• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    2014-06-07 07:53:32
    船舶力學 2014年9期
    關鍵詞:階次周向上海交通大學

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    A Rule of Spatial Sampling on Cylindrical Shells for Predicting Radiated Acoustic Field

    WANG Bin,TANG Wei-lin,FAN Jun

    (School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Structural borne acoustic radiation can be determined solely by the surface velocity distribution which is measured more easily than other physical quantities.The sampling intervals should be chosen carefully to ensure the prediction precision and reduce the system cost at the same time.In this paper,the prediction error with respect to the sampling intervals for the simply supported cylindrical shells is formulated as a mathematical problem,in which the sampling intervals needed in axis and in circumference can be studied separately.The rules for the determination of the sampling intervals to satisfy certain predetermined criteria are put forward.The sampling interval in axis is just determined by the axial order of the mode and a dimensionless quantity;in circumference it is mainly decided by the circumferential order and another dimensionless quantity.In the cases of finite circumferential modes,the number of the sampling points in circumference is only determined by the highest order of these modes.

    structural borne sound;radiation prediction;sampling interval

    Biography:WANG Bin(1981-),male,Ph.D.student of Shanghai Jiao Tong University.

    1 Introduction

    In an infinite fluid,the structural borne acoustic radiation can be solely determined by the surface velocity distribution.Considering it can be measured easier than other physical quantities,people have devoted themselves to the numerical methods[1-2]based on the surface velocity distribution,among which Boundary Element Method(BEM)is most widely used.In order to improve prediction precision and calculation speed,people pay attention mainly to improving the numerical methods[3-4].All of them assume the surface velocity distribution is known.However,this simple assumption requires the vibration sensors be distributed on the whole surface,which is very difficult or even impossible to be implemented in most practical applications.

    Besides the coarse requirement of six samples per acoustic wavelength in BEM[5],these are few open papers discussing the surface spatial sampling interval in predicting the structural borne acoustic radiation.Ref.6 discussed the rule for the determination of sampling interval on rectangular plates with respect to the analyzing frequency,the error range,the mode order,and the observer elevation.Considering cylindrical shells are more representative than rectangular plates in analogy with actual underwater vehicles,the rule for the determination of sampling intervals satisfying the prediction error requirement for simply supported baffled cylindrical shells is discussed in this paper.

    2 Radiation theory based on simply supported baffled cylindrical shells

    Considering a simply supported cylindrical shell with length L,radius a and semi-infinite rigid cylindrical baffles at the ends as shown in Fig.1,the normal velocity on the surface of the cylindrical shell can be expressed as a sum of many modes[7]

    where m is the axial order and n is the circumferential order of these modes.

    The assumption of semi-infinite cylindrical baffles endows the acoustic field of the finite cylindrical radiators with an analytical expression.Transformed from the cylindrical coordinates to the spherical coordinates and calculated with the stationary phase method,the acoustic pressure for a remote observer point R,θ,( )φ radiated from each moden,( )m can be expressed analytically as[8]

    in the above equations,ρ0is the density of the fluid,c0is sound speed in the fluid,k0is wave number,(·) is the first derivative of the first kind of nth order Hankel function and the time dependence is always assumed as e-jωt.

    3 An efficient prediction method for radiated acoustic field

    Nowadays,BEM is the most widely used numerical method and available for arbitrary boundary geometries theoretically.Another efficient numerical method is adopted here,which is easier to be implemented than BEM in evaluating the prediction error with respect to the sampling intervals.

    Suppose the number of the sampling points in axis is M and that in circumference is N,and then the acoustic pressure radiated by a single mode n,( )m can be written as

    where zj=(2j - 1) L/2M,φi=(2i - 1) 2π/2N are the axial coordinate and the circumferential coordinate of the (i, j ) th sampling point respectively, υnm(zj, φi)is the normal velocity at the(i, j ) th sampling point

    and pij(R ,θ ,φ )denotes the acoustic pressure at the observer point(R ,θ ,φ )radiated by the baffled conformal piston centered at the (i, j ) th sampling point and vibrating in unit velocity[8]

    where 2L0=L/M is the axial length of the piston,2α0=2π/N is the circumferential angle of the piston and j0(·) is the zero-order spherical Bessel function.When the piston is very small compared to the cylindrical shell,these two factors j0(k0L0cos θ)and j0(tα0)in Eq.6 can be approximated as 1.

