• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    2014-06-07 07:53:32
    船舶力學 2014年9期
    關鍵詞:階次周向上海交通大學

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    WANG Bin,TANG Wei-lin,FAN Jun

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Structural borne acoustic radiation can be determined solely by the surface velocity distribution which is measured more easily than other physical quantities.The sampling intervals should be chosen carefully to ensure the prediction precision and reduce the system cost at the same time.In this paper,the prediction error with respect to the sampling intervals for the simply supported cylindrical shells is formulated as a mathematical problem,in which the sampling intervals needed in axis and in circumference can be studied separately.The rules for the determination of the sampling intervals to satisfy certain predetermined criteria are put forward.The sampling interval in axis is just determined by the axial order of the mode and a dimensionless quantity;in circumference it is mainly decided by the circumferential order and another dimensionless quantity.In the cases of finite circumferential modes,the number of the sampling points in circumference is only determined by the highest order of these modes.

    structural borne sound;radiation prediction;sampling interval

    Biography:WANG Bin(1981-),male,Ph.D.student of Shanghai Jiao Tong University.

    1 Introduction

    In an infinite fluid,the structural borne acoustic radiation can be solely determined by the surface velocity distribution.Considering it can be measured easier than other physical quantities,people have devoted themselves to the numerical methods[1-2]based on the surface velocity distribution,among which Boundary Element Method(BEM)is most widely used.In order to improve prediction precision and calculation speed,people pay attention mainly to improving the numerical methods[3-4].All of them assume the surface velocity distribution is known.However,this simple assumption requires the vibration sensors be distributed on the whole surface,which is very difficult or even impossible to be implemented in most practical applications.

    Besides the coarse requirement of six samples per acoustic wavelength in BEM[5],these are few open papers discussing the surface spatial sampling interval in predicting the structural borne acoustic radiation.Ref.6 discussed the rule for the determination of sampling interval on rectangular plates with respect to the analyzing frequency,the error range,the mode order,and the observer elevation.Considering cylindrical shells are more representative than rectangular plates in analogy with actual underwater vehicles,the rule for the determination of sampling intervals satisfying the prediction error requirement for simply supported baffled cylindrical shells is discussed in this paper.

    2 Radiation theory based on simply supported baffled cylindrical shells

    Considering a simply supported cylindrical shell with length L,radius a and semi-infinite rigid cylindrical baffles at the ends as shown in Fig.1,the normal velocity on the surface of the cylindrical shell can be expressed as a sum of many modes[7]

    where m is the axial order and n is the circumferential order of these modes.

    The assumption of semi-infinite cylindrical baffles endows the acoustic field of the finite cylindrical radiators with an analytical expression.Transformed from the cylindrical coordinates to the spherical coordinates and calculated with the stationary phase method,the acoustic pressure for a remote observer point R,θ,( )φ radiated from each moden,( )m can be expressed analytically as[8]

    in the above equations,ρ0is the density of the fluid,c0is sound speed in the fluid,k0is wave number,(·) is the first derivative of the first kind of nth order Hankel function and the time dependence is always assumed as e-jωt.

    3 An efficient prediction method for radiated acoustic field

    Nowadays,BEM is the most widely used numerical method and available for arbitrary boundary geometries theoretically.Another efficient numerical method is adopted here,which is easier to be implemented than BEM in evaluating the prediction error with respect to the sampling intervals.

    Suppose the number of the sampling points in axis is M and that in circumference is N,and then the acoustic pressure radiated by a single mode n,( )m can be written as

    where zj=(2j - 1) L/2M,φi=(2i - 1) 2π/2N are the axial coordinate and the circumferential coordinate of the (i, j ) th sampling point respectively, υnm(zj, φi)is the normal velocity at the(i, j ) th sampling point

    and pij(R ,θ ,φ )denotes the acoustic pressure at the observer point(R ,θ ,φ )radiated by the baffled conformal piston centered at the (i, j ) th sampling point and vibrating in unit velocity[8]

    where 2L0=L/M is the axial length of the piston,2α0=2π/N is the circumferential angle of the piston and j0(·) is the zero-order spherical Bessel function.When the piston is very small compared to the cylindrical shell,these two factors j0(k0L0cos θ)and j0(tα0)in Eq.6 can be approximated as 1.

