• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水合Pb(OH)+在高嶺石(001)晶面的吸附機(jī)理

    2014-06-23 06:51:50夏樹偉于良民
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:藥學(xué)院化工學(xué)院海洋大學(xué)

    王 娟 夏樹偉 于良民

    (1中國海洋大學(xué)化學(xué)化工學(xué)院,海洋化學(xué)理論與工程技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,山東青島266100;2青島農(nóng)業(yè)大學(xué)化學(xué)與藥學(xué)院,山東青島266109)

    1 Introduction

    The heavy metal elements,as one of the important pollutants in water environment,have attracted global concern due to their nonbiodegradable and persistent nature.1,2The particular toxicity of lead has been well established by the Agency for Toxic Substances and Disease Registry of the U.S.Department of Health and Human Services3since the year of 1999.Pb(II)is the common oxidation state of lead under normal environmental conditions,and hydrolysis of Pb(II)often occurs at slightly alkaline water environment,where Pb(OH)+is one of the most important species.Despite of the abundant biochemical data about Pb(II),much less effort has been devoted to understanding the fundamental aqueous chemistry of Pb(OH)+as well as its adsorption behavior on the mineral surface,especially from the molecular or atomic level.

    Kaolinite,one of the plentiful natural clays,is a 1:1 layered aluminosilicate mineral with a unit cell composition of Al4Si4O10(OH)8.It has been widely used as the adsorbent for the removal of heavy metals from contaminated groundwater4,5due to its high specific surface area,good chemical,and mechanical stability,etc.The removal process for heavy metals takes place either through ion exchange on the permanent negative charge sites usually caused by isomorphic replacement of Si4+by Al3+in the silica tetrahedrons,6or through adsorption on the pH-dependent variable charge sites(S(OH))of the alumina face and the crystal edges,7or a combination of both.

    Although a variety of batch tests about Pb(II)uptake by kaolinite have been reported8,9with the hydrolysis of Pb(II)considered,the developed empirical or semiempirical surface complexation models are only applicable for the specific experimental conditions,and sometimes they even don't fit to the data well.Also,the individual behaviors of Pb2+and Pb(OH)+can not be distinguished,including the preferred complexation mode,adsorption position,etc.Moreover,Pb(II)usually appears as an intermediate acid(with respect to the hard and soft acids and bases(HSAB)theory10),able to bind wide families of ligands in very flexible coordination modes11with hemi-directed or holo-directed coordination geometry.12These versatile characters of Pb(II)have further made the adsorption behavior of Pb(OH)+on kaolinite surface complicated.

    Quantum chemistry calculations,especially the density functional theory(DFT)investigations,have become popular to complement experimental data recently.Although a large amount of DFT investigations on the structural and electronic properties of Pb(II)compounds have been carried out,13theoretical model about Pb(OH)+adsorption on kaolinite surface inclusive of the species and geometry of complex has not been found yet.

    A first-principles density functional study of Pb(OH)+adsorption on the basal octahedral Al(Al(o))(001)surface of kaolinite was performed in this work.The water environment was considered.The monodentate and bidentate complexes,coordination geometry,and coordination number(CN)of Pb(II)as well as the two types of Al(OH)sites were examined.Feasibilities of different types of complexes were evaluated by the values of corresponding binding energies and the similarity of structure parameters to the experimental data.The related charge population and density of states(DOS)were also analyzed in detail to investigate the Pb―O bonding mechanism.

    2 Theoretical methods and models

    2.1 Computational methods

    All calculations were performed with plane-wave pseudopotential DFT method utilizing the Cambridge Sequential Total Energy Package(CASTEP)code14in Materials Studio 5.0.Structures of the kaolinite bulk and(001)surface models were optimized with Perdew-Burke-Ernzerhof(PBE)15functional of the generalized gradient approximation(GGA),as it could describe molecular bonding(including hydrogen bond strength16,17)to greater accuracy than the local density approximation(LDA).Vanderbilt ultrasoft pseudopotential18in conjunction with a cutoff energy of 380 eV was adopted throughout.Monkhorst-Pack meshes ofk-point sampling19were generated with(4×2×3)and(2×2×1)grids for the kaolinite bulk and surface models,respectively.Higher cutoff energy or more refinedkpoint mesh only caused neglected changes in the results.Atomic positions were optimized by Broyden-Fletcher-Goldfarb-Shanno(BFGS)scheme with Gaussian smearing width of 0.20 eV until the total energy changed,the maximum tolerances of the force,and displacement converged to less than 1.0×10-5eV·atom-1,0.3 eV·nm-1,and 1.0×10-4nm,respectively.

    Optimization of kaolinite bulk with chemical composition of Al4Si4O10(OH)8was started from the experimental structure reported by Bish.20The resulted unit cell parameters werea=0.5212 nm,b=0.9052 nm,c=0.7506 nm andα=91.813°,β=105.001°,γ=89.778°,within the error of 1.6%to the experimental values.Similar results have also been obtained by Hu and Michaelides21based on their DFT calculations.Structures of kaolinite and the(001)slab are shown in Fig.1 from a side view.Different from the kaolinite bulk,inner surface hydroxyls in the(001)slab could be clarified into two types:one third“l(fā)ying”hydroxyls(OlH)oriented parallel to the kaolinite(001)surface and two thirds“upright”hydroxyls(OuH)oriented perpendicularly to the surface.The orientation of inner hydroxylsin the slab also changed,not parallel to the(001)surface as in the kaolinite bulk.

    Fig.1 Side view of kaolinite structure with hydroxyl positions indicated(a)and the optimized geometry of(001)slab from the same visual point(b)

    As aqueous chemistry of Pb(OH)+in solution was not well known,all possible species ofwere tested in a 1.0 nm×1.0 nm×1.0 nm periodic box with GGAPBE,ultrasoft pseudopotential,a cutoff energy of 380 eV,and 1×1×1k-point sampling.The same tolerances for self-consistence with total energy of 1.0×10-5eV·atom-1,force of 0.3 eV·nm-1,and displacement of 1.0×10-4nm were adopted to be consistent with the substrate optimization.