    Eq.4 can be rewritten as

    Considering the cases of M→∞,N→∞,the limits of Eqs.8 and 9 can be obtained,

    So,it can be proved that Eq.7 is convergent to the analytical expression with the number of sampling points trending to infinity

    that is,the sampling intervals in axis and in circumference are fine enough.The prediction error is formulated as the same as that in Ref.[6]

    This is a complicated function which is related with the order of the mode,the sampling intervals,the observer orientation and the analyzing frequency.According to Eq.7,the prediction error can be rewritten as

    Given an intended error,the number of sampling points needed in axis is just decided by the axial order,and the dimensionless quantity k0Lcosθ,and that in circumference is determined by the circumferential order,the dimensionless quantity k0asinθ,and the observer azimuth φ.

    In the above,the prediction error with respect to the sample intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for these two functions in Eqs.8 and 9.It is notable that there is a great difference between these two functions in form.It can be directly explained that the axial curvature and the circumferential curvature are quite different from each other.Besides that,the non-zero curvature makes the rule of spatial sampling on cylindrical shells quite different from that on rectangular plates,especially squarelike plates which can be sampled equally in the directions parallel with the sides[6].

    4 Spatial sampling for the simply supported cylindrical shell

    It is impossible to reveal the relationships between the number of the integral points and the integral precision for these two functions f1(M,m,k0Lcos θ) and f2(N,n,k0asinθ,φ )analytically.So numerical analysis is adopted in this section.The rules for the determination of the sampling intervals in axis and in circumference to satisfy certain predetermined criteria are investigated separately.

    4.1 Spatial sampling in axis

    The form of function f1(M,m,k0Lcos θ)reveals that prediction error with respect to sampling number M in axis is just determined by the axial order m and the dimensionless quantity k0Lcosθ decided by the observer point and the analyzing frequency.Assuming the intended error is 0.1dB,the relationships between the number of sampling points needed and the dimensionless quantity k0Lcosθ are shown in Fig.2.

    It can be seen that there is a dimensionless critical frequency Fafor each mode as that in case of plates[6],which is related with the axial order.When the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of sampling points needed changes slowly with the dimensionless quantity k0Lcosθ.When Fais exceeded,the number of sampling points needed increases with k0Lcosθ,the linear slope nearly independent of the axial order m.Therefore,this dimensionless critical frequency Faplays an important role in lessening the sampling points and ensuring the prediction precision at the same time.It is necessary to find out the relationship between the exact values of Faand the axial orders m.The relevant results are shown in Fig.3 with the intended error 0.1dB.

    It is obvious that the dimensionless critical frequency Fafor each mode increases linearly with the axial order and can be approximated as

    This approximation is not obtained occasionally and has been explained in Eq.8 implicitly.The wavenumber spectrum of the discrete spatial sampling is a result of periodic superposition of the spectrum of the analogous spatial signal.The prediction error defined in Eq.15 is decided by the relative error of the aliasing interference at the specific argument k0cosθ.With a fixed sampling interval,the aliasing interference is weakened to the utmost extent at the wavenumber of the spectrum peak.In other words,given a fixed intended error,the number of sampling points needed is the most least when this specific argument k0cosθ approaches the wavenumber of the spectrum peak.

    To make clear of the explanations for Figs.2 and 3,a certain axial mode is taken as an example.The wavenumber spectrum can be expressed as

    and shown in Fig.4,together with the spectrum of the discrete spatial sampling.

    The axial order m and the number of the sampling points M are set as 6 and 12 respectively.And the amplitudes of spectrum and the wavenumber are both normalized with L/2π.It can be seen that the spectrum peak is in the neighborhood of the wavenumber K1=mπ/L.When the observer point and the analyzing frequency satisfy k0cosθ≈K1,that is k0Lcosθ≈mπ,the number of the sampling points in axis is the most least for a fixed intended error.With the disparity between k0Lcosθ and mπ increasing,the aliasing interference becomes stronger as a result of the wavenumber spectrum descending,and the number of sampling points in axis has to be increased to satisfy the fixed intended error.