    Eq.4 can be rewritten as

    Considering the cases of M→∞,N→∞,the limits of Eqs.8 and 9 can be obtained,

    So,it can be proved that Eq.7 is convergent to the analytical expression with the number of sampling points trending to infinity

    that is,the sampling intervals in axis and in circumference are fine enough.The prediction error is formulated as the same as that in Ref.[6]

    This is a complicated function which is related with the order of the mode,the sampling intervals,the observer orientation and the analyzing frequency.According to Eq.7,the prediction error can be rewritten as

    Given an intended error,the number of sampling points needed in axis is just decided by the axial order,and the dimensionless quantity k0Lcosθ,and that in circumference is determined by the circumferential order,the dimensionless quantity k0asinθ,and the observer azimuth φ.

    In the above,the prediction error with respect to the sample intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for these two functions in Eqs.8 and 9.It is notable that there is a great difference between these two functions in form.It can be directly explained that the axial curvature and the circumferential curvature are quite different from each other.Besides that,the non-zero curvature makes the rule of spatial sampling on cylindrical shells quite different from that on rectangular plates,especially squarelike plates which can be sampled equally in the directions parallel with the sides[6].

    4 Spatial sampling for the simply supported cylindrical shell

    It is impossible to reveal the relationships between the number of the integral points and the integral precision for these two functions f1(M,m,k0Lcos θ) and f2(N,n,k0asinθ,φ )analytically.So numerical analysis is adopted in this section.The rules for the determination of the sampling intervals in axis and in circumference to satisfy certain predetermined criteria are investigated separately.

    4.1 Spatial sampling in axis

    The form of function f1(M,m,k0Lcos θ)reveals that prediction error with respect to sampling number M in axis is just determined by the axial order m and the dimensionless quantity k0Lcosθ decided by the observer point and the analyzing frequency.Assuming the intended error is 0.1dB,the relationships between the number of sampling points needed and the dimensionless quantity k0Lcosθ are shown in Fig.2.

    It can be seen that there is a dimensionless critical frequency Fafor each mode as that in case of plates[6],which is related with the axial order.When the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of sampling points needed changes slowly with the dimensionless quantity k0Lcosθ.When Fais exceeded,the number of sampling points needed increases with k0Lcosθ,the linear slope nearly independent of the axial order m.Therefore,this dimensionless critical frequency Faplays an important role in lessening the sampling points and ensuring the prediction precision at the same time.It is necessary to find out the relationship between the exact values of Faand the axial orders m.The relevant results are shown in Fig.3 with the intended error 0.1dB.

    It is obvious that the dimensionless critical frequency Fafor each mode increases linearly with the axial order and can be approximated as

    This approximation is not obtained occasionally and has been explained in Eq.8 implicitly.The wavenumber spectrum of the discrete spatial sampling is a result of periodic superposition of the spectrum of the analogous spatial signal.The prediction error defined in Eq.15 is decided by the relative error of the aliasing interference at the specific argument k0cosθ.With a fixed sampling interval,the aliasing interference is weakened to the utmost extent at the wavenumber of the spectrum peak.In other words,given a fixed intended error,the number of sampling points needed is the most least when this specific argument k0cosθ approaches the wavenumber of the spectrum peak.

    To make clear of the explanations for Figs.2 and 3,a certain axial mode is taken as an example.The wavenumber spectrum can be expressed as

    and shown in Fig.4,together with the spectrum of the discrete spatial sampling.

    The axial order m and the number of the sampling points M are set as 6 and 12 respectively.And the amplitudes of spectrum and the wavenumber are both normalized with L/2π.It can be seen that the spectrum peak is in the neighborhood of the wavenumber K1=mπ/L.When the observer point and the analyzing frequency satisfy k0cosθ≈K1,that is k0Lcosθ≈mπ,the number of the sampling points in axis is the most least for a fixed intended error.With the disparity between k0Lcosθ and mπ increasing,the aliasing interference becomes stronger as a result of the wavenumber spectrum descending,and the number of sampling points in axis has to be increased to satisfy the fixed intended error.

    In some fields,the observer elevation θ close to 90°often catches more attentions than other observer elevations,which is called as beam aspect.The numbers of the sampling points in axis required by the different intended errors for k0Lcosθ→0 are shown in Fig.5.