    2.2 Surface models

    The kaolinite(001)slab of a single two-sheet layer can be clarified into“H-O-Al-O-Si-O”six atomic“sublayers”.Based on the comparison of calculations on one-layer to two-layer models and one-layer models with different numbers of relaxed and fixed“sublayers”,a(2×1×1)surface unit cell(1.046 nm×0.907 nm×2.030 nm)was adopted as the substrate for Pb(OH)+adsorption,where the top four“sublayers”were relaxed and the bottom two“sublayers”were fixed during the optimization.The same atomic constraint has been used for uranyl adsorption study on(001)surfaces of kaolinite by Kremlevaet al.22The slabs were repeated periodically in thezdirection with a vacuum gap of 1.5 nm.Surface models with Pb(OH)+adsorbed were optimized under the same conditions to the clean(001)slab.

    As shown in Fig.2,four types of surface complexation are explored.Monodentate complex of Pb(OH)+on Al(o)surface might form on the“Ou”site with“up”hydrogen or“Ol”site with“l(fā)ying”hydrogen of any Al center since they belong to different types of inner surface hydroxyls,corresponding to configuration A or B,respectively.As the joint coordination of Pb(II)and H to the same surface oxygen center is possible,23bidentate complexes located on“OuOl”site of single Al center(C)and two neighboring Al centers(D)are also tested,where only the joint coordination structure of“Pb―Ol―H”is considered.

    The binding energy(ΔEbind),calculated according to the reaction(1)based on the deprotonation of surface hydroxyl groups,is defined as the energy difference between the products and reactants.

    where S stands for the surface of the substrate,nandmare the numbers of H2O ligands in aqueous Pb(OH)+and the adsorption complex,respectively,ESandES/Pbrepresent the total energies of clean kaolinite(001)slab and the slab with Pb(OH)+adsorbed on the surface,respectively.“OH-”acts as an example group in alkaline aqueous system,which can react with the missed“H+”of S(OH)3here.

    Bond length of Pb―O is taking as the main criteria to evaluate the reasonability of complex structure.In four types of adsorption modes,all possible species of[S(OH)2(O)Pb(OH)(H2O)m]withmvarying from 1 to 7 are tested.Complex from the DFT optimization having moderate Pb―O length of less than 0.37 nm24will be retained,otherwise be ruled out.As the water environment is considered in our work,Pb(II)tends to combine aqua ligands as many as possible.So only reasonable complex with maximum value ofmis adopted and analyzed.

    3 Results and discussion

    3.1 Geometries of Pb(OH)(H2O)n+

    Pb(II)has a[Xe]4f145d106s26p0electronic configuration,where the“stereochemically active lone pair of electrons”of 6s2can take up more space on a specific region of the surface of coordination sphere than a single bond does,12and gives rise to the uneven distribution of ligands around Pb(II)ultimately.During the periodic DFT optimizations,one or more aqua ligands of Pb(OH)(H2O)+6-8left the first hydration shell withRPb―O>0.37 nmto reach the solvation sphere,indicating that the maximum value ofnwas 5 here.As for the geometries of Pb(OH)shown in Fig.3,complexes of Pb(OH)exhibited hemidirected geometry with increasing tendency to the holo-directed structure,while geometry with one“upright”water molecule occupying the other hemisphere of Pb(II)coordination globe was observed for Pb(OH)Combined with our previous findings that aqueous Pb(II)mainly exists in the structure of PbPb(OH)may be the most probable species of aqueous Pb(OH)+and is used as the initial adsorbate of kaolinite throughout.

    Fig.2 Schematic representation of the monodentate complexes on“Ou”(A)and“Ol”(B)sites and bidentate complexes on“OuOl”site of singleAl center(C)and two neighboringAl centers(D)

    Fig.3 Equilibrium geometries of Pb(OH)(H2O)from periodic DFT calculations

    3.2 Adsorption complexes

    3.2.1 Monodentate complexes

    In the monodentate adsorption mode,Pb(OH)+combines with the deprotonated substrate of[S(OH)2O]-,forming the overall neutral surface complex species.Withmranging from 1 to 7,all possible monodentate complexes of[S(OH)2(O)Pb(OH)(H2O)m]were tested.Unreasonable structures of“Ou”site with much longer Pb―O bond length were obtained until CN of Pb(II)was lower than 6,corresponding to the maximummvalue of 3(shown in Fig.4A).Two water molecules of Pb(II)hydration shell in aqueous system were crowded out by the kaolinite(001)slab due to the steric hindrance effect.Furthermore,stability and CN of complex were found to depend strongly on the hydrogen bonding interactions between aqua ligands and surface hydroxyls,especially the strong attraction of surface Olto H of aqua ligands(forming the“Ol…Hw”bond).Hydrogen bond between O of aqua(or hydroxyl)ligands and H of“Ou”site(designated as“Ow…Hu”or“OH…Hu”)also occurred,but was relatively weak and was less of a factor for the stability of complex.

    As for the“Ol”site,only one water molecule could retain in the coordination sphere of Pb(II),corresponding to the maximum CN of 3(Fig.4B).Although atom of“Ol”exhibited stronger affinity to Pb(II)than“Ou”with a shorter Pb―Olbond length of 0.215 nm(Table 1),repulsive interactions from six surrounding“OuH”groups drove most of the aqua ligands of Pb(OH)away.No hydrogen bond of“Ol…Hw”formed as the distance between neighboring Olcenters was about 0.52 nm,too far apart for Hwto interact directly.

