• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    酸催化及競爭吸附對CeY分子篩吸附脫硫性能的影響

    2014-06-23 06:50:20秦玉才高雄厚段林海范躍超于文廣張海濤宋麗娟
    物理化學學報 2014年3期
    關(guān)鍵詞:文廣林海物理化學

    秦玉才 高雄厚 段林海 范躍超于文廣 張海濤 宋麗娟,*

    (1中國石油大學(華東)化學化工學院,山東青島266426;2遼寧石油化工大學,遼寧省石油化工催化科學與技術(shù)重點實驗室,遼寧撫順113001;3中國石油天然氣股份有限公司,石油化工研究院,北京100007)

    1 Introduction

    Selectively adsorption desulfurization(SADS),based on the selectively adsorption capability for organosulfur compounds of zeolite adsorbents,is considered to be a promising approach for producing clean fuels.1Many attempts have been made to develop these adsorbents for desulfurization of liquid fuels.So far,a variety of adsorbents such as metal oxides,2-5active carbon,6-8mesoporous materials9-12and zeolites13-24have been studied for deep desulfurization.Among them,ion-exchanged zeolites are more promising and less expensive adsorbents being utilized for SADS.

    Yang and coworkers13,15-19reported a series ofπ-complexation sorbents for selective adsorption desulfurization.Transitionmetal ion(Cu+,Ag+,Ni2+,Zn2+)exchanged Faujasite(FAU)zeolites were used to selectively remove organosulfur molecules from commercial fuels depending on theπ-complexation interaction.These interactions of sulfur compound molecules with transition-metal ions are stronger than those of aromatic and olefinic compounds.Theseπ-complexation sorbents,therefore,are effective for sulfur removal from transportation fuels.However,competitive adsorption of aromatics and olefines seems an inevitable drawback,which affects the selective adsorption of sulfur compounds by theπ-complexation interaction,because of the coexistence of large amounts of these compounds in liquid fuels.

    Then,one kind of sulfur-metal(S-M)interaction sorbents was developed for selective adsorption desulfurization.Song and co-workers14reported that the Ce-exchanged Y(CeY)zeolite adsorbents present higher adsorption selectivity for sulfur compounds than for aromatics ascribed to the direct S-M interaction between the sulfur compound and the metal cation in the zeolite.Lin and co-worker24also demonstrated that CeY zeolites performed the best adsorption capacity for thiophenic sulfur among various Y zeolites.Herein,CeY zeolites are considered as one kind of ideal adsorbents for SADS from transportation fuels.However,the sulfur removal capability of CeY zeolites is influenced by the aromatic and olefinic compounds.Our previous work21,25,26focused on the effects of olefines on adsorptive deep desulfurization of gasoline over CeY zeolites,and confirmed that the adsorption capability for thiophene decreases significantly as the concentration of 1-octene increases.Tian and coworkers27explored the effects of toluene on thiophene adsorption over CeY zeolites,and convinced that the thiophene removal over CeY zeolites decreases with the increase of toluene concentration in model gasoline,however,the decline tendency on CeY zeolites is much smoother than that of NaY zeolites.It can be concluded that both olefines and aromatics can depress the capability of CeY zeolites for the selective adsorption of sulfur compounds.

    Moreover,although many reports have demonstrated the suitability of CeY zeolites as adsorbents for the desulfurization of liquid fuel,no attention has been given to the effect of the acidic properties of rare earth cation exchanged zeolites which have been very well studied as acid catalysts in petrochemical processes.28Catalytic reaction of thiophene have been found due to Br?nsted acidic site on zeolite even under mild condition,29-31but the influence of this reaction on the adsorption performance of sulfur compounds has rarely been reported.It is necessary therefore to study whether the catalytic reaction promoting or impeding the capability of adsorbents for SADS.

    In the present work,the acid properties are measured by NH3temperature-programmed desorption(NH3-TPD)method andin-situpyridine-Fourier transform infrared(Py-FTIR)technique.The desulfurization capability and the effects of olefines or aromatics on thiophene removal over CeY zeolites are studied by fixed-bed adsorption/breakthrough experiments at room temperature(RT)with model gasoline.Thein-situFTIR technique is utilized to measure adsorption,co-adsorption or/and catalytic reaction of thiophene,benzene,and cyclohexene in CeY zeolites.

    2 Experimental

    2.1 Sorbent preparation

    NaY zeolite(the molar ratio of Si and Al is 2.55),in powder form,was used as the starting material.The CeY zeolites were prepared by liquid phase ion exchange(LPIE)technique.In order to obtain the sorbents with higher Ce ion loading,the ionexchanged experiments were repeated.

    2.2 Sorbent characterization

    X-ray powder diffraction(XRD)patterns were collected in a 2θrange of 5.00°-59.98°using a D/MAXRB XRD instrument(Rigaku,Japan)equipped with CuKαradiation.The transmission electron microscopy(TEM)images were taken with a JEOL-2200 EX microscope operating at 400 kV(Jeol,Japan).Chemical compositions of the ion-exchanged zeolites were determined by inductively coupled plasma(ICP)elemental analysis using a high-resolution magnetic sector ICP-mass spectroscopy(MS)spectrometer(Thermo Elemental,USA).The BETsurface area and total pore volume were measured using a Micromeritics ASAP 2020 surface area and porosity analyzer(Micromeritics,USA).The surface acidity was monitored by thein-situPy-FTIR technique,with a Perkin-Elmer Spectrum TM GX spectrometer(Perkin-Elmer,USA)coupled to a conventional high vacuum system.NH3-TPD experiments were performed on a Micromeritics Auto Chem II Chemisorption Analyzer(Micromeritics,USA)with a thermal conductivity detector.The samples were treated in He gas flow at 600°C for 1 h.