    It is obvious that the number of the sampling points needed in axis is proportional to the axial mode,the linear slope increasing with the prediction precision.The number of the sampling points can be approximated as the integer close to

    where A0erris a coefficient related with the prediction precision and listed in Tab.1 with the fitting method.

    Tab.1 Fitting values of A0errwith respect to the intended errors

    In the case of the observer point and the analyzing frequency satisfying k0Lcosθ>>Fa,the number of the sampling points needed in axis versus the dimensionless quantity k0Lcosθ is discussed in Fig.6,with the axial order m=2.For the linear slope changes little with the axial order m,the conclusions drawn in Fig.6 are also correct for other axial orders m≠2.

    In Fig.6,the linear slope of the number of the sampling points in axis versus k0Lcosθ de-pends on the intended errors strongly which can be approximately presented as

    where Aerris a coefficient increasing with the prediction precision.In other words,the sampling interval in axis to satisfy the intended error can be expressed as

    where λ0is wavelength of sound in fluid.The fitting values of Aerrwith respect to the intended errors are listed in Tab.2.

    Tab.2 Fitting values of Aerrversus the intended errors

    For the observer point near the ends of cylindrical shellscosθ→()1,the requirement of

    the sampling interval in axis is strictest

    4.2 Spatial sampling in circumference

    The form of function f2(N,n,k0asinθ,φ )indicates that the prediction error with respect to the circumferential sampling is determined not only by the circumferential order n and the dimensionless quantity k0asinθ,but also by the observer azimuth φ.Given a further consideration on Eq.15,it can be obtained that

    that is,the prediction error with respect to the observer azimuth φ is periodic with.When N is large enough,the dependence on the observer azimuth φ can be neglected and the prediction error is mainly determined by the circumferential order n and the dimensionless quantity k0asinθ.

    Assuming the intended error is 0.1dB and the observer azimuth φ=0,the numbers of the sampling points needed in circumference versus the dimensionless quantity k0asinθ are shown in Fig.7.

    It can be seen that the number of the sampling points in circumference is just decided by the circumference order n

    and independent of the dimensionless quantity k0asinθ.Another surprise is that the prediction error defined in Eq.16 is 0dB.On another view,this result can be understood easily.In the cases of finite modes in circumference,all the information of these modes can be recovered precisely from the spatial sampling as long as the number of the sampling points in circumference is higher than the highest order of these modes two times,and then the acoustic radiation can also be known.

    However,it must be born in mind that the prediction error with respect to the sampling interval in circumference is no longer 0dB in the cases where there are infinite modes in circumference,such as a patch excitation considered.And the number of the sampling points needed in circumference is also related with the dimensionless quantity k0asinθ.The higher prediction precision designated or the larger k0asinθ concerned,the more sampling points in circumference are required.

    5 Conclusions

    In this paper,spatial sampling on the cylindrical shells for predicting radiated acoustic field has been investigated.The prediction error with respect to the sampling intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for two separable functions.Some conclusions have been drawn as follows.

    (1)Prediction error with respect to the sampling interval in axis is determined by the axial order and the dimensionless quantity k0Lcosθ.There is a dimensionless critical frequency Fafor each mode,which equals the product of the axial order and π.If the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of the sampling points needed in axis changes slowly with k0Lcosθ.Otherwise,it increases linearly with k0Lcosθ and the sampling interval in axis approximates λ0/2Aerrπcosθ.For the beam aspect,the number of the sampling points in axis is mainly determined by the axial order,the linear slope increasing with the prediction precision.

    (2)Prediction error with respect to the sampling interval in circumference is decided by the circumferential order,the dimensionless quantity k0asinθ and the observer azimuth.When the sampling points are sufficient,the observer azimuth dependence can be neglected.In the cases of finite modes in circumference,the number of the sampling points in circumference is just required to be higher than the highest circumferential order two times.

    [1]Chertock G.Sound radiation from vibrating bodies[J].J Acoust.Soc.Am.,1964,36(7):1305-1313.

    [2]Chen L H,Schweikert D G.Sound radiation from an arbitrary body[J].J Acoustic.Soc.Am.,1963,35(10):1626-1632.