    Both monodentate complexes were in hemi-directed geometry,where bond lengths of Pb―Osand Pb―OHwere obviously shorter than Pb―Ow.An even distribution of hydroxyl and aqua ligands just above the basal Al(o)(001)surface in configuration A has been found,associated with Pb-Al distance of 0.361 nm and three strong“Ol…Hw”bonds at distances of0.167,0.159,and 0.166 nm,respectively(Table 1).The Pb―Oubond length of 0.224 nm was slightly lower than the corresponding EXAFS(extensive X-ray absorption fine structure)value of(0.230±0.001)nm in the Pb(II)complex on kaolinite surface,26but in consistent with the Pb―O length of 0.219-0.232 nm for Pb(II)complex on aluminum oxides from the EXAFS spectroscopy.27Being different,configuration B displayed the distorted trigonal pyramid geometry with Pb―Ollength of 0.215 nm,Pb―Al distance of 0.313 nm,and the only one Pb―Owbond of 0.296 nm.

    Fig.4 Equilibrium geometries of monodentate complexes on“Ou”(A)and“Ol”(B)sites and bidentate complexes on“OuOl”site of the sameAl center(C)and two neighboringAl centers(D)

    Table 1 Structure parameters and binding energies(ΔEbind)of monodentate and bidentate complexes of Pb(OH)+on theAl(o)(001)surface of kaolinite

    Binding energies calculated from reaction(1)were-182.60 and-79.46 kJ·mol-1(Table 1)for configurations A and B,respectively.The negative values indicated the exothermic and favorable characteristic of the Pb(OH)+adsorption process.Thus,complex of“Ou”site seems more favorable based on the high binding energy,strong hydrogen bonding interactions,and good agreement of Pb―Oubond length with experimental values as well.

    3.2.2 Bidentate complexes

    Bidentate complexes with joint coordination structure located on single Al and two neighboring Al centers could be seen from Fig.4C and 4D,respectively.Both complexes featured hemidirected geometry with short Pb―Oubonds(0.215 and 0.216 nm)and slightly long Pb―Olbonds(0.277 and 0.281 nm).The weak Pb―Olbond was mainly caused by the competition of H with Pb to the Olcenter.All hydroxyl and aqua ligands of Pb(II)formed hydrogen bonds with surface hydroxyls,where the“Ol…Hw”type was stronger than“Ow…Hu”or“OH…Hu”.Bond lengths of Pb―OH(0.233 and 0.232 nm)were comparable to the corresponding value in Pb(OH)revealing that the combination of Pb(II)with Al(o)surface did not affect the bond of Pb―OHsignificantly.The main difference was that at most two water molecules could remain in the Pb(II)coordination sphere for configuration C,whereas only one aqua ligand left in configuration D.In other words,the maximum CN of Pb(II)was 5 for bidentate complex of single Al center,and 4 for that of two neighboringAl centers.Inspiringly,the Pb-Al distance of 0.326 nm in configuration C was in good agreement with the corresponding EXAFS data of 0.316-0.332 nm in the Pb(II)complex on aluminum oxides27and 0.327-0.336 nm for Pb(II)complex on iron oxides.28Combined with the binding energies of-121.91 and-55.23 kJ·mol-1for respectively configurations C and D,complexation in bidentate way seems less likely to occur on two neighboring Al centers,where the distance between“Ou”and“Ol”might be too large for Pb(II)to interact with both the atoms simultaneously.

    Analysis focused on the two preferred adsorption types:monodentate complexation of“Ou”site(A)and bidentate complexation of single Al center(C).Configuration A featured a relatively high binding energy of-182.60 kJ·mol-1,incorporating the adsorption energy of Pb(OH)+,dissociation energies of two aqua ligands from Pb(OH)and hydration energy of“H+”from deprotonation of surface hydroxyl group.Although value of ΔEbind(-121.91 kJ·mol-1)for configuration C was slightly low,dissociation energy of one more water molecule from Pb(OH)was incorporated as the complex has a CN of 4,lower than that of complex A.Thus,the adsorption energies of Pb(OH)+in two types might be comparable.Moreover,both the Pb―O bond length of 0.224 nm in configuration A and Pb-Al distance of 0.326 nm in configuration C were in qualitative agreement with the EXAFS data.So these two types of adsorption were all probable,with monodentate complexation more easily to occur.

    3.3 Properties

    3.3.1 Mulliken population

    Mulliken atomic populations of atoms Ou,Ol,OH,and Pb before and after the adsorption are listed in Table 2,which helps to quantify the charge transfer induced by Pb(OH)+adsorption.Charges for Ouand Olin clean kaolinite slab without adsorbent were respectively-1.06 and-1.05,indicating the comparable electronegativity of two different types of surface oxygens.Charges for OHand Pb in Pb(OH)before the adsorption were-0.98 and+1.26,respectively.Upon values of charge difference(Δ),Pb accepted about 0.20 electrons from the surrounding oxygen ligands during the adsorption process,including Ou,Ol,OH,and Ow.Therefore,covalency of Pb has increased after it combined with theAl(o)(001)surface.

    Bond population of Pb―Oshas also been calculated to investigate the corresponding bonding mechanism(Table 2).Bonds of Pb―Ou,Pb―Olin monodentate complexes and Pb―Ouin bidentate complexes all featured negative population values,suggesting that filled antibonding interaction was the major orbital contribution.Positive values of Pb―Olpopulation in the joint coordination structure have been found,indicating the predominantly bonding orbital interactions.As values of Pb―Olpopulation were small,the formed Pb―Olbonds were very weak with notably long bond lengths of about 0.280 nm.So it seems that while hydrogen and Pb(II)coordinate to the samesurface Olsimultaneously,the coordination between hydrogen and Olis stonger than that of Pb(II).

