av网一区二区| www.999成人在线观看| 性色av乱码一区二区三区2| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 国产探花在线观看一区二区| 欧美激情久久久久久爽电影| 久久久久久九九精品二区国产| 黄色女人牲交| 91av网站免费观看| 两性夫妻黄色片| 国产高清videossex| 亚洲中文字幕日韩| 中文字幕熟女人妻在线| 99热这里只有精品一区 | 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 国产欧美日韩精品一区二区| 欧美av亚洲av综合av国产av| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 两个人的视频大全免费| 手机成人av网站| 日本成人三级电影网站| 亚洲中文字幕日韩| 老熟妇仑乱视频hdxx| 国产男靠女视频免费网站| 他把我摸到了高潮在线观看| 午夜福利免费观看在线| 毛片女人毛片| 亚洲av电影不卡..在线观看| 看片在线看免费视频| 成人特级黄色片久久久久久久| 亚洲国产看品久久| 综合色av麻豆| 成人av在线播放网站| 国产人伦9x9x在线观看| 国产免费男女视频| 伊人久久大香线蕉亚洲五| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 国产精品 欧美亚洲| 亚洲中文字幕一区二区三区有码在线看 | 精品日产1卡2卡| 免费看光身美女| 一进一出好大好爽视频| 国产欧美日韩一区二区精品| 国产免费男女视频| 99精品欧美一区二区三区四区| 99久久国产精品久久久| 在线观看66精品国产| 免费高清视频大片| 色综合欧美亚洲国产小说| 国产精品久久久久久久电影 | 亚洲国产色片| 99国产精品一区二区三区| 日本 av在线| 亚洲欧美日韩高清专用| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 精品久久蜜臀av无| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 脱女人内裤的视频| 色噜噜av男人的天堂激情| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 国产黄a三级三级三级人| 后天国语完整版免费观看| 看黄色毛片网站| 欧美av亚洲av综合av国产av| 亚洲国产色片| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 亚洲欧美精品综合久久99| 小说图片视频综合网站| 久久久国产精品麻豆| 欧美成人免费av一区二区三区| 全区人妻精品视频| 成在线人永久免费视频| 亚洲av成人精品一区久久| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| 欧美高清成人免费视频www| 久久亚洲精品不卡| 两性夫妻黄色片| 欧美日韩国产亚洲二区| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9| 日本成人三级电影网站| 一夜夜www| 久久国产精品人妻蜜桃| 色噜噜av男人的天堂激情| 1024手机看黄色片| 一个人看的www免费观看视频| 亚洲av成人av| svipshipincom国产片| 成人av一区二区三区在线看| 中国美女看黄片| 国产伦精品一区二区三区四那| 99re在线观看精品视频| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 精品国产三级普通话版| 国产精品亚洲av一区麻豆| 精品不卡国产一区二区三区| 极品教师在线免费播放| 可以在线观看毛片的网站| 久久国产乱子伦精品免费另类| 又大又爽又粗| 欧美日韩瑟瑟在线播放| www.999成人在线观看| av片东京热男人的天堂| h日本视频在线播放| 国产高清视频在线观看网站| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 丰满的人妻完整版| 成年女人毛片免费观看观看9| 999久久久精品免费观看国产| 日韩欧美免费精品| 丁香六月欧美| 丰满人妻一区二区三区视频av | 制服人妻中文乱码| 国产一区二区在线观看日韩 | 91麻豆av在线| www.自偷自拍.com| 青草久久国产| 欧美不卡视频在线免费观看| 亚洲性夜色夜夜综合| 最近最新中文字幕大全电影3| 在线视频色国产色| 国产真实乱freesex| 又黄又爽又免费观看的视频| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清在线视频| 亚洲美女视频黄频| 精品久久蜜臀av无| 国产三级在线视频| 午夜激情福利司机影院| 免费av不卡在线播放| av在线天堂中文字幕| 欧美一级a爱片免费观看看| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 日本成人三级电影网站| 亚洲aⅴ乱码一区二区在线播放| 看片在线看免费视频| 国产伦精品一区二区三区视频9 | 色av中文字幕| av中文乱码字幕在线| 一本久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 99精品在免费线老司机午夜| 国产不卡一卡二| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 国产爱豆传媒在线观看| 嫩草影院精品99| 亚洲欧美精品综合久久99| 男人舔女人的私密视频| 99精品久久久久人妻精品| 国语自产精品视频在线第100页| 露出奶头的视频| 精品一区二区三区av网在线观看| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| av国产免费在线观看| 