    [3]Schenck H A.Improved integral formulation for acoustic radiation problems[J].J Acoust.Soc.Am.,1968,43:44-51.

    [4]Koopmann G H,Song L,Fahnline J.A method for computing acoustic fields based on the principle of wave superposition[J].J Acoust.Soc.Am.,1989,86(5):2433-2438.

    [5]SYSNOISE Rev 5.5:User manual[K].LMS International,2000.

    [6]Tao J,Ge H,Qiu X.A new rule of vibration sampling for predicting acoustical radiation from rectangular plates[J].Applied Acoustics,2006,67(8):756-770.

    [7]Laulagnet B.Model analysis of a shell’s acoustic radiation in light and heavy fluids[J].J of Sound and Vibration,1989,131(3):397-415.

    [8]Junger M C,Feit D.Sound,Structures,and Their Interaction[M].Cambridge MA:MIT Press,1986.

    [9]Szechenyi E.Modal density and radiation efficiencies of unstiffened cylinders using statistical method[J].J of Sound and Vibration,1971,19(1):65-68.

    [10]Mclean R F,Alsop S H,Fleming J S.Nyquist-overcoming the limitations[J].Journal of Sound and Vibration,2005,280:1-20.

    基于輻射聲場預報的圓柱殼表面空間采樣研究

    王 斌,湯渭霖,范 軍

    (上海交通大學船舶海洋與建筑工程學院,上海200240)

    無限流體介質中振動結構的輻射聲場可以由其表面振速分布唯一地確定,而且表面振速相對于其它物理量而言更容易被可靠測量。然而,必須謹慎選擇表面振速的空間采樣間隔,以確保預報聲場精度較高,同時預報系統負擔較小。文中討論了簡支圓柱殼表面振速的空間采樣問題,將采樣間隔與預報誤差之間的關系簡化為一個數學問題,其中周向采樣問題與軸向采樣問題可以分離、單獨研究。總結了在指定預報精度范圍內表面振速空間采樣的有關規(guī)律:軸向采樣點數取決于軸向模態(tài)階次以及一個無因次量;周向方向采樣點數主要取決于周向模態(tài)階次以及另一個無因次量。對于周向模態(tài)有限的情況,周向采樣點數僅取決于周向模態(tài)的最高階次。

    結構聲輻射;輻射聲場預報;采樣間隔

    O427.5

    A

    王 斌(1981-),男,上海交通大學船舶海洋與建筑工程學院博士研究生;

    范 軍(1973-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師。

    O427.5

    A

    1007-7294(2010)06-0690-09

    date:2009-05-08

    湯渭霖(1940-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師;