    Table 2 Mulliken charges for atoms of Os,OH,Pb,and Pb―Osbond population in different types of adsorption complexes

    3.3.2 DOS analysis

    Further insight into the bonding nature of Pb(II)with hydroxyls of Al(o)(001)surface could be examined by the partial electronic densities of states(PDOS)of Ou,Oland Pb in four types of adsorption complexes.As shown in Fig.5A,combination of Pb(II)with Ouaffected the Ou2ssignificantly,as it has split from one peak(a)into two narrow parts(b,c,and d),with the corresponding energy shifted from-20.0--17.0 eV to a relatively high region of about-20.0--14.0 eV.Peaks in dashed curve at valence band region of-8.0--6.0 eV(a),as part of Ou2pcontribution in the clean Al(o)surface,decreased from the highest value of~1.10 electrons·eV-1(a)to ~0.20 electrons·eV-1(b,c,and d),while those at the conduction band of 4.0-7.0 eV increased from the highest value of~0.02 electrons·eV-1to ~0.20 electrons·eV-1after the adsorption.These changes are mainly caused by the Pb-Ouinteraction,Pb 6pcoupling with the Pb 6s―Ou2pantibonding states.As Pb 6sand Ou2pstates are located in the similar energy region,an efficient interaction that produces strongly antibonding Pb 6s―Ou2pstates occurs mainly at-5.0-0.5 eV.Coupling of Pb 6pwith the antibonding states can be obviously known from the overlaps between Pb 6s,Pb 6p,and Ou2pat-5.0-0.5 eV.Antibonding orbital interaction in chemical bonding is a characteristic of Pb(II)compounds.Similar interaction has been found in PbO29and hydrated Pb(II).25Also,it has been reported that the minimization of these unfavourable covalent antibonding interactions is the driving force for structural distortion.30

    Fig.5 Partial electronic densities of states(PDOS)of Ouin the cleanAl(o)surface(a),Ouand Pb in configurationsA(b),C(c),D(d)(shown in partA)and Olin the cleanAl(o)surface(e),Oland Pb in configurations B(f),C(g),D(h)(shown in part B)

    In the matter of Pb-Olinteraction(shown in Fig.5B),Ol2sin configuration B(f)was obviously different from those in configurations C(g)and D(h),but close to Ou2sin configuration A(b).Thus,Pb-Osinteractions in monodentate complexes were the same whatever at the“Ou”site or“Ol”site,different from those in bidentate complexes due to the competitive coordination.Ol2sand Ol2pin configurations C(g)and D(h)were similar to those of clean Al(o)surface(e),suggesting that Olcoordinated with hydrogen to a much larger extent than Pb(II).Affected by the dominant hydrogen coordination,overlaps of bonding orbitals between Pb 6sand Ol2pat-8.0--6.0 eV increased.Bond of Pb―Olexhibited small positive population value ultimately.

    Additionally,no notable difference between two types of surface hydroxyls(OuH and OlH)has been found,as they have comparable Mulliken charges(-1.06 and-1.05)and similar DOS curves.Thus,the main reason for Pb(II)preferring to bind on the“Ou”site with relatively high CN and large binding energy is that it has the favorable position for hydrogen bonding interaction to stabilize the structure.As hydrogen bond of the“Ol…Hw”type plays a key role in determining stability of the complex,and distance between two nearest atoms of“Ol”is too large,Pb(II)is less likely to adsorb on the“Ol”site due to the strong repulsions of surrounding OuH to aqua ligands of Pb(II).

    4 Conclusions

    The structure and mechanism of Pb(OH)+adsorption on the Al(o)(001)kaolinite surface have been investigated by the plane-wave pseudopotential DFT calculations.Pb(OH)(H2O)5+is found as the most probable species of Pb(OH)+in aqueous system and used as the initial absorbate.All complexes in monodentate and bidentate modes feature the hemi-directed geometry with low CNs of 3 to 5,where the steric hindrance effect of kaolinite acts as the major cause.Hydrogen bonding interaction of surface“Ol”with“Hw”of aqua ligands has been found playing a key role in determining the stability of complex.Pb(II)adsorption in monodentate way prefers the“Ou”to“Ol”site as it has favorable position for the“Ol…Hw”interaction.Among the adsorption types examined,monodentate complex of“Ou”site with the highest binding energy may be the major species,and bidentate complex on“OuOl”site of single Al center is also probable.Upon the Mulliken population and DOS analysis,Pb(II)accepts electrons from surface oxygens during the adsorption process.Pb 6pcoupling with the Pb 6s―O 2pantibonding states is the primary orbital interaction of Pb(II)with surface oxygen.Pb-Olinteraction in the joint coordination structure features the predominantly bonding state fill-ing due to the competitive coordination of hydrogen.

    Supporting Information:Atomic coordinates in initiative cell of kaolinite,equilibrium geometries of Pb(OH)(H2O)+1-5and[S(OH)2(O)Pb(OH)(H2O)m]with corresponding structural parameters have been included.The information is available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    (1) Karlsson,K.;Viklander,M.;Scholes,L.;Revitt,M.J.Hazard.Mater.2010,178,612.doi:10.1016/j.jhazmat.2010.01.129

    (2)WasimAktar,M.;Paramasivam,M.;Ganguly,M.;Purkait,S.;Sengupta,D.Environ.Monit.Assess.2010,160,207.doi:10.1007/s10661-008-0688-5

    (3)ATSDR(Agency for Toxic Substances and Disease Registry).Toxicological Profile for Lead(Update).U.S.Department of Health and Human Services,Atlanta,Georgia.http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=96&tid=22(accessed Nov 20,2012).