    In some fields,the observer elevation θ close to 90°often catches more attentions than other observer elevations,which is called as beam aspect.The numbers of the sampling points in axis required by the different intended errors for k0Lcosθ→0 are shown in Fig.5.

    It is obvious that the number of the sampling points needed in axis is proportional to the axial mode,the linear slope increasing with the prediction precision.The number of the sampling points can be approximated as the integer close to

    where A0erris a coefficient related with the prediction precision and listed in Tab.1 with the fitting method.

    Tab.1 Fitting values of A0errwith respect to the intended errors

    In the case of the observer point and the analyzing frequency satisfying k0Lcosθ>>Fa,the number of the sampling points needed in axis versus the dimensionless quantity k0Lcosθ is discussed in Fig.6,with the axial order m=2.For the linear slope changes little with the axial order m,the conclusions drawn in Fig.6 are also correct for other axial orders m≠2.

    In Fig.6,the linear slope of the number of the sampling points in axis versus k0Lcosθ de-pends on the intended errors strongly which can be approximately presented as

    where Aerris a coefficient increasing with the prediction precision.In other words,the sampling interval in axis to satisfy the intended error can be expressed as

    where λ0is wavelength of sound in fluid.The fitting values of Aerrwith respect to the intended errors are listed in Tab.2.

    Tab.2 Fitting values of Aerrversus the intended errors

    For the observer point near the ends of cylindrical shellscosθ→()1,the requirement of

    the sampling interval in axis is strictest

    4.2 Spatial sampling in circumference

    The form of function f2(N,n,k0asinθ,φ )indicates that the prediction error with respect to the circumferential sampling is determined not only by the circumferential order n and the dimensionless quantity k0asinθ,but also by the observer azimuth φ.Given a further consideration on Eq.15,it can be obtained that

    that is,the prediction error with respect to the observer azimuth φ is periodic with.When N is large enough,the dependence on the observer azimuth φ can be neglected and the prediction error is mainly determined by the circumferential order n and the dimensionless quantity k0asinθ.

    Assuming the intended error is 0.1dB and the observer azimuth φ=0,the numbers of the sampling points needed in circumference versus the dimensionless quantity k0asinθ are shown in Fig.7.

    It can be seen that the number of the sampling points in circumference is just decided by the circumference order n

    and independent of the dimensionless quantity k0asinθ.Another surprise is that the prediction error defined in Eq.16 is 0dB.On another view,this result can be understood easily.In the cases of finite modes in circumference,all the information of these modes can be recovered precisely from the spatial sampling as long as the number of the sampling points in circumference is higher than the highest order of these modes two times,and then the acoustic radiation can also be known.

    However,it must be born in mind that the prediction error with respect to the sampling interval in circumference is no longer 0dB in the cases where there are infinite modes in circumference,such as a patch excitation considered.And the number of the sampling points needed in circumference is also related with the dimensionless quantity k0asinθ.The higher prediction precision designated or the larger k0asinθ concerned,the more sampling points in circumference are required.

    5 Conclusions

    In this paper,spatial sampling on the cylindrical shells for predicting radiated acoustic field has been investigated.The prediction error with respect to the sampling intervals for the simply supported cylindrical shells has been formulated as a mathematical problem,that is,the balance between the number of the integral points and the integral precision for two separable functions.Some conclusions have been drawn as follows.

    (1)Prediction error with respect to the sampling interval in axis is determined by the axial order and the dimensionless quantity k0Lcosθ.There is a dimensionless critical frequency Fafor each mode,which equals the product of the axial order and π.If the observer point and the analyzing frequency satisfy k0Lcosθ≤Fa,the number of the sampling points needed in axis changes slowly with k0Lcosθ.Otherwise,it increases linearly with k0Lcosθ and the sampling interval in axis approximates λ0/2Aerrπcosθ.For the beam aspect,the number of the sampling points in axis is mainly determined by the axial order,the linear slope increasing with the prediction precision.