    2.3 Adsorption desulfurization experiments

    Model gasolines were used to evaluate the desulfurization performance of the sorbents,with the model compounds,such as thiophene,benzene,1-octene,1-hexene,cyclohexene,and 1,5-hexadiene,dissolved inn-nonane according to certain proportions.The various model gasolines are listed in Table 1.All thiophene,benzene,1-octene,1-hexene,cyclohexene,1,5-hexadiene,andn-nonane were purchased from J&K Ltd.and were used without further purification.

    All breakthrough experiments were performed in a vertical custom made quartz adsorber equipped on a setup consisted of a low-flow liquid pump,feed tanks,and a heating element.The quartz adsorber has a 500-mm length with an internal diameter of 6.0 mm to accommodate 1 g of sorbents.Initially,the sorbents(in powder form)were loaded inside the adsorber,and heatedin-situusing dry gases to eliminate the moisture.All the fuel samples collected during the breakthrough experiments were analyzed using a WK-2D microcoulommeter(Jiangfen Electroanalytical instrument Co.,Ltd.,China).The concentration of sulfur at 1 μg · g-1in outlet is defined as the breakthrough point.

    2.4 In-situ FTIR study on the interaction between adsorbent and adsorbate

    FTIR spectra of adsorbed thiophene,cyclohexene,benzene,and co-adsorbed thiophene and benzene,thiophene and cyclohexene on NaY and CeY zeolites were recorded using a Perkin-Elmer Spectrum TM GX spectrometer.Anin-situIR cell coupled to a conventional high vacuum system was utilized allowing the sample wafers can be heated under vacuum or exposed to vapor-phase probe molecules.The sorbents were pressed into thin wafers(12-15 mg·cm-2)and activated at 400 °C under vacuum(10-3Pa)for 4 h.Then,the wafers were exposed to the vapors of thiophene,benzene,cyclohexene,and the mixed vapors of thiophene and benzene,or thiophene and cyclohexene,respectively,at room temperature.The spectra were recorded between 4000 and 400 cm-1with 4 cm-1spectral resolution and 64 scans after desorbed at room temperature under vacuum.

    3 Results and discussion

    The results of XRD patterns of CeY zeolites have been reported in our previous study,25which reveal that the CeY zeolites retain the original FAU zeolite structure,and have no diffractions due to CeO2structure emerging.The TEM images(not shown in this paper)show that the samples maintain a perfect aperture and topology structure of the FAU zeolite,and no CeO2cluster species arise in the aperture or over the surface of the zeolite crystal.26The structure and composition data of the NaY and the CeY zeolites are presented in Table 2,showing that the Ce ion exchange degree of the CeY zeolites achieves 94%.The decrease of pore volume and specific surface area of CeY zeolites is ascribed to reduce of the crystallinity of the zeolites during the process of liquid cerium ion-exchanged.

    Fig.1 shows the breakthrough curves of thiophene in a series of model gasolines with CeY sorbents.The treated volumes of model fuel at breakthrough point are about 10.5,7.5,and 2.0 cm3corresponding to MG-1,MG-2,and MG-3 to MG-6,respectively.These results display that olefines and aromatics in model gasolines depress the capacity of thiophene removal of CeY sorbents.Besides,the effect of olefines is more significant than aromatics.The different slopes of the breakthrough curves of MG-3 to MG-6 indicate that the effect of different olefines is unequal.It is not reasonable to explain the effect of different olefines and aromatic hydrocarbons only by the mode of interaction between adsorption sites and adsorbate molecules.

    Fig.2 presents the photographs of NaY and CeY zeolite powders in model gasolines.The NaY zeolite powders remain white color(the NaY zeolites′color)after the samples are exposed to the four kinds of model gasolines.But for the CeY zeolites,the color of the samples becomes deep yellow,black,brown,and gray inn-nonane,MG-1,MG-2,and MG-5 instead of light yellow(the CeY zeolites′color).The phenomenon of“coke”(black color)is observed on the CeY zeolites in the MG-1(see Fig.2b′),indicating that some other processes should also take place during the selective adsorptive desulfurization process on the adsorbents.The gas chromatography(Clarus500)with sulfur chemiluminescence detection(SIEVERS 355)(GCSCD)profiles display that more than one signal was detected in the compounds trapped on the CeY zeolites(Fig.3c),indicat-ing that new macromolecular sulfur compounds generate in the adsorbents exposed to the MG-1.It can be speculated that the Br?nsted acids on the adsorbents could lead to protonatic catalytic reaction of thiophene molecules,and then thiophene oligomers generate by electrophilic addition reaction.32However,the color of the samples only became brown and gray due to competitive adsorption of olefinic or aromatic molecules which cover the Br?nsted acid sites.

    Table 1 Composition of model gasoline

    Table 2 Structure and composition data for NaY and CeY zeolites

    Fig.1 Breakthrough curves of thiophene in a fixed-bed adsorber with CeY adsorbents,with a model gasoline containing 300 μg·g-1 S of thiophene or mixed with 30000 μg·g-1benzene,1-octene,1-hexene,cyclohexene,and 1,5-hexadiene in n-octane respectively,at room temperature

    Fig.2 Photographs of NaY(a,b,c,d)and CeY(a',b',c',d')in model gasoline

    The NH3-TPD spectra of NaY and CeY samples are depicted in Fig.4.The results show that strong peaks in the range of 100-300°C are all present in the NH3-TPD spectra of NaY and CeY,indicating that numerous weak acid sites exist in the two samples.The peaks in the range of 300-450°C and 500-600°C in the NH3-TPD curve of the CeY can be assigned to the medium strong acid sites and the strong acid sites,respectively.These results indicate that the plentiful medium strong and strong acid sites arise in the prepared process of CeY zeolites by LPIE method.