可以在线观看的亚洲视频| 日本成人三级电影网站| 亚洲精华国产精华精| 久久久久免费精品人妻一区二区| 免费高清视频大片| 久久人妻av系列| 美女大奶头视频| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 久久久久久大精品| 真人做人爱边吃奶动态| 99在线人妻在线中文字幕| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| 国产精品久久久久久人妻精品电影| 日韩欧美在线乱码| 欧美性猛交黑人性爽| 中文在线观看免费www的网站| 亚洲国产精品sss在线观看| 久9热在线精品视频| 激情在线观看视频在线高清| 香蕉丝袜av| 国产av麻豆久久久久久久| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 亚洲av美国av| 最近最新中文字幕大全电影3| 国产主播在线观看一区二区| 国产单亲对白刺激| 国产野战对白在线观看| 美女高潮的动态| 国产爱豆传媒在线观看| 久久久国产成人免费| 全区人妻精品视频| 午夜福利视频1000在线观看| 国产精品久久久久久久电影 | www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区| 中出人妻视频一区二区| 欧美av亚洲av综合av国产av| 精品久久蜜臀av无| 国产一区在线观看成人免费| 成人鲁丝片一二三区免费| 欧美又色又爽又黄视频| 国产日本99.免费观看| 999精品在线视频| 黄片大片在线免费观看| 成年女人看的毛片在线观看| 国产成人影院久久av| 激情在线观看视频在线高清| 夜夜爽天天搞| 国语自产精品视频在线第100页| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 国产av麻豆久久久久久久| 五月玫瑰六月丁香| 在线观看日韩欧美| 老汉色∧v一级毛片| 十八禁人妻一区二区| 老司机在亚洲福利影院| 搡老妇女老女人老熟妇| 夜夜躁狠狠躁天天躁| 熟女电影av网| 激情在线观看视频在线高清| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| 高清在线国产一区| 亚洲成人久久爱视频| 久久热在线av| 一级黄色大片毛片| 欧美黑人欧美精品刺激| 国产v大片淫在线免费观看| 久久久久亚洲av毛片大全| 日本 欧美在线| 成人欧美大片| 99re在线观看精品视频| 久99久视频精品免费| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 日本免费a在线| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 欧美日韩乱码在线| 欧洲精品卡2卡3卡4卡5卡区| 1000部很黄的大片| 亚洲欧美日韩卡通动漫| 久久久精品大字幕| 亚洲精品一区av在线观看| 久久久久国内视频| 岛国在线观看网站| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 国内精品久久久久久久电影| 每晚都被弄得嗷嗷叫到高潮| 久久久久国内视频| 日本熟妇午夜| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久| 亚洲乱码一区二区免费版| 真人一进一出gif抽搐免费| 国产成人精品久久二区二区免费| av欧美777| 中文字幕精品亚洲无线码一区| 免费av不卡在线播放| 中文字幕熟女人妻在线| 国产综合懂色| 午夜视频精品福利| 一个人观看的视频www高清免费观看 | 亚洲黑人精品在线| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 成人精品一区二区免费| 日韩欧美免费精品| 免费无遮挡裸体视频| 一个人观看的视频www高清免费观看 | 丰满的人妻完整版| 91老司机精品| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 成在线人永久免费视频| 岛国在线观看网站| 18禁裸乳无遮挡免费网站照片| 99视频精品全部免费 在线 | 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 18禁黄网站禁片免费观看直播| 欧美另类亚洲清纯唯美| 丰满人妻一区二区三区视频av | 亚洲自偷自拍图片 自拍| 日本免费a在线| 成人国产综合亚洲| 午夜免费激情av| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 日本与韩国留学比较| 99久久综合精品五月天人人| 一进一出好大好爽视频| 啦啦啦韩国在线观看视频| 成人特级av手机在线观看| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 免费看光身美女| 亚洲国产欧美一区二区综合| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区久久| 看黄色毛片网站| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 欧美zozozo另类| 麻豆成人av在线观看| 午夜精品在线福利| 精品人妻1区二区| 色综合欧美亚洲国产小说| 男女那种视频在线观看| 国产成人福利小说| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 国产极品精品免费视频能看的| 国产成人aa在线观看| 国产野战对白在线观看| 日本在线视频免费播放| 亚洲精品美女久久av网站| 