    (2)Prediction error with respect to the sampling interval in circumference is decided by the circumferential order,the dimensionless quantity k0asinθ and the observer azimuth.When the sampling points are sufficient,the observer azimuth dependence can be neglected.In the cases of finite modes in circumference,the number of the sampling points in circumference is just required to be higher than the highest circumferential order two times.

    [1]Chertock G.Sound radiation from vibrating bodies[J].J Acoust.Soc.Am.,1964,36(7):1305-1313.

    [2]Chen L H,Schweikert D G.Sound radiation from an arbitrary body[J].J Acoustic.Soc.Am.,1963,35(10):1626-1632.

    [3]Schenck H A.Improved integral formulation for acoustic radiation problems[J].J Acoust.Soc.Am.,1968,43:44-51.

    [4]Koopmann G H,Song L,Fahnline J.A method for computing acoustic fields based on the principle of wave superposition[J].J Acoust.Soc.Am.,1989,86(5):2433-2438.

    [5]SYSNOISE Rev 5.5:User manual[K].LMS International,2000.

    [6]Tao J,Ge H,Qiu X.A new rule of vibration sampling for predicting acoustical radiation from rectangular plates[J].Applied Acoustics,2006,67(8):756-770.

    [7]Laulagnet B.Model analysis of a shell’s acoustic radiation in light and heavy fluids[J].J of Sound and Vibration,1989,131(3):397-415.

    [8]Junger M C,Feit D.Sound,Structures,and Their Interaction[M].Cambridge MA:MIT Press,1986.

    [9]Szechenyi E.Modal density and radiation efficiencies of unstiffened cylinders using statistical method[J].J of Sound and Vibration,1971,19(1):65-68.

    [10]Mclean R F,Alsop S H,Fleming J S.Nyquist-overcoming the limitations[J].Journal of Sound and Vibration,2005,280:1-20.

    基于輻射聲場預報的圓柱殼表面空間采樣研究

    王 斌,湯渭霖,范 軍

    (上海交通大學船舶海洋與建筑工程學院,上海200240)

    無限流體介質中振動結構的輻射聲場可以由其表面振速分布唯一地確定,而且表面振速相對于其它物理量而言更容易被可靠測量。然而,必須謹慎選擇表面振速的空間采樣間隔,以確保預報聲場精度較高,同時預報系統負擔較小。文中討論了簡支圓柱殼表面振速的空間采樣問題,將采樣間隔與預報誤差之間的關系簡化為一個數學問題,其中周向采樣問題與軸向采樣問題可以分離、單獨研究。總結了在指定預報精度范圍內表面振速空間采樣的有關規(guī)律:軸向采樣點數取決于軸向模態(tài)階次以及一個無因次量;周向方向采樣點數主要取決于周向模態(tài)階次以及另一個無因次量。對于周向模態(tài)有限的情況,周向采樣點數僅取決于周向模態(tài)的最高階次。

    結構聲輻射;輻射聲場預報;采樣間隔

    O427.5

    A

    王 斌(1981-),男,上海交通大學船舶海洋與建筑工程學院博士研究生;

    范 軍(1973-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師。

    O427.5

    A

    1007-7294(2010)06-0690-09

    date:2009-05-08

    湯渭霖(1940-),男,上海交通大學船舶海洋與建筑工程學院教授,博士生導師;