    Fig.3 GC-SCD profiles of MG-1(a)and compounds trapped on the NaY(b)and CeY(c)zeolites exposed to the MG-1

    Fig.4 NH3-TPD spectra of NaY(a)and CeY(b)samples

    Fig.5 shows the FTIR spectra of OH groups and pyridine adsorbed in NaY and CeY zeolites.Only one band at 3695 cm-1assigned to hydroxyls(Al―OH)in defect sites is observed in NaY zeolite(Fig.5A,left).33However,there are bands of the external Si―OH at 3740 cm-1,Si―OH―Al at 3639,3580 cm-1,and Ce―OH at 3527 cm-1in the FTIR spectra of CeY zeolites(Fig.5B,left).34-36Numerous Lewis acidic sites attributed to Na+identified by IR band of 1440 cm-1are present in NaY zeolite(Fig.5A,right).Plentiful Br?nsted acid sites generate in the preparation process of CeY zeolites by LPIE method,according to IR band of 1543 cm-1(Fig.5B,right).

    The FTIR spectra of thiophene,benzene,and cyclohexene adsorbed in the NaY and CeY zeolites at RT are shown in Fig.6.The bands at 3110 cm-1(C―H stretching vibrations)and at 1396 cm-lwere detected in the spectra of thiophene adsorbed in NaY(see Fig.6A(b)).The band at 1396 cm-1was assigned to the perturbed fundamental ring stretching vibration(ν5),which was assigned to be 14 cm-lshifted to the lower wavenumber compared with the band of thiophene adsorbed in SiO2.37Thus,all bands observed in Fig.6A(b)are attributed to modes of vibration of thiophene molecules strongly interacting with the Na+cations.The appearance of the new infrared bands at 1449 and 1439 cm-1in the IR spectra of thiophene adsorbed in theCeY zeolites(see Fig.6B(b))are assigned to the deformation vibrations of CH2groups close to a sulfur atom(*CH2―S―)or close to a double bond(*CH2―(CH=CH2)).38-40Besides,the broadening of the band in the range of 2990-2890 cm-1is attributed to the generation of saturated C―H species.These results indicate that protonization reactions of thiophene occurred as thiophene molecules adsorbed in the CeY zeolites.The band at 1504 cm-l(ring stretching fundamentalν14)related to the thiophene oligomers implies that oligomerizations of thiophene molecules take place in the CeY zeolites.The FTIR spectra of adsorbed thiophene in the NaY and CeY zeolites are different,indicating that the adsorption mechanism of thiophene on the two samples must be not the same.

    Fig.5 FTIR spectra of OH groups and pyridine adsorbed in the NaY(A)and CeY(B)zeolites

    Fig.6(c)gives the FTIR spectra of cyclohexene adsorbed in the NaY and CeY zeolites.The bands appearing at 3002,1449,and 1439 cm-1(Fig.6A(c))indicate that the nature of cyclohexene adsorbed in NaY is weak/physical adsorption.The formation of alkenyl carbenium ions related to the band at 1520 cm-1and the disappearance of the band at 3002 cm-1(Fig.6B(c))suggest that cyclohexene can be activated by protonizations on the Br?nsted acidic sites in the CeY zeolites.41The FTIR spectra in Fig.6(d)display that the modes of benzene adsorbed on NaY and CeY are both weak/physical adsorption.42

    Fig.6 FTIR spectra of the fresh NaY(A)and CeY(B)samples(a),and adsorbed thiophene(b),cyclohexene(c),benzene(d),thiophene/cyclohexene(665 Pa/665 Pa)(e),and thiophene/benzene(665 Pa/665 Pa)(f)in NaY(A)and CeY(B)at RT for 1 h and then evacuating at RT for 0.5 h

    The FTIR spectra of co-adsorption of thiophene and cyclohexene on the NaY and CeY zeolites are shown in Fig.6(e).The bands assigned to adsorbed cyclohexene and adsorbed thiophene are both exhibited in the spectra of co-adsorption of the two adsorbate on NaY(Fig.6A(e)),but the bands of the former are more prominent than that of the latter,implying that the adsorption intensity of cyclohexene is stronger than thiophene in NaY zeolites.This result suggests that NaY zeolites are not the ideal adsorbents for SADS from a gasoline containing olefines.The FTIR spectra of co-adsorption of cyclohexeneand thiophene in CeY(Fig.6B(e))show that the prior adsorption and the protonizations of olefin molecules on the Br?nsted acid sites hinder the adsorption of thiophene molecules.This result illustrates that the coexisting olefinic compounds can depress the capability of removing thiophenic compounds of the CeY zeolites.

    The results of co-adsorption of thiophene and benzene in NaY and CeY are shown in Fig.6(f).The strength of bands assigned to adsorbed benzene and thiophene are similar(Fig.6A(f)),implies that very strongly competitive adsorption between benzene and thiophene is present in NaY zeolites.But,from Fig.6B(f),it can be seen that the adsorption of thiophene is prior on the CeY sorbents rather than benzene,indicating that CeY zeolites are one kind of ideal sorbents for SADS technique for liquid fuels containing aromatics.