    (4) Tarasevich,Y.I.;Klimova,G.M.Appl.Clay Sci.2001,19,95.doi:10.1016/S0169-1317(01)00061-8

    (5) Gupta,S.S.;Bhattacharyya,K.G.Phys.Chem.Chem.Phys.2012,14,6698.doi:10.1039/c2cp40093f

    (6)Hong,H.L.;Min,X.M.;Zhou,Y.J.Wuhan Univ.Technol.2007,22,661.doi:10.1007/s11595-006-4661-2

    (7) Spark,K.M.;Wells,J.D.;Johnson,B.B.Eur.J.Soil Sci.1995,46,633.doi:10.1111/ejs.1995.46.issue-4

    (8) Srivastava,P.;Singh,B.;Angove,M.J.Colloid Interface Sci.2005,290,28.doi:10.1016/j.jcis.2005.04.036

    (9) Hizal,J.;Apak,R.;Hoell,W.H.Environ.Prog.Sustain.2009,28,493.doi:10.1002/ep.v28:4

    (10) Pearson,R.G.J.Am.Chem.Soc.1963,85,3533.doi:10.1021/ja00905a001

    (11) Puskar,L.;Barran,P.E.;Duncombe,B.J.;Chapman,D.;Stace,A.J.Phys.Chem.A2005,109,273.doi:10.1021/jp047637f

    (12) Shimoni-Livny,L.;Glusker,J.P.;Bock,C.W.Inorg.Chem.1998,37,1853.doi:10.1021/ic970909r

    (13)Hummer,K.;Grüneis,A.;Kresse,G.Phys.Rev.B2007,75,195211.doi:10.1103/PhysRevB.75.195211

    (14) Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert,M.I.J.;Refson,K.;Payne,M.C.Z.Kristallographie2005,220,567.

    (15) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77,3865.doi:10.1103/PhysRevLett.77.3865

    (16) Ireta,J.;Neugebauer,J.;Scheffler,M.J.Phys.Chem.A2004,108,5692.doi:10.1021/jp0377073

    (17) Sun,T.;Wang,Y.B.Acta Phys.-Chim.Sin.2011,27(11),2553.[孫 濤,王一波.物理化學(xué)學(xué)報(bào),2011,27(11),2553.]doi:10.3866/PKU.WHXB20111017

    (18) Vanderbilt,D.Phys.Rev.B1990,41,7892.doi:10.1103/PhysRevB.41.7892

    (19) Monkhorst,H.J.;Pack,J.D.Phys.Rev.B1976,13,5188.doi:10.1103/PhysRevB.13.5188

    (20) Bish,D.L.Clay.Clay Miner.1993,41,738.doi:10.1346/CCMN

    (21) Hu,X.L.;Michaelides,A.Surf.Sci.2008,602,960.doi:10.1016/j.susc.2007.12.032

    (22) Kremleva,A.;Krüger,S.;Ro¨sch,N.Langmuir2008,24,9515.doi:10.1021/la801278j

    (23) Mason,S.E.;Iceman,C.R.;Tanwar,K.S.;Trainor,T.P.;Chaka,A.M.J.Phys.Chem.C2009,113,2159.doi:10.1021/jp807321e

    (24) Gourlaouen,C.;Gerard,H.;Parisel,O.Chem.-Eur.J.2006,12,5024.

    (25)Wang,J.;Xia,S.W.;Yu,L.M.Acta Chim.Sin.2013,71,1307.[王 娟,夏樹偉,于良民.化學(xué)學(xué)報(bào),2013,71,1307.]

    (26)Mishra,B.;Haack,E.A.;Maurice,P.A.;Bunker,B.A.Chem.Geol.2010,275,199.doi:10.1016/j.chemgeo.2010.05.009

    (27) Bargar,J.R.;Brown,G.E.,Jr.;Parks,G.A.Geochim.Cosmochim.Acta1997,61,2617.doi:10.1016/S0016-7037(97)00124-5

    (28) Bargar,J.R.;Brown,G.E.,Jr.;Parks,G.A.Geochim.Cosmochim.Acta1997,61,2639.doi:10.1016/S0016-7037(97)00125-7

    (29)Walsh,A.;Watson,G.W.J.Solid State Chem.2005,178,1422.doi:10.1016/j.jssc.2005.01.030

    (30) Mudring,A.V.Eur.J.Inorg.Chem.2007,2007(6),882.