    猜你喜歡
    階次周向上海交通大學
    上海交通大學
    電氣自動化(2022年2期)2023-01-07 03:51:56
    周向拉桿轉子瞬態(tài)應力分析與啟動曲線優(yōu)化
    階次分析在驅動橋異響中的應用
    基于Vold-Kalman濾波的階次分析系統設計與實現*
    上海交通大學參加機器人比賽
    基于齒輪階次密度優(yōu)化的變速器降噪研究
    價值工程(2017年28期)2018-01-23 20:48:29
    周向定位旋轉分度鉆模設計
    一種商用輕型載重汽車輪胎
    永磁同步電主軸用電機定子周向模態(tài)研究
    《疾風圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    久久国产精品男人的天堂亚洲| 国产爽快片一区二区三区| 波多野结衣一区麻豆| 女人久久www免费人成看片| av欧美777| 亚洲精品国产区一区二| 亚洲午夜精品一区,二区,三区| 中文字幕最新亚洲高清| 啦啦啦在线观看免费高清www| 纵有疾风起免费观看全集完整版| 日韩 欧美 亚洲 中文字幕| 亚洲色图综合在线观看| 亚洲伊人久久精品综合| 永久免费av网站大全| 国产伦人伦偷精品视频| 香蕉丝袜av| 久久99一区二区三区| 国产男女超爽视频在线观看| 亚洲av在线观看美女高潮| 久久人人爽人人片av| 国产片特级美女逼逼视频| 老鸭窝网址在线观看| 午夜福利一区二区在线看| 亚洲精品一二三| 欧美激情 高清一区二区三区| 午夜免费成人在线视频| 黄色 视频免费看| 国产亚洲一区二区精品| 一二三四在线观看免费中文在| 大片电影免费在线观看免费| 男女边吃奶边做爰视频| 制服人妻中文乱码| 国产成人啪精品午夜网站| 久久久久久亚洲精品国产蜜桃av| 新久久久久国产一级毛片| 91老司机精品| cao死你这个sao货| 精品亚洲乱码少妇综合久久| 国产免费视频播放在线视频| 中文欧美无线码| 国产精品久久久久久人妻精品电影 | 国产成人欧美| 日韩制服丝袜自拍偷拍| 男人添女人高潮全过程视频| 成年人免费黄色播放视频| 男的添女的下面高潮视频| 亚洲精品自拍成人| 日韩中文字幕视频在线看片| 亚洲精品久久午夜乱码| 国产成人免费无遮挡视频| 在线 av 中文字幕| 精品国产超薄肉色丝袜足j| 日韩制服丝袜自拍偷拍| 国产主播在线观看一区二区 | 亚洲精品日韩在线中文字幕| 免费看十八禁软件| 免费观看a级毛片全部| 一级片'在线观看视频| 亚洲情色 制服丝袜| 亚洲,一卡二卡三卡| 亚洲国产av新网站| bbb黄色大片| 日韩一本色道免费dvd| 女性生殖器流出的白浆| 日韩,欧美,国产一区二区三区| 99精品久久久久人妻精品| 两性夫妻黄色片| 视频区图区小说| 国产极品粉嫩免费观看在线| 日本午夜av视频| 亚洲天堂av无毛| 中文字幕人妻熟女乱码| 精品国产一区二区久久| 国产精品 国内视频| 18禁国产床啪视频网站| 亚洲国产欧美日韩在线播放| 午夜91福利影院| 首页视频小说图片口味搜索 | 超碰成人久久| av天堂久久9| 色综合欧美亚洲国产小说| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| 午夜福利乱码中文字幕| 国产欧美日韩一区二区三区在线| 中文字幕色久视频| 一区在线观看完整版| 日韩一本色道免费dvd| 女人久久www免费人成看片| 欧美av亚洲av综合av国产av| 在现免费观看毛片| 国产精品成人在线| 国产又爽黄色视频| 在线观看免费高清a一片| 十八禁人妻一区二区| 欧美av亚洲av综合av国产av| 人人澡人人妻人| 国产成人系列免费观看| 国产在视频线精品| 欧美性长视频在线观看| 狂野欧美激情性bbbbbb| 国产视频一区二区在线看| 另类精品久久| 亚洲欧美精品综合一区二区三区| 久久久国产一区二区| 大片电影免费在线观看免费| 欧美另类一区| 国产av精品麻豆| 亚洲激情五月婷婷啪啪| 黄色片一级片一级黄色片| 各种免费的搞黄视频| www.