    4 Conclusions

    The results reported in this paper indicate that the desulfurization performance of CeY zeolites is affected both by competitive adsorption from aromatics and oligomerization reactions of olefinic and thiophenic compounds due to the strong Br?nsted acidity on the surface of the adsorbents.

    (1)The olefinic and aromatic hydrocarbons depress the desulfurization ability of CeY zeolites,but the effect mechanism is different.Besides,the effect of olefines is more significant than aromatics.

    (2)The protonizations of olefinic or thiophenic molecules and oligomerizations due to the strong Br?nsted acid sites in CeY zeolites are the unfavorable factor influencing the desulfurization capability of the adsorbents.

    (3)The adsorption modes of thiophene on CeY zeolites are“direct coordinationviaS atoms”and“π-complexation mechanism”,but the former is the master one attributing to SADS.

    (1)Yang,R.T.;Hernández-Maldonado,A.J.;Yang,F.H.Science2003,301(5629),79.doi:10.1126/science.1085088

    (2)Velu,S.;Ma,X.L.;Song,C.S.;Namazian,M.;Sethuraman,S.;Venkataraman,G.Energy Fuels2005,19(3),1116.doi:10.1021/ef049800b

    (3) Jeevanandam,P.;Klabunde,K.J.;Tetzler,S.H.Microporous Mesoporous Mat.2005,79(1),101.

    (4) Nair,S.;Tatarchuk,B.J.Fuel2010,89(11),3218.doi:10.1016/j.fuel.2010.05.006

    (5) Santos,A.L.;Reis,R.A.;Rossa,V.;Reis,M.M.;Costa,A.L.H.;Veloso,C.O.;Henriques,C.A.;Zotin,F.M.Z.;Paredes,M.L.L.;Silveira,E.B.;Chiaro,S.S.X.Mater.Lett.2012,83,158.doi:10.1016/j.matlet.2012.06.011

    (6) Marín-Rosas,C.;Ramírez-Verduzco,L.F.;Murrieta-Guevara,F.R.;Hernández-Tapia,G.;Rodríguez-Otal,L.M.Ind.Eng.Chem.Res.2010,49(9),4372.doi:10.1021/ie901756b

    (7) Seredych,M.;Bandosz,T.J.Fuel Process.Technol.2010,91(6),693.doi:10.1016/j.fuproc.2010.01.019

    (8) Fallah,R.N.;Azizian,S.Fuel Process.Technol.2012,93(1),45.doi:10.1016/j.fuproc.2011.09.012

    (9) Park,J.G.;Ko,C.H.;Yi,K.B.;Park,J.;Han,S.;Cho,S.;Kim,J.Appl.Catal.B:Environ.2008,81(3),244.

    (10) Subhan,F.;Liu,B.;Zhang,Y.;Li,X.Fuel Process.Technol.2012,97,71.doi:10.1016/j.fuproc.2012.01.016

    (11)Shao,X.C.;Duan,L.H.;Wu,Y.Y.;Qin,Y.C.;Yu,W.G.;Wang,Y.;Li,H.L.;Sun,Z.L.;Song,L.J.Acta Phys.-Chim.Sin.2012,28,1467.[邵新超,段林海,武玉葉,秦玉才,于文廣,王 源,李懷雷,孫兆林,宋麗娟.物理化學學報,2012,28,1467.]doi:10.3866/PKU.WHXB201203312

    (12)Shao,X.C.;Zhang,X.T.;Yu,W.G.;Wu,Y.Y.;Qin,Y.C.;Sun,Z.L.;Song,L.J.Appl.Surf.Sci.2012,263,1.doi:10.1016/j.apsusc.2012.07.142

    (13) Yang,R.T.;Takahashi,A.;Yang,F.H.Ind.Eng.Chem.Res2001,40(26),6236.doi:10.1021/ie010729w

    (14) Velu,S.;Ma,X.L.;Song,C.S.Ind.Eng.Chem.Res.2003,42(21),5293.doi:10.1021/ie020995p

    (15) Hernández-Maldonado,A.J.;Yang,R.T.Ind.Eng.Chem.Res.2003,42(1),123.doi:10.1021/ie020728j

    (16) Hernández-Maldonado,A.J.;Yang,R.T.J.Am.Chem.Soc.2004,126(4),992.

    (17) Hernández-Maldonado,A.J.;Yang,R.T.Ind.Eng.Chem.Res.2004,43(4),1081.doi:10.1021/ie034206v

    (18) Yang,R.T.;Hernández-Maldonado,A.J.Catal.Rev.-Sci.Eng.2004,46(2),111.doi:10.1081/CR-200032697

    (19) Hernández-Maldonado,A.J.;Yang,F.H.;Qi,G.;Yang,R.T.Appl.Catal.B:Environ.2005,56(1),111.