    猜你喜歡
    藥學(xué)院化工學(xué)院海洋大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    蘭州大學(xué)藥學(xué)院簡介
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    中國海洋大學(xué)作品選登
    中國海洋大學(xué) 自主招生,讓我同時(shí)被兩所211大學(xué)錄取
    ?? ??? ???? ????
    《化工學(xué)報(bào)》贊助單位
    La communication sino-fran?aise
    HSCCC-ELSD法分離純化青葙子中的皂苷
    超碰成人久久| 亚洲国产欧美网| 精品人妻一区二区三区麻豆| 午夜激情av网站| 一本综合久久免费| 天天躁日日躁夜夜躁夜夜| 91麻豆av在线| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 老司机亚洲免费影院| 精品国产一区二区三区久久久樱花| 黄片播放在线免费| 国产精品久久久人人做人人爽| 2018国产大陆天天弄谢| 国产欧美日韩综合在线一区二区| 中文字幕人妻熟女乱码| 亚洲精品美女久久av网站| 久久久久久久大尺度免费视频| 热re99久久国产66热| av一本久久久久| av有码第一页| 亚洲欧美日韩高清在线视频 | 国产精品麻豆人妻色哟哟久久| 国产97色在线日韩免费| 欧美在线黄色| av网站在线播放免费| 久久久精品免费免费高清| 国产免费视频播放在线视频| 亚洲欧美清纯卡通| 日本av手机在线免费观看| av福利片在线| 欧美日韩亚洲综合一区二区三区_| 亚洲第一av免费看| 麻豆乱淫一区二区| 曰老女人黄片| 午夜老司机福利片| 午夜影院在线不卡| 亚洲国产中文字幕在线视频| 久久毛片免费看一区二区三区| 亚洲国产精品一区三区| 黄色视频不卡| 美国免费a级毛片| 1024视频免费在线观看| 亚洲精品在线美女| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 七月丁香在线播放| 久久国产精品男人的天堂亚洲| 又粗又硬又长又爽又黄的视频| avwww免费| 国产一区二区 视频在线| 国产在线免费精品| 婷婷色综合www| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 男女边摸边吃奶| 久久精品久久久久久久性| 女警被强在线播放| 精品人妻在线不人妻| 999久久久国产精品视频| 两人在一起打扑克的视频| 国产一区有黄有色的免费视频| www.精华液| 欧美黑人欧美精品刺激| 亚洲色图综合在线观看| 国产av精品麻豆| a级毛片黄视频| 久久九九热精品免费| 新久久久久国产一级毛片| 国产男女内射视频| 中文字幕人妻丝袜一区二区| 亚洲成人手机| 我要看黄色一级片免费的| 纵有疾风起免费观看全集完整版| 国产亚洲av高清不卡| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 50天的宝宝边吃奶边哭怎么回事| 午夜福利免费观看在线| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 午夜视频精品福利| av又黄又爽大尺度在线免费看| 久久天堂一区二区三区四区| 中文字幕高清在线视频| 亚洲国产欧美一区二区综合| 亚洲伊人色综图| 亚洲欧洲精品一区二区精品久久久| 黄色视频不卡| 少妇 在线观看| 日韩伦理黄色片| 国产av一区二区精品久久| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 亚洲精品第二区| 又大又黄又爽视频免费| 欧美97在线视频| 高清不卡的av网站| 精品福利永久在线观看| 亚洲专区中文字幕在线| 久久久久精品国产欧美久久久 | 国产成人免费无遮挡视频| 国产成人精品久久二区二区91| 欧美日韩亚洲高清精品| 色综合欧美亚洲国产小说| 九草在线视频观看| 侵犯人妻中文字幕一二三四区| 免费高清在线观看视频在线观看| 精品亚洲成a人片在线观看| 久久ye,这里只有精品| 午夜福利免费观看在线| 国产无遮挡羞羞视频在线观看| 国产亚洲欧美精品永久| 可以免费在线观看a视频的电影网站| 日韩av在线免费看完整版不卡| 免费高清在线观看日韩| 尾随美女入室| 日韩欧美一区视频在线观看| 午夜福利影视在线免费观看| 久久精品久久久久久噜噜老黄| a级片在线免费高清观看视频| 天天躁夜夜躁狠狠躁躁| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花| 欧美在线黄色| 七月丁香在线播放| 国产日韩欧美在线精品| 免费av中文字幕在线| 成年美女黄网站色视频大全免费| 国产深夜福利视频在线观看| 久久中文字幕一级| 亚洲七黄色美女视频| 亚洲精品自拍成人| 大陆偷拍与自拍| 19禁男女啪啪无遮挡网站| 黄片小视频在线播放| 欧美人与善性xxx| 国产女主播在线喷水免费视频网站| 欧美人与性动交α欧美精品济南到| 久久久久精品国产欧美久久久 | 亚洲成国产人片在线观看| 人人妻人人澡人人看| 中文字幕色久视频| 国产亚洲欧美精品永久| 国产成人免费无遮挡视频| 一边亲一边摸免费视频| 久久人妻熟女aⅴ| 丁香六月天网| 一本大道久久a久久精品| 性少妇av在线| 国产免费现黄频在线看| 亚洲精品国产av蜜桃| 国产成人av激情在线播放| 十八禁人妻一区二区| 精品人妻在线不人妻| 手机成人av网站| 一级片'在线观看视频| 国产av精品麻豆| 国产野战对白在线观看| 一级毛片我不卡| 精品熟女少妇八av免费久了| 精品人妻熟女毛片av久久网站| 丰满饥渴人妻一区二区三| 国产高清国产精品国产三级| 欧美精品人与动牲交sv欧美| 欧美97在线视频| 亚洲欧美中文字幕日韩二区| 又粗又硬又长又爽又黄的视频| 日本a在线网址| 免费少妇av软件| 欧美人与性动交α欧美软件| 久久这里只有精品19| 老司机影院毛片| 熟女av电影| 久久精品国产亚洲av高清一级| 亚洲欧美色中文字幕在线| av不卡在线播放| 中文精品一卡2卡3卡4更新| 国产成人精品久久久久久| 天天影视国产精品| 91麻豆精品激情在线观看国产 | 人妻 亚洲 视频| 少妇被粗大的猛进出69影院| 欧美成人精品欧美一级黄| 午夜福利视频精品| 极品人妻少妇av视频| 免费观看人在逋| 亚洲伊人色综图| 免费在线观看视频国产中文字幕亚洲 | 久久久精品94久久精品| 精品卡一卡二卡四卡免费| 