熟女人妻精品国产| av国产久精品久网站免费入址| 亚洲精品国产av成人精品| 看免费av毛片| 久久久久久久久免费视频了| av电影中文网址| 亚洲精品一卡2卡三卡4卡5卡 | 热99久久久久精品小说推荐| 欧美黑人欧美精品刺激| 精品国产一区二区三区四区第35| 在线亚洲精品国产二区图片欧美| 中文字幕制服av| 国产在线观看jvid| 两个人免费观看高清视频| 亚洲成av片中文字幕在线观看| 熟女av电影| 久久精品aⅴ一区二区三区四区| 欧美 日韩 精品 国产| 久久久久网色| 人妻人人澡人人爽人人| 看免费av毛片| 搡老乐熟女国产| 日韩中文字幕视频在线看片| 久久精品成人免费网站| 叶爱在线成人免费视频播放| 久久鲁丝午夜福利片| 日韩欧美一区视频在线观看| 成人国产一区最新在线观看 | 老汉色av国产亚洲站长工具| 国产淫语在线视频| 嫩草影视91久久| 久久久精品区二区三区| 国产精品一区二区精品视频观看| 久久青草综合色| 精品少妇内射三级| 国产av国产精品国产| 色综合欧美亚洲国产小说| 亚洲欧洲日产国产| 亚洲国产中文字幕在线视频| 国产精品 国内视频| 亚洲七黄色美女视频| 国产三级黄色录像| 大型av网站在线播放| 少妇人妻 视频| 色综合欧美亚洲国产小说| 50天的宝宝边吃奶边哭怎么回事| 色视频在线一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产成人av教育| 国产福利在线免费观看视频| 日韩大码丰满熟妇| 别揉我奶头~嗯~啊~动态视频 | 美女脱内裤让男人舔精品视频| 国产在线观看jvid| 涩涩av久久男人的天堂| 国产精品香港三级国产av潘金莲 | 国产精品秋霞免费鲁丝片| 1024视频免费在线观看| 日韩av不卡免费在线播放| 成人免费观看视频高清| 黄色视频不卡| 在线看a的网站| 日韩人妻精品一区2区三区| 黑丝袜美女国产一区| 亚洲久久久国产精品| 成人亚洲欧美一区二区av| 日韩一本色道免费dvd| 老司机午夜十八禁免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美精品永久| 亚洲天堂av无毛| 久久99精品国语久久久| 精品免费久久久久久久清纯 | 99久久人妻综合| 国产高清视频在线播放一区 | 人人澡人人妻人| 91老司机精品| 9色porny在线观看| 久久久精品94久久精品| 高清av免费在线| 真人做人爱边吃奶动态| 高清欧美精品videossex| 飞空精品影院首页| 日本91视频免费播放| 国产成人系列免费观看| 国产一区二区三区综合在线观看| 九草在线视频观看| 大话2 男鬼变身卡| 交换朋友夫妻互换小说| a级毛片在线看网站| 天天躁夜夜躁狠狠久久av| 亚洲精品久久成人aⅴ小说| 一级a爱视频在线免费观看| 亚洲国产精品一区三区| 99香蕉大伊视频| 精品国产一区二区三区久久久樱花| 久久精品久久久久久久性| 亚洲 欧美一区二区三区| 欧美黄色淫秽网站| 制服诱惑二区| 精品福利永久在线观看| 叶爱在线成人免费视频播放| www.av在线官网国产| 欧美黑人精品巨大| 国产真人三级小视频在线观看| av不卡在线播放| 久久久国产一区二区| 日韩伦理黄色片| 少妇的丰满在线观看| 久久久久国产一级毛片高清牌| 熟女少妇亚洲综合色aaa.| 国产成人免费无遮挡视频| 亚洲五月色婷婷综合| 国产淫语在线视频| 亚洲人成77777在线视频| a级毛片在线看网站| 国产精品偷伦视频观看了| 亚洲天堂av无毛| 最新在线观看一区二区三区 | 少妇猛男粗大的猛烈进出视频| 女性被躁到高潮视频| 嫩草影视91久久| 亚洲精品久久成人aⅴ小说| 亚洲成人免费av在线播放| 日本91视频免费播放| 美女中出高潮动态图| 另类亚洲欧美激情| 国产在线视频一区二区| 国产成人精品在线电影| 国产亚洲精品久久久久5区| 天天躁夜夜躁狠狠久久av| 亚洲五月婷婷丁香| 久久久精品国产亚洲av高清涩受| 日韩av不卡免费在线播放| 欧美成狂野欧美在线观看| av又黄又爽大尺度在线免费看| 18禁黄网站禁片午夜丰满| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区 | 国产片内射在线| 一本综合久久免费| 另类精品久久| 一本一本久久a久久精品综合妖精| 国产在线免费精品| 久久国产精品大桥未久av| 免费看av在线观看网站| 一区二区三区乱码不卡18| 婷婷色av中文字幕| 亚洲第一青青草原| 国产成人影院久久av| 老熟女久久久| 精品人妻1区二区| 1024香蕉在线观看| 黄频高清免费视频| 久久这里只有精品19| 日本猛色少妇xxxxx猛交久久| 国产片内射在线| 久久精品亚洲熟妇少妇任你| av天堂在线播放| 国产又爽黄色视频| 国产精品.