    (20) Tang,K.;Song,L.J.;Duan,L.H.;Li,X.Q.;Gui,J.Z.;Sun,Z.L.Fuel Process.Technol.2008,89(1),1.doi:10.1016/j.fuproc.2007.06.002

    (21) Wang,H.G.;Jiang,H.;Xu,J.;Sun,Z.L.;Zhang,X.T.;Zhu,H.L.;Song,L.J.Acta Phys.-Chim.Sin.2008,24,1714.[王洪國,姜 恒,徐 靜,孫兆林,張曉彤,朱赫禮,宋麗娟.物理化學學報,2008,24,1714.]doi:10.3866/PKU.WHXB20080933

    (22) Ju,X.F.;Jin,L.L.;Ma,T.;Chen,X.L.;Song,L.J.Acta Phys.-Chim.Sin.2009,25,2256.[鞠秀芳,靳玲玲,馬 濤,陳曉陸,宋麗娟.物理化學學報,2009,25,2256.]doi:10.3866/PKU.WHXB20091024

    (23)Wang,W.Y.;Pan,M.X.;Qin,Y.C.;Wang,L.T.;Song,L.J.Acta Phys.-Chim.Sin.2011,27,1176.[王旺銀,潘明雪,秦玉才,王凌濤,宋麗娟.物理化學學報,2011,27,1176.]doi:10.3866/PKU.WHXB20110442

    (24) Lin,L.;Zhang,Y.;Zhang,H.;Lu,F.J.Colloid Interface Sci.2011,360,753.doi:10.1016/j.jcis.2011.04.075

    (25) Wang,H.G.;Song,L.J.;Jiang,H.;Xu,J.;Jin,L.L.;Zhang,X.T.;Sun,Z.L.Fuel Process.Technol.2009,90(6),835.doi:10.1016/j.fuproc.2009.03.004

    (26)Duan,L.H.;Gao,X.H.;Meng,X.H.;Zhang,H.T.;Wang,Q.;Qin,Y.C.;Zhang,X.T.;Song,L.J.J.Phys.Chem.C2012,116(49),25748.doi:10.1021/jp303040m

    (27) Shi,Y.C.;Yang,X.J.;Tian,F.P.;Jia,C.Y.;Chen,Y.Y.J.Nat.Gas Chem.2012,21(4),421.doi:10.1016/S1003-9953(11)60385-X

    (28) Chen,N.Y.;Mitchell,T.O.;Olson,D.H.;Pelrine,B.P.Ind.Eng.Chem.Prod.Res.Dev.1977,16(3),247.doi:10.1021/i360063a012

    (29) Garcia,C.;Lercher,J.J.Phys.Chem.1992,96(6),2669.doi:10.1021/j100185a050

    (30) Chica,A.;Strohmaier,K.;Iglesia,E.Langmuir2004,20(25),10982.doi:10.1021/la048320+

    (31) Richardeau,D.;Joly,G.;Canaff,C.;Magnoux,P.;Guisnet,M.;Thomas,M.;Nicolaos,A.Appl.Catal.A:Gen.2004,263(1),49.doi:10.1016/j.apcata.2003.11.039

    (32) Deangelis,B.A.;Appierto,G.J.Colloid Interface Sci.1975,53(1),14.doi:10.1016/0021-9797(75)90029-6

    (33) Datka,J.;Sulikowski,B.;Gil,B.J.Phys.Chem.1996,100(27),11242.doi:10.1021/jp951523+

    (34) Gil,B.;MierzyDska,K.;SzczerbiDska,M.;Datka,J.Microporous Mesoporous Mat.2007,99(3),328.doi:10.1016/j.micromeso.2006.09.025

    (35) Rabo,J.A.;Angell,C.L.;Kasai,P.H.;Schoemaker,V.Discuss.Faraday Soc.1966,41,328.doi:10.1039/df9664100328

    (36) Ward,J.W.J.Phys.Chem.1968,72(12),4211.doi:10.1021/j100858a046

    (37) Layman,K.A.;Bussell,M.E.J.Phys.Chem.B2004,108(40),15791.doi:10.1021/jp047882z

    (38) Garcia,C.L.;Lercher,J.A.J.Phys.Chem.1992,96(6),2669.doi:10.1021/j100185a050

    (39) Zhang,X.T.;Yu,W.G.;Qin,Y.C.;Dong,S.W.;Pei,T.T.;Wang,L.;Song,L.J.Acta Phys.-Chim.Sin.2013,29,1273.[張曉彤,于文廣,秦玉才,董世偉,裴婷婷,王 琳,宋麗娟.物理化學學報,2013,29,1273.]doi:10.3866/PKU.WHXB201303183

    (40)Qin,Y.C.;Mo,Z.S.;Yu,W.G.;Dong,S.W.;Duan,L.H.;Gao,X.H.;Song,L.J.Appl.Surf.Sci.2014,292,5.doi:10.1016/j.apsusc.2013.11.036

    (41) Yang,S.;Kondo,J.N.;Domen,K.Catal.Today2002,73(1),113.

    (42) Kukulska-Zajac,E.;Kozyra,P.;Datka,J.Appl.Catal.A:Gen.2006,307(1),46.doi:10.1016/j.apcata.2006.03.005