久久精品国产综合久久久| 各种免费的搞黄视频| 天堂中文最新版在线下载| 久久毛片免费看一区二区三区| 超碰97精品在线观看| 高清不卡的av网站| 两人在一起打扑克的视频| 国产成人精品无人区| 午夜免费男女啪啪视频观看| 国产真人三级小视频在线观看| 久久久精品区二区三区| 人人澡人人妻人| 国产国语露脸激情在线看| 一级毛片黄色毛片免费观看视频| 免费少妇av软件| 亚洲中文字幕日韩| 91精品伊人久久大香线蕉| 亚洲成国产人片在线观看| 久久天躁狠狠躁夜夜2o2o | 亚洲精品乱久久久久久| 电影成人av| 搡老岳熟女国产| 男人爽女人下面视频在线观看| 精品一区在线观看国产| 欧美日韩一级在线毛片| 国产高清不卡午夜福利| 国产精品麻豆人妻色哟哟久久| 国产精品久久久久久精品电影小说| 久久ye,这里只有精品| 视频区图区小说| 欧美精品一区二区大全| www.999成人在线观看| 男女午夜视频在线观看| 亚洲精品第二区| 国产免费视频播放在线视频| 好男人电影高清在线观看| 99热全是精品| 亚洲av片天天在线观看| 欧美国产精品一级二级三级| 精品熟女少妇八av免费久了| 你懂的网址亚洲精品在线观看| 久久精品aⅴ一区二区三区四区| 亚洲中文字幕日韩| 午夜日韩欧美国产| 国产片内射在线| 午夜免费鲁丝| 水蜜桃什么品种好| 久久精品aⅴ一区二区三区四区| 1024香蕉在线观看| 大香蕉久久网| 99精国产麻豆久久婷婷| 99国产精品一区二区蜜桃av | 黄片小视频在线播放| 丝袜喷水一区| 免费在线观看影片大全网站 | 午夜视频精品福利| 下体分泌物呈黄色| 精品久久久精品久久久| 青青草视频在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 久9热在线精品视频| 国产精品久久久久久人妻精品电影 | 亚洲欧洲日产国产| 黄色a级毛片大全视频| 咕卡用的链子| 欧美性长视频在线观看| 性色av一级| 国产亚洲av片在线观看秒播厂| 久久av网站| 成人午夜精彩视频在线观看| 国产精品麻豆人妻色哟哟久久| 中文字幕亚洲精品专区| 狂野欧美激情性bbbbbb| 亚洲国产最新在线播放| 亚洲国产精品一区三区| 成人三级做爰电影| 亚洲伊人久久精品综合| 日本av免费视频播放| 欧美精品一区二区大全| 免费高清在线观看日韩| 日本黄色日本黄色录像| 少妇被粗大的猛进出69影院| 国产成人系列免费观看| 男人舔女人的私密视频| 国产精品一二三区在线看| 不卡av一区二区三区| 91精品国产国语对白视频| 9色porny在线观看| xxx大片免费视频| av福利片在线| 欧美成狂野欧美在线观看| a级毛片在线看网站| 亚洲av日韩在线播放| 久久国产精品大桥未久av| 成年人免费黄色播放视频| 亚洲精品一二三| 两个人免费观看高清视频| 欧美97在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲伊人色综图| www.自偷自拍.com| 狠狠精品人妻久久久久久综合| 亚洲精品国产区一区二| 天堂俺去俺来也www色官网| 老司机在亚洲福利影院| 中文乱码字字幕精品一区二区三区| 99久久综合免费| 美女福利国产在线| 中文字幕av电影在线播放| 男男h啪啪无遮挡| 在线观看人妻少妇| 伊人亚洲综合成人网| 国产成人精品久久二区二区91| av又黄又爽大尺度在线免费看| 亚洲av成人精品一二三区| 别揉我奶头~嗯~啊~动态视频 | www.av在线官网国产| 高清视频免费观看一区二区| 国产又色又爽无遮挡免| 亚洲精品久久成人aⅴ小说| 美女中出高潮动态图| 欧美97在线视频| 日韩精品免费视频一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产免费又黄又爽又色| 亚洲欧美色中文字幕在线| 国产精品久久久av美女十八| 丝袜喷水一区| 纵有疾风起免费观看全集完整版| 一级片免费观看大全| 性色av乱码一区二区三区2| 精品国产乱码久久久久久男人| 欧美日韩亚洲综合一区二区三区_| 人体艺术视频欧美日本| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久久毛片微露脸 | 高清欧美精品videossex| 91九色精品人成在线观看| 女人爽到高潮嗷嗷叫在线视频| 女人爽到高潮嗷嗷叫在线视频| av电影中文网址| 日本欧美国产在线视频| 免费日韩欧美在线观看| 老司机在亚洲福利影院| 一级黄色大片毛片| 黄网站色视频无遮挡免费观看| 一级黄片播放器| 国产精品一二三区在线看| 婷婷色av中文字幕| 999久久久国产精品视频| 久久精品国产a三级三级三级| 十八禁高潮呻吟视频| 波多野结衣av一区二区av| 久久精品熟女亚洲av麻豆精品| 亚洲人成网站在线观看播放| 80岁老熟妇乱子伦牲交| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 久久精品人人爽人人爽视色| 国产熟女欧美一区二区| 亚洲七黄色美女视频| 男女边摸边吃奶| 欧美精品人与动牲交sv欧美| 欧美日韩成人在线一区二区| 亚洲天堂av无毛| 亚洲国产av影院在线观看| 中文字幕色久视频| 激情五月婷婷亚洲| av天堂久久9| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频 | 男女无遮挡免费网站观看| 欧美老熟妇乱子伦牲交| 中文字幕人妻丝袜一区二区| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 欧美乱码精品一区二区三区| 1024香蕉在线观看| 超色免费av| 久久影院123| 一级a爱视频在线免费观看| 国产又爽黄色视频| 男女下面插进去视频免费观看| 99热网站在线观看| 热re99久久国产66热| 亚洲欧美中文字幕日韩二区| 久久久久久人人人人人| 国产淫语在线视频| 国产在线视频一区二区| 亚洲av日韩在线播放| 麻豆国产av国片精品| 啦啦啦在线观看免费高清www| 天堂8中文在线网| 无限看片的www在线观看| 国产视频一区二区在线看| 女人高潮潮喷娇喘18禁视频| 日韩欧美一区视频在线观看| 日韩熟女老妇一区二区性免费视频| 久久人妻熟女aⅴ| av福利片在线| 又紧又爽又黄一区二区| 久久久国产精品麻豆| 一级片'在线观看视频| 亚洲欧美中文字幕日韩二区| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 一本一本久久a久久精品综合妖精| 亚洲一卡2卡3卡4卡5卡精品中文| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 