    猜你喜歡
    階次周向上海交通大學
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    周向拉桿轉子瞬態(tài)應力分析與啟動曲線優(yōu)化
    階次分析在驅動橋異響中的應用
    基于Vold-Kalman濾波的階次分析系統設計與實現*
    上海交通大學參加機器人比賽
    基于齒輪階次密度優(yōu)化的變速器降噪研究
    價值工程(2017年28期)2018-01-23 20:48:29
    周向定位旋轉分度鉆模設計
    一種商用輕型載重汽車輪胎
    永磁同步電主軸用電機定子周向模態(tài)研究
    《疾風圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    日本黄色视频三级网站网址| 正在播放国产对白刺激| 怎么达到女性高潮| 国语自产精品视频在线第100页| 日本五十路高清| 天堂√8在线中文| 成人午夜高清在线视频 | www.自偷自拍.com| 亚洲精品国产精品久久久不卡| 18禁裸乳无遮挡免费网站照片 | 久久精品人妻少妇| 国产午夜精品久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品第一综合不卡| 后天国语完整版免费观看| 亚洲成av片中文字幕在线观看| 国产野战对白在线观看| 美女免费视频网站| 香蕉丝袜av| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 国产欧美日韩精品亚洲av| 久久精品91无色码中文字幕| 欧美久久黑人一区二区| 国产精品亚洲一级av第二区| 日韩欧美三级三区| 久久久国产成人免费| 国产精品一区二区免费欧美| 国产女主播在线喷水免费视频网站 | a级毛色黄片| 久久99热这里只有精品18| 草草在线视频免费看| 99热只有精品国产| 草草在线视频免费看| 亚洲av一区综合| 久久久成人免费电影| 久久精品国产自在天天线| 国产精品一及| 淫秽高清视频在线观看| 91久久精品国产一区二区成人| 成人性生交大片免费视频hd| 国产91av在线免费观看| 人妻丰满熟妇av一区二区三区| 黄色欧美视频在线观看| 亚洲人成网站在线观看播放| 搡老熟女国产l中国老女人| 三级男女做爰猛烈吃奶摸视频| 亚洲av中文av极速乱| 国产精品久久久久久亚洲av鲁大| 国产精品无大码| 蜜臀久久99精品久久宅男| 午夜a级毛片| 91久久精品国产一区二区三区| 美女内射精品一级片tv| 国产麻豆成人av免费视频| 欧美极品一区二区三区四区| 国产乱人偷精品视频| 老司机福利观看| 性欧美人与动物交配| 日韩欧美三级三区| 亚洲精华国产精华液的使用体验 | 国内久久婷婷六月综合欲色啪| 国语自产精品视频在线第100页| 一区福利在线观看| 男女视频在线观看网站免费| 久久久精品大字幕| 不卡一级毛片| 中国国产av一级| 欧美丝袜亚洲另类| 国内精品一区二区在线观看| 国内揄拍国产精品人妻在线| 六月丁香七月| 丝袜喷水一区| 日韩av不卡免费在线播放| 久久久精品94久久精品| 欧美中文日本在线观看视频| 看十八女毛片水多多多| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人久久小说 | 国产精品综合久久久久久久免费| 哪里可以看免费的av片| 日本黄色片子视频| 黄色日韩在线| 精品乱码久久久久久99久播| 国产美女午夜福利| 久久精品国产亚洲av涩爱 | 欧美激情在线99| 如何舔出高潮| 国产午夜福利久久久久久| 国产一区亚洲一区在线观看| 亚洲人与动物交配视频| 少妇高潮的动态图| 久久精品国产清高在天天线| 国产真实乱freesex| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 免费看光身美女| 欧美bdsm另类| 久久韩国三级中文字幕| 久久久久精品国产欧美久久久| 在线天堂最新版资源| 草草在线视频免费看| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 高清午夜精品一区二区三区 | 国产精品美女特级片免费视频播放器| 少妇熟女aⅴ在线视频| 搡女人真爽免费视频火全软件 | 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| av专区在线播放| 国产乱人视频| 卡戴珊不雅视频在线播放| 老司机午夜福利在线观看视频| 尤物成人国产欧美一区二区三区| 国产欧美日韩精品亚洲av| 有码 亚洲区| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品 | 亚洲精品日韩av片在线观看| 黄色视频,在线免费观看| 成人午夜高清在线视频| 欧美激情在线99| 在线免费十八禁| 好男人在线观看高清免费视频| 中文字幕精品亚洲无线码一区| 黄色欧美视频在线观看| 