    猜你喜歡
    文廣林海物理化學
    送給媽媽的賀卡
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    Practice Makes Perfect吸煙有害
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    摸鯊魚牙齒
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    99在线视频只有这里精品首页| 亚洲最大成人中文| 激情在线观看视频在线高清| 人人妻人人澡欧美一区二区| 久久久久久久午夜电影| 性色avwww在线观看| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 每晚都被弄得嗷嗷叫到高潮| 深夜精品福利| 午夜免费激情av| 丰满人妻熟妇乱又伦精品不卡| 免费看光身美女| 精品一区二区三区人妻视频| 婷婷六月久久综合丁香| 欧美激情在线99| 亚洲一区高清亚洲精品| 亚洲国产日韩欧美精品在线观看 | 很黄的视频免费| 免费在线观看日本一区| 国产精品久久久久久久电影 | 一本精品99久久精品77| 日本黄色视频三级网站网址| 哪里可以看免费的av片| 国产精品嫩草影院av在线观看 | 国产精品98久久久久久宅男小说| 不卡一级毛片| 2021天堂中文幕一二区在线观| 欧美bdsm另类| 男女下面进入的视频免费午夜| 色综合亚洲欧美另类图片| 99在线人妻在线中文字幕| 久久精品综合一区二区三区| 舔av片在线| 叶爱在线成人免费视频播放| 免费搜索国产男女视频| 午夜福利视频1000在线观看| 毛片女人毛片| 一级黄片播放器| 免费看日本二区| 丰满人妻熟妇乱又伦精品不卡| 夜夜躁狠狠躁天天躁| 国产亚洲精品av在线| 一个人看的www免费观看视频| 大型黄色视频在线免费观看| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久电影 | АⅤ资源中文在线天堂| 88av欧美| 国产一区二区激情短视频| 国产av不卡久久| 亚洲av美国av| 亚洲av美国av| 免费大片18禁| 欧美丝袜亚洲另类 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产极品精品免费视频能看的| 有码 亚洲区| 在线免费观看的www视频| 观看美女的网站| 最近在线观看免费完整版| 可以在线观看的亚洲视频| 无人区码免费观看不卡| 91麻豆av在线| 亚洲不卡免费看| 亚洲人成网站高清观看| 亚洲av中文字字幕乱码综合| 日韩精品中文字幕看吧| 99视频精品全部免费 在线| 国内少妇人妻偷人精品xxx网站| 美女免费视频网站| 免费av毛片视频| 国产精品日韩av在线免费观看| av在线天堂中文字幕| 亚洲精品影视一区二区三区av| 内地一区二区视频在线| 国产99白浆流出| 十八禁网站免费在线| 久久久色成人| 亚洲成av人片在线播放无| 亚洲真实伦在线观看| 亚洲性夜色夜夜综合| 又爽又黄无遮挡网站| 757午夜福利合集在线观看| 国产真人三级小视频在线观看| 久久6这里有精品| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线乱码| 精华霜和精华液先用哪个| av视频在线观看入口| 特大巨黑吊av在线直播| 熟女电影av网| 亚洲精品粉嫩美女一区| 又爽又黄无遮挡网站| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 老司机午夜十八禁免费视频| 久久人妻av系列| 国产精品99久久久久久久久| 免费av毛片视频| 一本久久中文字幕| 午夜免费男女啪啪视频观看 | 精品日产1卡2卡| 国产精品1区2区在线观看.| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 麻豆成人av在线观看| 深夜精品福利| 国产精品亚洲av一区麻豆| 天天一区二区日本电影三级| 国产成年人精品一区二区| 国产淫片久久久久久久久 | 国产乱人伦免费视频| 久久99热这里只有精品18| 十八禁人妻一区二区| 免费观看精品视频网站| 午夜免费成人在线视频| 亚洲aⅴ乱码一区二区在线播放| 国产久久久一区二区三区| 在线天堂最新版资源| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 亚洲一区二区三区不卡视频| 国产精品一及| av女优亚洲男人天堂| 人人妻人人看人人澡| 午夜影院日韩av| 男女视频在线观看网站免费| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 两个人看的免费小视频| 日韩欧美精品v在线| 亚洲精品影视一区二区三区av| 亚洲av成人精品一区久久| 国产一区二区三区视频了| 国产一区二区在线av高清观看| 桃色一区二区三区在线观看| 国产视频一区二区在线看| 波多野结衣高清作品| 国产美女午夜福利| 国产免费男女视频| 久久精品影院6| 久久久久性生活片| 麻豆成人av在线观看| 麻豆国产97在线/欧美| 桃色一区二区三区在线观看| 全区人妻精品视频| av在线天堂中文字幕| 国产成人啪精品午夜网站| 精品国产亚洲在线| а√天堂www在线а√下载| 高清在线国产一区| 日韩欧美国产一区二区入口| 最后的刺客免费高清国语| 欧美最黄视频在线播放免费| 日本 av在线| 免费观看的影片在线观看| 18+在线观看网站| 亚洲精品成人久久久久久| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| a在线观看视频网站| 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 亚洲国产色片| 欧美最新免费一区二区三区 | 超碰av人人做人人爽久久 | 久久精品国产自在天天线| 黄片大片在线免费观看| 麻豆一二三区av精品| 丁香欧美五月| 久久久久国内视频| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 欧美日韩一级在线毛片| 亚洲av二区三区四区| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 亚洲专区中文字幕在线| 十八禁人妻一区二区| 人人妻人人看人人澡| 亚洲美女视频黄频| 久久久久性生活片| av在线蜜桃| 观看美女的网站| www.