日韩视频在线欧美| 久久女婷五月综合色啪小说| 久久精品成人免费网站| 在线av久久热| 久久国产亚洲av麻豆专区| 黄色视频在线播放观看不卡| 国产视频一区二区在线看| 在线观看人妻少妇| 一个人免费看片子| 国产一区有黄有色的免费视频| 日韩 欧美 亚洲 中文字幕| 免费少妇av软件| videosex国产| 欧美亚洲 丝袜 人妻 在线| 首页视频小说图片口味搜索 | 欧美精品高潮呻吟av久久| 精品少妇黑人巨大在线播放| 亚洲欧美精品自产自拍| 在线观看免费午夜福利视频| svipshipincom国产片| 大片免费播放器 马上看| 国产精品一二三区在线看| 国产免费又黄又爽又色| 欧美激情极品国产一区二区三区| 麻豆av在线久日| 狂野欧美激情性xxxx| av国产精品久久久久影院| 亚洲欧美一区二区三区国产| 97在线人人人人妻| www.av在线官网国产| 只有这里有精品99| 中文字幕色久视频| 精品卡一卡二卡四卡免费| 免费在线观看影片大全网站 | 视频区欧美日本亚洲| 亚洲美女黄色视频免费看| 亚洲欧洲日产国产| 99国产精品一区二区三区| 久久精品国产a三级三级三级| 捣出白浆h1v1| 久久性视频一级片| www.熟女人妻精品国产| 久久久久网色| 国产精品久久久av美女十八| 精品久久久久久久毛片微露脸 | 99久久人妻综合| www.av在线官网国产| 制服诱惑二区| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 亚洲视频免费观看视频| 久久人妻熟女aⅴ| e午夜精品久久久久久久| 午夜福利视频精品| 一区二区三区激情视频| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久av网站| 国产一区二区三区av在线| 国产日韩一区二区三区精品不卡| 狂野欧美激情性bbbbbb| 亚洲第一av免费看| 少妇裸体淫交视频免费看高清 | 天天躁日日躁夜夜躁夜夜| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久免费视频了| 日韩中文字幕欧美一区二区 | 视频区图区小说| 免费一级毛片在线播放高清视频 | 好男人视频免费观看在线| 91字幕亚洲| 90打野战视频偷拍视频| 国产成人一区二区三区免费视频网站 | 国产黄频视频在线观看| www.熟女人妻精品国产| 一级黄色大片毛片| 熟女av电影| 如日韩欧美国产精品一区二区三区| 久久午夜综合久久蜜桃| 日韩中文字幕欧美一区二区 | 首页视频小说图片口味搜索 | 91精品三级在线观看| 波多野结衣一区麻豆| 国精品久久久久久国模美| 久久久久久久国产电影| 亚洲人成77777在线视频| 最新在线观看一区二区三区 | 日日爽夜夜爽网站| 国产伦人伦偷精品视频| 久久久久国产一级毛片高清牌| 国产精品久久久久成人av| 亚洲第一av免费看| 国产精品 国内视频| 青春草亚洲视频在线观看| 80岁老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 久久精品aⅴ一区二区三区四区| 国产成人91sexporn| 十八禁高潮呻吟视频| 久久久久视频综合| 国产淫语在线视频| www.熟女人妻精品国产| 免费看不卡的av| 制服人妻中文乱码| 亚洲视频免费观看视频| 2018国产大陆天天弄谢| 亚洲图色成人| 看十八女毛片水多多多| 久久影院123| 国产xxxxx性猛交| 精品国产一区二区久久| 国产一级毛片在线| 中文字幕另类日韩欧美亚洲嫩草| 免费av中文字幕在线| 欧美 日韩 精品 国产| 国产高清不卡午夜福利| 国产亚洲午夜精品一区二区久久| 久久久久久免费高清国产稀缺| 国产免费现黄频在线看| 大码成人一级视频| 亚洲中文字幕日韩| 国产男女超爽视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕欧美一区二区 | 女人精品久久久久毛片| 精品福利观看| 大香蕉久久网| 一边亲一边摸免费视频| 美女视频免费永久观看网站| 国产成人精品在线电影| 国产精品免费大片| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| 国产精品麻豆人妻色哟哟久久| av网站在线播放免费| av在线老鸭窝| 极品人妻少妇av视频| 中文字幕制服av| 亚洲熟女精品中文字幕| 亚洲欧美日韩另类电影网站| 男女下面插进去视频免费观看| 一级毛片我不卡| 亚洲av电影在线进入| 亚洲 欧美一区二区三区| 91精品三级在线观看| 久久久国产一区二区| 午夜视频精品福利| 男女边摸边吃奶| 精品久久久精品久久久| 黄片小视频在线播放| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 男女之事视频高清在线观看 | 我要看黄色一级片免费的| 91精品三级在线观看| 午夜激情久久久久久久| 亚洲精品国产av蜜桃| 麻豆av在线久日| 午夜福利影视在线免费观看| 高清视频免费观看一区二区| 91麻豆av在线| www.自偷自拍.com| 只有这里有精品99| 不卡av一区二区三区| 欧美激情极品国产一区二区三区| 多毛熟女@视频| 日本五十路高清| 亚洲天堂av无毛| 国产精品免费视频内射| 欧美日韩综合久久久久久| 久久久久久久久免费视频了| 男人添女人高潮全过程视频| 久久这里只有精品19| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 美女福利国产在线| 亚洲,欧美,日韩| 亚洲 欧美一区二区三区| 久久中文字幕一级| 真人做人爱边吃奶动态| 国产精品九九99| 99国产精品一区二区三区| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 麻豆乱淫一区二区| 精品福利永久在线观看| 国产在视频线精品| 女人久久www免费人成看片| 黄片播放在线免费| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 午夜av观看不卡| 亚洲精品第二区| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 老司机影院毛片| 99国产精品99久久久久| 国产一区二区三区综合在线观看| 在线观看国产h片| 青春草视频在线免费观看| 少妇的丰满在线观看| 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看|