国产精品永久免费网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av五月六月丁香网| 1000部很黄的大片| 午夜影院日韩av| 久久久成人免费电影| 波多野结衣高清作品| 欧美性猛交黑人性爽| 岛国在线免费视频观看| 少妇裸体淫交视频免费看高清| 18禁在线播放成人免费| 丝袜美腿在线中文| 亚洲精品国产av成人精品 | 村上凉子中文字幕在线| 男女啪啪激烈高潮av片| av在线蜜桃| 国产精品亚洲一级av第二区| 色吧在线观看| 一区二区三区免费毛片| 精品久久久久久久久av| 免费观看的影片在线观看| 欧美在线一区亚洲| 日本撒尿小便嘘嘘汇集6| 欧美丝袜亚洲另类| 欧美最黄视频在线播放免费| 国内精品一区二区在线观看| 寂寞人妻少妇视频99o| 黄片wwwwww| 99国产精品一区二区蜜桃av| 午夜爱爱视频在线播放| 人妻丰满熟妇av一区二区三区| 精品一区二区三区人妻视频| 深夜精品福利| 午夜老司机福利剧场| 级片在线观看| 亚洲中文字幕日韩| 久久精品久久久久久噜噜老黄 | 男女啪啪激烈高潮av片| 综合色av麻豆| 精品无人区乱码1区二区| 赤兔流量卡办理| 日韩精品青青久久久久久| 日韩欧美三级三区| 麻豆成人午夜福利视频| 欧美成人免费av一区二区三区| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 美女黄网站色视频| 午夜精品在线福利| 亚洲三级黄色毛片| ponron亚洲| 最新中文字幕久久久久| 久久久久久久午夜电影| 午夜福利视频1000在线观看| 久久久久久久久久久丰满| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 久久99热6这里只有精品| 国产亚洲精品av在线| 亚洲精品亚洲一区二区| 舔av片在线| 最新在线观看一区二区三区| 国产探花极品一区二区| eeuss影院久久| 免费搜索国产男女视频| 精品久久久久久久久久久久久| 伊人久久精品亚洲午夜| 97碰自拍视频| 有码 亚洲区| 卡戴珊不雅视频在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 亚州av有码| 亚洲婷婷狠狠爱综合网| 又爽又黄无遮挡网站| 一个人看视频在线观看www免费| 久久精品人妻少妇| 热99在线观看视频| 亚洲精品国产av成人精品 | 一进一出好大好爽视频| 69人妻影院| 亚洲一区高清亚洲精品| 久久久久国产网址| 日韩欧美精品v在线| 狠狠狠狠99中文字幕| 久久久久免费精品人妻一区二区| 免费看光身美女| 亚洲精品一区av在线观看| 久久中文看片网| 亚洲aⅴ乱码一区二区在线播放| 国产精品一二三区在线看| 搡老熟女国产l中国老女人| 国产三级在线视频| 99在线人妻在线中文字幕| 久久久色成人| 国产精品野战在线观看| 91午夜精品亚洲一区二区三区| 亚洲熟妇中文字幕五十中出| 可以在线观看的亚洲视频| 99久久成人亚洲精品观看| 搡老熟女国产l中国老女人| 在线观看av片永久免费下载| 久久精品久久久久久噜噜老黄 | 免费人成在线观看视频色| av在线蜜桃| 搡老妇女老女人老熟妇| 欧美成人精品欧美一级黄| 国内精品一区二区在线观看| 亚洲成人精品中文字幕电影| 观看美女的网站| 亚洲精品乱码久久久v下载方式| av天堂中文字幕网| 亚洲国产欧洲综合997久久,| 麻豆精品久久久久久蜜桃| 日韩,欧美,国产一区二区三区 | 老女人水多毛片| 精品一区二区三区视频在线观看免费| 最近视频中文字幕2019在线8| 国产91av在线免费观看| 你懂的网址亚洲精品在线观看 | 伊人久久精品亚洲午夜| 黄片wwwwww| 少妇裸体淫交视频免费看高清| 美女高潮的动态| 国产午夜精品论理片| 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 最近的中文字幕免费完整| 亚洲成av人片在线播放无| 国产高潮美女av| 97在线视频观看| 免费看av在线观看网站| 亚洲欧美日韩东京热| 国产男人的电影天堂91| 一本精品99久久精品77| 久久精品国产亚洲av香蕉五月| 美女高潮的动态| 91久久精品电影网| videossex国产| 一个人看视频在线观看www免费| 男女边吃奶边做爰视频| 欧美最黄视频在线播放免费| 国产精品一区二区三区四区久久| 真实男女啪啪啪动态图| 日韩欧美一区二区三区在线观看| 成年av动漫网址| 最好的美女福利视频网| 午夜激情欧美在线| 日韩av不卡免费在线播放| 国产亚洲精品久久久com| 国语自产精品视频在线第100页| 免费看美女性在线毛片视频| 亚洲精华国产精华液的使用体验 | 精品一区二区三区视频在线| 亚洲欧美精品自产自拍| av卡一久久| 欧美一级a爱片免费观看看| 人妻久久中文字幕网| 欧美xxxx性猛交bbbb| av黄色大香蕉| 国语自产精品视频在线第100页| 搡老岳熟女国产| 中国国产av一级| 99热全是精品| 久久久久久久久久成人| 国产一区二区在线观看日韩| 亚洲五月天丁香| 黄色欧美视频在线观看| 