久久久| 在线观看免费日韩欧美大片| 少妇人妻久久综合中文| 亚洲欧洲精品一区二区精品久久久| 99久久综合免费| 免费黄频网站在线观看国产| 一级毛片黄色毛片免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 首页视频小说图片口味搜索 | 纯流量卡能插随身wifi吗| 精品人妻一区二区三区麻豆| 午夜免费观看性视频| 岛国毛片在线播放| 国产福利在线免费观看视频| 麻豆国产av国片精品| 日韩中文字幕视频在线看片| 人人澡人人妻人| 国产精品久久久久成人av| 99热全是精品| 国产日韩欧美在线精品| 久久av网站| 伊人亚洲综合成人网| 91精品国产国语对白视频| 热99国产精品久久久久久7| 男女午夜视频在线观看| 视频区欧美日本亚洲| 国产精品国产三级专区第一集| 天堂中文最新版在线下载| 欧美人与性动交α欧美精品济南到| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡| 在线 av 中文字幕| 日韩精品免费视频一区二区三区| 香蕉丝袜av| 欧美成狂野欧美在线观看| av又黄又爽大尺度在线免费看| 91老司机精品| 久久久精品区二区三区| 久久女婷五月综合色啪小说| 日韩av在线免费看完整版不卡| 国产精品成人在线| 丰满迷人的少妇在线观看| 欧美日韩av久久| 每晚都被弄得嗷嗷叫到高潮| 男女无遮挡免费网站观看| 欧美日韩综合久久久久久| 精品一区二区三区四区五区乱码 | 男女边吃奶边做爰视频| 老司机影院成人| 国产精品久久久av美女十八| 免费观看av网站的网址| 少妇的丰满在线观看| 久久久久精品国产欧美久久久 | 免费观看人在逋| 波多野结衣一区麻豆| 啦啦啦在线观看免费高清www| 亚洲欧美日韩高清在线视频 | 欧美黑人精品巨大| 大陆偷拍与自拍| 波多野结衣一区麻豆| 一级毛片电影观看| 国产精品久久久久成人av| 天天躁夜夜躁狠狠躁躁| 国产伦理片在线播放av一区| 精品免费久久久久久久清纯 | 电影成人av| 国产成人免费观看mmmm| 啦啦啦中文免费视频观看日本| 亚洲一区中文字幕在线| 精品人妻1区二区| 99re6热这里在线精品视频| 在线看a的网站| 如日韩欧美国产精品一区二区三区| 女人精品久久久久毛片| 精品少妇内射三级| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 久久久久视频综合| 在现免费观看毛片| 国产深夜福利视频在线观看| 在线精品无人区一区二区三| 只有这里有精品99| 美女扒开内裤让男人捅视频| 国产在视频线精品| 国产亚洲精品第一综合不卡| 午夜福利在线免费观看网站| 少妇人妻 视频| 午夜福利视频精品| 成年av动漫网址| 黄色一级大片看看| 免费看十八禁软件| 夫妻午夜视频| 久久国产精品影院| 在线天堂中文资源库| 国产一区二区在线观看av| 国产精品熟女久久久久浪| 久久毛片免费看一区二区三区| 久久天躁狠狠躁夜夜2o2o | 久久亚洲精品不卡| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄| 国精品久久久久久国模美| 三上悠亚av全集在线观看| 赤兔流量卡办理| 亚洲av日韩在线播放| 成人国语在线视频| 在现免费观看毛片| avwww免费| 老鸭窝网址在线观看| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 成人亚洲欧美一区二区av| 精品国产一区二区久久| 男男h啪啪无遮挡| www.自偷自拍.com| 久久久国产精品麻豆| 国产国语露脸激情在线看| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美| 午夜福利乱码中文字幕| 母亲3免费完整高清在线观看| 七月丁香在线播放| 国语对白做爰xxxⅹ性视频网站| 每晚都被弄得嗷嗷叫到高潮| 两个人免费观看高清视频| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 亚洲久久久国产精品| 日本wwww免费看| 手机成人av网站| 国产av一区二区精品久久| 最黄视频免费看| 国产精品偷伦视频观看了| 少妇人妻 视频| 亚洲欧美精品自产自拍| 伦理电影免费视频| 欧美日韩黄片免| videosex国产| 中文字幕色久视频| 水蜜桃什么品种好| 亚洲,欧美精品.