色视频.com| 午夜精品久久久久久毛片777| 特级一级黄色大片| 岛国视频午夜一区免费看| 老司机午夜十八禁免费视频| 欧美日韩黄片免| av在线天堂中文字幕| 天堂影院成人在线观看| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 人妻丰满熟妇av一区二区三区| 国产午夜精品久久久久久一区二区三区 | 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 欧美又色又爽又黄视频| 午夜福利视频1000在线观看| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 国产久久久一区二区三区| 中文字幕av成人在线电影| 丝袜美腿在线中文| 中文资源天堂在线| 哪里可以看免费的av片| 欧美大码av| 午夜免费成人在线视频| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 亚洲男人的天堂狠狠| 99久久久亚洲精品蜜臀av| av视频在线观看入口| 国产探花在线观看一区二区| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 亚洲avbb在线观看| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 国产精品乱码一区二三区的特点| 综合色av麻豆| 九色国产91popny在线| 亚洲乱码一区二区免费版| 日本一二三区视频观看| 手机成人av网站| 老汉色av国产亚洲站长工具| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 欧美日韩一级在线毛片| 亚洲电影在线观看av| 观看美女的网站| 啦啦啦韩国在线观看视频| 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 动漫黄色视频在线观看| 日本 欧美在线| 国产熟女xx| 99热只有精品国产| 日韩欧美在线二视频| 99国产极品粉嫩在线观看| 男插女下体视频免费在线播放| 国产探花极品一区二区| 极品教师在线免费播放| 99久久精品一区二区三区| 男女做爰动态图高潮gif福利片| 在线看三级毛片| 午夜福利在线观看免费完整高清在 | 国产精品久久久久久精品电影| 国产美女午夜福利| 免费无遮挡裸体视频| 九九久久精品国产亚洲av麻豆| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 两个人看的免费小视频| 高清日韩中文字幕在线| 内地一区二区视频在线| 少妇丰满av| 午夜激情福利司机影院| 国产一区二区三区视频了| 男女视频在线观看网站免费| 岛国在线观看网站| 在线观看美女被高潮喷水网站 | 少妇熟女aⅴ在线视频| 欧美一区二区国产精品久久精品| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 男女那种视频在线观看| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 91久久精品电影网| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 亚洲七黄色美女视频| 天堂av国产一区二区熟女人妻| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 亚洲欧美日韩无卡精品| 国产日本99.免费观看| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人 | 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| www日本黄色视频网| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区视频了| 欧美xxxx黑人xx丫x性爽| 99国产精品一区二区三区| 色综合站精品国产| 波多野结衣巨乳人妻| 波多野结衣高清作品| 欧美大码av| 日本 av在线| 亚洲精品456在线播放app | 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 激情在线观看视频在线高清| 欧美激情在线99| 国产精品99久久久久久久久| 免费观看人在逋| 午夜免费男女啪啪视频观看 | 色老头精品视频在线观看| 亚洲国产欧美人成| 夜夜躁狠狠躁天天躁| 高清日韩中文字幕在线| 国产综合懂色| www.色视频.com| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 97人妻精品一区二区三区麻豆| 日本撒尿小便嘘嘘汇集6| 一进一出抽搐gif免费好疼| 国产亚洲精品久久久com| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 内射极品少妇av片p| 听说在线观看完整版免费高清| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 少妇的逼水好多| 国产一区二区在线av高清观看| 精品一区二区三区av网在线观看| 99精品欧美一区二区三区四区| 亚洲国产中文字幕在线视频| 国产高清激情床上av| 成年女人毛片免费观看观看9| 日本与韩国留学比较| 亚洲人与动物交配视频| 亚洲专区中文字幕在线| 99热6这里只有精品| 99视频精品全部免费 在线| 免费高清视频大片| 欧美一级毛片孕妇| 国产免费一级a男人的天堂| 90打野战视频偷拍视频| 亚洲在线自拍视频| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 国产成人av激情在线播放| 午夜影院日韩av| 午夜老司机福利剧场| 少妇的逼水好多| 国产主播在线观看一区二区| 日韩有码中文字幕| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 国内精品久久久久久久电影| 黄色日韩在线| 色综合站精品国产| 成人18禁在线播放| 人妻夜夜爽99麻豆av| 亚洲av一区综合| 久久国产精品人妻蜜桃| 人人妻人人澡欧美一区二区| 国产高清视频在线播放一区| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| 成年版毛片免费区| 亚洲内射少妇av| 欧美极品一区二区三区四区| 嫩草影视91久久| 男插女下体视频免费在线播放| 成人国产综合亚洲| 久久久国产精品麻豆| 色av中文字幕| 国产精品久久久久久亚洲av鲁大| 嫩草影院入口| 国产午夜精品论理片| 国产精品免费一区二区三区在线| 99久久精品国产亚洲精品| 国产精品亚洲一级av第二区| 欧美一区二区亚洲| 观看免费一级毛片| 91av网一区二区| 别揉我奶头~嗯~啊~动态视频| 国产黄片美女视频| 中文字幕熟女人妻在线| 欧美大码av| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区 | 国产精品久久久久久久电影 | 亚洲国产精品合色在线| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 