亚洲精品成人久久久久久| 亚洲欧美日韩高清专用| 成人精品一区二区免费| 婷婷亚洲欧美| 色噜噜av男人的天堂激情| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 神马国产精品三级电影在线观看| 色哟哟·www| 亚洲欧美清纯卡通| 欧美最黄视频在线播放免费| 免费看a级黄色片| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看| 男人舔奶头视频| 亚洲av一区综合| 一进一出抽搐动态| 欧美日韩国产亚洲二区| 看非洲黑人一级黄片| videossex国产| 国产精品野战在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久国产a免费观看| 午夜爱爱视频在线播放| 成人综合一区亚洲| 一级黄色大片毛片| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 日韩欧美免费精品| 亚洲av不卡在线观看| 午夜免费男女啪啪视频观看 | 免费搜索国产男女视频| 国内精品久久久久精免费| 日韩制服骚丝袜av| 别揉我奶头 嗯啊视频| av国产免费在线观看| 美女内射精品一级片tv| 精品久久久久久久久久久久久| 99国产精品一区二区蜜桃av| 久久久久久久亚洲中文字幕| 国产三级在线视频| 亚洲婷婷狠狠爱综合网| 美女高潮的动态| 亚洲欧美清纯卡通| 国产午夜精品论理片| 深夜精品福利| 极品教师在线视频| 1000部很黄的大片| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区 | 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 女同久久另类99精品国产91| 国产一区二区亚洲精品在线观看| 亚洲人成网站在线观看播放| av在线天堂中文字幕| 国产亚洲精品av在线| 狂野欧美激情性xxxx在线观看| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 赤兔流量卡办理| a级毛片免费高清观看在线播放| av专区在线播放| 亚洲国产欧美人成| 国产亚洲精品av在线| 亚洲性夜色夜夜综合| 中文资源天堂在线| 69人妻影院| 日韩精品中文字幕看吧| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 最后的刺客免费高清国语| 亚洲成人av在线免费| 成人无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 欧美xxxx黑人xx丫x性爽| 欧美区成人在线视频| 午夜免费激情av| 九九在线视频观看精品| 1024手机看黄色片| 欧美+亚洲+日韩+国产| 午夜激情欧美在线| 日本免费一区二区三区高清不卡| 欧美成人一区二区免费高清观看| 韩国av在线不卡| 精品午夜福利视频在线观看一区| 国产精品1区2区在线观看.| 床上黄色一级片| 亚洲成人久久爱视频| 国产成人freesex在线 | 久久久久九九精品影院| 一级毛片aaaaaa免费看小| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 91在线观看av| 亚洲第一电影网av| 成年版毛片免费区| 十八禁网站免费在线| 91精品国产九色| 久久精品91蜜桃| 岛国在线免费视频观看| 可以在线观看毛片的网站| 精品人妻偷拍中文字幕| av在线天堂中文字幕| 亚洲人成网站高清观看| 精品人妻视频免费看| 99久久精品国产国产毛片| 亚洲人成网站在线播放欧美日韩| 亚洲国产精品成人久久小说 | 色综合亚洲欧美另类图片| 老师上课跳d突然被开到最大视频| 国产精品人妻久久久影院| 日韩一区二区视频免费看| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲五月天丁香| 欧美日韩一区二区视频在线观看视频在线 | 中文资源天堂在线| 国产精品无大码| 国产淫片久久久久久久久| 天天一区二区日本电影三级| 深夜精品福利| 亚洲人成网站在线播| ponron亚洲| 一区二区三区四区激情视频 | 亚洲图色成人| 亚洲精品日韩在线中文字幕 | 我要搜黄色片| 真实男女啪啪啪动态图| 日本色播在线视频| 99在线视频只有这里精品首页| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 悠悠久久av| 69人妻影院| 99热精品在线国产| 亚洲综合色惰| 精品99又大又爽又粗少妇毛片| 久久精品人妻少妇| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看 | 白带黄色成豆腐渣| 九色成人免费人妻av| 亚洲美女搞黄在线观看 | 国产探花在线观看一区二区| 久久人人精品亚洲av| 男人的好看免费观看在线视频| 国产亚洲精品av在线| 五月玫瑰六月丁香| 欧美国产日韩亚洲一区| avwww免费| 一级av片app| 午夜a级毛片| 亚洲在线自拍视频| 俄罗斯特黄特色一大片| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 国产精品久久电影中文字幕| 日本撒尿小便嘘嘘汇集6| 久久热精品热| av女优亚洲男人天堂| 不卡一级毛片| 国内精品宾馆在线| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久久久久久久免费视频| www.