国产av麻豆久久久久久久| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看 | 最近在线观看免费完整版| 国内少妇人妻偷人精品xxx网站 | 99热只有精品国产| 99国产精品99久久久久| 一个人免费在线观看电影 | 亚洲欧美日韩高清专用| 最好的美女福利视频网| 美女扒开内裤让男人捅视频| 国产成年人精品一区二区| 波多野结衣巨乳人妻| 国产黄色小视频在线观看| 老熟妇乱子伦视频在线观看| 后天国语完整版免费观看| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 免费电影在线观看免费观看| 看黄色毛片网站| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 国产美女午夜福利| 99re在线观看精品视频| 精品久久久久久久久久免费视频| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看| 好男人在线观看高清免费视频| 日本五十路高清| 国产激情久久老熟女| 国产免费av片在线观看野外av| 男女那种视频在线观看| 成在线人永久免费视频| 欧美日韩精品网址| 久久久国产成人免费| 亚洲乱码一区二区免费版| 少妇的丰满在线观看| 国产一区在线观看成人免费| 精品久久久久久久久久久久久| 国产一区二区在线av高清观看| 国产伦一二天堂av在线观看| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 女人被狂操c到高潮| 精品久久久久久,| 色综合欧美亚洲国产小说| 国产91精品成人一区二区三区| svipshipincom国产片| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 久久久久九九精品影院| 好男人电影高清在线观看| 国产单亲对白刺激| 亚洲av美国av| 无限看片的www在线观看| 丝袜人妻中文字幕| 人人妻,人人澡人人爽秒播| 欧美中文综合在线视频| 日韩三级视频一区二区三区| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线 | 国产精品亚洲美女久久久| 欧美黑人巨大hd| av在线蜜桃| 老司机午夜福利在线观看视频| 他把我摸到了高潮在线观看| 日韩欧美在线乱码| 欧美xxxx黑人xx丫x性爽| 久久精品人妻少妇| 国产精品 欧美亚洲| 国产三级黄色录像| 欧美日韩瑟瑟在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲成人中文字幕在线播放| 怎么达到女性高潮| 两个人视频免费观看高清| 身体一侧抽搐| 亚洲欧美精品综合久久99| 亚洲18禁久久av| 又黄又粗又硬又大视频| 久久性视频一级片| 国产野战对白在线观看| 日本一本二区三区精品| 男女之事视频高清在线观看| 成人特级黄色片久久久久久久| av片东京热男人的天堂| 国产精品,欧美在线| 久久久久久久久中文| 免费搜索国产男女视频| www.自偷自拍.com| 国产av一区在线观看免费| 亚洲av电影在线进入| 网址你懂的国产日韩在线| 在线观看日韩欧美| 热99在线观看视频| 国产av麻豆久久久久久久| 99久久无色码亚洲精品果冻| 又粗又爽又猛毛片免费看| 国产精品永久免费网站| 天天添夜夜摸| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 在线永久观看黄色视频| 日韩欧美在线乱码| 国产精品 国内视频| 不卡一级毛片| 成人鲁丝片一二三区免费| 99精品欧美一区二区三区四区| 超碰成人久久| 欧美日韩一级在线毛片| 九九久久精品国产亚洲av麻豆 | 日本精品一区二区三区蜜桃| 日日摸夜夜添夜夜添小说| 嫩草影院入口| 午夜福利在线在线| 午夜久久久久精精品| 国产午夜精品久久久久久| 午夜精品一区二区三区免费看| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 国产成人一区二区三区免费视频网站| 女人高潮潮喷娇喘18禁视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲av免费在线观看| 少妇熟女aⅴ在线视频| 在线观看免费午夜福利视频| 国产免费av片在线观看野外av| 国产熟女xx| 午夜精品在线福利| 男女下面进入的视频免费午夜| 中文字幕av在线有码专区| 性色avwww在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频| cao死你这个sao货| 99国产极品粉嫩在线观看| xxx96com| 精品免费久久久久久久清纯| 18禁观看日本| 欧美大码av| 91在线精品国自产拍蜜月 | 最近视频中文字幕2019在线8| 一区二区三区激情视频| 精品日产1卡2卡| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 亚洲欧美精品综合久久99| 成人特级av手机在线观看| 夜夜看夜夜爽夜夜摸| 久久久国产成人精品二区| 国产欧美日韩精品亚洲av| 国产精品98久久久久久宅男小说| bbb黄色大片| 一a级毛片在线观看| 一区二区三区国产精品乱码| 亚洲五月婷婷丁香| 国产又色又爽无遮挡免费看| 国产亚洲精品综合一区在线观看| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆| 天堂av国产一区二区熟女人妻| 高清毛片免费观看视频网站| 国产一区二区在线观看日韩 | 精品福利观看| 日本黄色片子视频| 19禁男女啪啪无遮挡网站| 99视频精品全部免费 在线 | 亚洲国产欧洲综合997久久,| 一个人看的www免费观看视频| 成人鲁丝片一二三区免费| 亚洲中文av在线| 亚洲电影在线观看av|