亚洲精品色激情综合| 淫妇啪啪啪对白视频| 99在线人妻在线中文字幕| 午夜视频国产福利| 免费观看人在逋| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 麻豆久久精品国产亚洲av| 操出白浆在线播放| 日韩欧美精品v在线| 老司机福利观看| 久久精品国产亚洲av香蕉五月| 天堂影院成人在线观看| 少妇的逼好多水| 国产伦精品一区二区三区四那| 亚洲av电影在线进入| 在线观看舔阴道视频| 观看美女的网站| 少妇高潮的动态图| 国产精华一区二区三区| 91久久精品电影网| 欧美丝袜亚洲另类 | 久久久久久人人人人人| aaaaa片日本免费| 神马国产精品三级电影在线观看| 久久精品国产99精品国产亚洲性色| 精华霜和精华液先用哪个| 欧洲精品卡2卡3卡4卡5卡区| 男女床上黄色一级片免费看| 色综合婷婷激情| 性色av乱码一区二区三区2| 手机成人av网站| 日韩高清综合在线| 国产爱豆传媒在线观看| 久久精品国产99精品国产亚洲性色| 男人舔女人下体高潮全视频| 两个人看的免费小视频| 欧美性猛交黑人性爽| 国产精品99久久久久久久久| 亚洲精华国产精华精| 午夜福利在线观看免费完整高清在 | av专区在线播放| 搡女人真爽免费视频火全软件 | 一区福利在线观看| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 国产亚洲精品一区二区www| 最近最新中文字幕大全免费视频| 欧美区成人在线视频| tocl精华| 人人妻人人澡欧美一区二区| 日本三级黄在线观看| 亚洲av美国av| 国产亚洲精品av在线| 女人十人毛片免费观看3o分钟| 变态另类成人亚洲欧美熟女| 成年人黄色毛片网站| 日韩欧美国产一区二区入口| 亚洲avbb在线观看| 十八禁网站免费在线| 9191精品国产免费久久| 免费人成视频x8x8入口观看| 欧美三级亚洲精品| 免费在线观看亚洲国产| 国内揄拍国产精品人妻在线| 国产色婷婷99| 日韩欧美免费精品| 变态另类成人亚洲欧美熟女| 国产精品美女特级片免费视频播放器| 少妇人妻一区二区三区视频| 最新美女视频免费是黄的| 久久久久久国产a免费观看| 搞女人的毛片| 在线观看午夜福利视频| 亚洲精品亚洲一区二区| 亚洲国产中文字幕在线视频| 一二三四社区在线视频社区8| 91在线观看av| 嫩草影院入口| 久久久久久九九精品二区国产| 桃色一区二区三区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久人妻av系列| 淫秽高清视频在线观看| 手机成人av网站| 真人一进一出gif抽搐免费| 免费看a级黄色片| 亚洲国产中文字幕在线视频| 少妇的逼好多水| 国产精品影院久久| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 天堂网av新在线| 99国产综合亚洲精品| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 日韩成人在线观看一区二区三区| 九色国产91popny在线| 国产一区二区三区在线臀色熟女| 手机成人av网站| 99在线视频只有这里精品首页| 午夜福利18| 中文在线观看免费www的网站| 麻豆国产97在线/欧美| 少妇熟女aⅴ在线视频| 亚洲五月婷婷丁香| 久久人人精品亚洲av| 丰满人妻熟妇乱又伦精品不卡| 免费高清视频大片| 少妇熟女aⅴ在线视频| 午夜精品在线福利| 亚洲精品日韩av片在线观看 | 精品国产三级普通话版| 国产av麻豆久久久久久久| 久久久国产精品麻豆| 韩国av一区二区三区四区| 叶爱在线成人免费视频播放| 99久久成人亚洲精品观看| 亚洲乱码一区二区免费版| av片东京热男人的天堂| 午夜免费成人在线视频| 色视频www国产| 啦啦啦免费观看视频1| 亚洲男人的天堂狠狠| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 亚洲精品成人久久久久久| 又爽又黄无遮挡网站| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 日韩精品青青久久久久久| 在线看三级毛片| 亚洲成人精品中文字幕电影| 美女 人体艺术 gogo| 两个人的视频大全免费| 18禁在线播放成人免费| 天天一区二区日本电影三级| 叶爱在线成人免费视频播放| 在线国产一区二区在线| 久久久久久久久大av| 九色国产91popny在线| 亚洲片人在线观看| 国产综合懂色| 欧美黄色片欧美黄色片| 看免费av毛片| 亚洲性夜色夜夜综合| 欧美日韩瑟瑟在线播放| 给我免费播放毛片高清在线观看| 日本黄色视频三级网站网址| 国产精品久久视频播放| 久久久久免费精品人妻一区二区| 岛国在线免费视频观看| 久久香蕉精品热| 欧美色视频一区免费| 久久久久久人人人人人| 首页视频小说图片口味搜索| 国产精品av视频在线免费观看| 真实男女啪啪啪动态图| 九色成人免费人妻av| 免费人成在线观看视频色| 久久久久久久午夜电影| 亚洲无线观看免费| 国产高清有码在线观看视频| 国产黄片美女视频| 午夜福利视频1000在线观看| 两个人的视频大全免费| 可以在线观看的亚洲视频| 国产真实伦视频高清在线观看 | 波野结衣二区三区在线 | 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频| 熟女电影av网| x7x7x7水蜜桃| avwww免费| 脱女人内裤的视频| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 国产精品嫩草影院av在线观看 | 亚洲男人的天堂狠狠| 老汉色av国产亚洲站长工具| 国产精品99久久久久久久久| 欧美黑人巨大hd| 国产精品98久久久久久宅男小说| 麻豆国产av国片精品| 国产av在哪里看| 亚洲人成网站在线播| 美女高潮喷水抽搐中文字幕| 99热精品在线国产| 国内毛片毛片毛片毛片毛片| 变态另类成人亚洲欧美熟女| 真人一进一出gif抽搐免费| 亚洲av成人不卡在线观看播放网| 人妻久久中文字幕网| 久久婷婷人人爽人人干人人爱| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 亚洲中文字幕日韩| 女警被强在线播放| 热99在线观看视频| 可以在线观看毛片的网站| av视频在线观看入口| 午夜福利在线观看免费完整高清在 | 午夜福利在线在线| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 成人欧美大片| 观看美女的网站| 中文亚洲av片在线观看爽| 国产真实乱freesex| 一级a爱片免费观看的视频| 天堂网av新在线| 狠狠狠狠99中文字幕| 精品一区二区三区人妻视频| 欧美色欧美亚洲另类二区| 黄色女人牲交|