色视频.com| 亚洲精品乱码久久久v下载方式| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日本在线视频免费播放| 日本在线视频免费播放| eeuss影院久久| 久久草成人影院| 99国产极品粉嫩在线观看| 乱系列少妇在线播放| 99久久久亚洲精品蜜臀av| 春色校园在线视频观看| 成人特级黄色片久久久久久久| 美女cb高潮喷水在线观看| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 国产精品久久久久久久电影| 最近2019中文字幕mv第一页| 黄片wwwwww| 黄色欧美视频在线观看| 日本爱情动作片www.在线观看 | 美女 人体艺术 gogo| 3wmmmm亚洲av在线观看| 亚洲av成人精品一区久久| 亚洲精品国产成人久久av| 大香蕉久久网| 精品一区二区三区视频在线| 精华霜和精华液先用哪个| 亚洲av成人精品一区久久| 免费看美女性在线毛片视频| 成人特级黄色片久久久久久久| 欧美色欧美亚洲另类二区| 丰满的人妻完整版| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品国产精品| 中文字幕熟女人妻在线| 小说图片视频综合网站| 久久人人爽人人片av| 精品一区二区免费观看| 人人妻人人看人人澡| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 九九爱精品视频在线观看| 国产一区二区在线av高清观看| 国产探花极品一区二区| 最近在线观看免费完整版| 精品人妻视频免费看| 淫妇啪啪啪对白视频| 搡老妇女老女人老熟妇| 麻豆久久精品国产亚洲av| 99久国产av精品| 长腿黑丝高跟| 久久久久国产精品人妻aⅴ院| 精品一区二区三区视频在线| 在线观看一区二区三区| a级一级毛片免费在线观看| 毛片一级片免费看久久久久| 国产三级中文精品| aaaaa片日本免费| 深夜a级毛片| 99久久精品国产国产毛片| 亚洲美女搞黄在线观看 | 久久午夜亚洲精品久久| 国产激情偷乱视频一区二区| av.在线天堂| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 六月丁香七月| 你懂的网址亚洲精品在线观看 | 亚洲第一电影网av| 青春草视频在线免费观看| 久久久成人免费电影| 蜜桃亚洲精品一区二区三区| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| 国产真实伦视频高清在线观看| 精品日产1卡2卡| 色综合亚洲欧美另类图片| 精品久久久久久久久久免费视频| 国产黄色小视频在线观看| 日本-黄色视频高清免费观看| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| 色综合色国产| 一进一出抽搐动态| 亚洲av.av天堂| av在线亚洲专区| 日韩亚洲欧美综合| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕av在线有码专区| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 啦啦啦观看免费观看视频高清| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 丝袜喷水一区| av视频在线观看入口| 男女啪啪激烈高潮av片| 老女人水多毛片| 亚洲七黄色美女视频| 久久精品人妻少妇| 国产aⅴ精品一区二区三区波| 午夜亚洲福利在线播放| 午夜福利高清视频| 亚洲第一电影网av| 在线观看美女被高潮喷水网站| 国产高潮美女av| 在线播放国产精品三级| 深爱激情五月婷婷| 国产女主播在线喷水免费视频网站 | 网址你懂的国产日韩在线| 国产日本99.免费观看| 国产精品人妻久久久影院| 白带黄色成豆腐渣| 麻豆精品久久久久久蜜桃| 十八禁网站免费在线| 黄色日韩在线| 国产单亲对白刺激| 九色成人免费人妻av| 亚洲成人av在线免费| 中出人妻视频一区二区| 九九热线精品视视频播放| 中文亚洲av片在线观看爽| 精品午夜福利视频在线观看一区| 91久久精品国产一区二区三区| 亚洲欧美精品自产自拍| 亚洲不卡免费看| 在线观看美女被高潮喷水网站| ponron亚洲| 久久人妻av系列| 日日干狠狠操夜夜爽| 99国产极品粉嫩在线观看| 免费观看精品视频网站| 在线观看午夜福利视频| 日韩中字成人|