| 最新在线观看一区二区三区 | netflix在线观看网站| 国产一卡二卡三卡精品| 免费不卡黄色视频| 性色av一级| 人体艺术视频欧美日本| 亚洲情色 制服丝袜| 一个人免费看片子| 久久精品成人免费网站| 亚洲国产欧美网| 高清视频免费观看一区二区| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 日韩av在线免费看完整版不卡| 亚洲精品久久午夜乱码| 久久亚洲精品不卡| 精品国产一区二区久久| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| bbb黄色大片| 天天躁日日躁夜夜躁夜夜| 九草在线视频观看| 亚洲国产精品一区三区| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| 日韩一区二区三区影片| 久久中文字幕一级| av在线播放精品| 精品一品国产午夜福利视频| 色婷婷av一区二区三区视频| 999精品在线视频| 国产精品 国内视频| 中文字幕av电影在线播放| 赤兔流量卡办理| 老司机午夜十八禁免费视频| 老司机靠b影院| 日韩av在线免费看完整版不卡| 精品少妇内射三级| 人妻 亚洲 视频| 极品人妻少妇av视频| 高清欧美精品videossex| 久久精品国产a三级三级三级| 大香蕉久久网| 国产激情久久老熟女| 老汉色∧v一级毛片| 欧美97在线视频| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 曰老女人黄片| 性高湖久久久久久久久免费观看| 亚洲国产欧美在线一区| 高清av免费在线| 热re99久久精品国产66热6| 人人妻人人爽人人添夜夜欢视频| 超色免费av| 亚洲国产毛片av蜜桃av| 欧美av亚洲av综合av国产av| 又黄又粗又硬又大视频| 久久久久久久国产电影| 精品福利观看| 伊人久久大香线蕉亚洲五| 久久久久久久大尺度免费视频| 99热全是精品| 亚洲欧美激情在线| 啦啦啦啦在线视频资源| 欧美 日韩 精品 国产| 国产精品九九99| 最近最新中文字幕大全免费视频 | videosex国产| 天堂中文最新版在线下载| 啦啦啦在线观看免费高清www| 校园人妻丝袜中文字幕| 每晚都被弄得嗷嗷叫到高潮| 亚洲av日韩精品久久久久久密 | 日韩av不卡免费在线播放| 高清不卡的av网站| 伊人久久大香线蕉亚洲五| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| www日本在线高清视频| 国产亚洲欧美在线一区二区| 免费高清在线观看视频在线观看| 91麻豆av在线| 少妇粗大呻吟视频| 中文字幕人妻丝袜制服| 国产亚洲午夜精品一区二区久久| 狂野欧美激情性bbbbbb| 一级毛片黄色毛片免费观看视频| 黑人欧美特级aaaaaa片| 亚洲伊人色综图| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| videos熟女内射| 美女大奶头黄色视频| 一区二区三区四区激情视频| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区 | 久久久久久久大尺度免费视频| 亚洲国产日韩一区二区| 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 午夜av观看不卡| 亚洲一区中文字幕在线| 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| 脱女人内裤的视频| 国产亚洲精品第一综合不卡| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 搡老岳熟女国产| 中文欧美无线码| 欧美乱码精品一区二区三区| 熟女av电影| 久久久精品94久久精品| 亚洲伊人色综图| 亚洲精品自拍成人| 高清不卡的av网站| 免费少妇av软件| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 波野结衣二区三区在线| 日韩av免费高清视频| 免费看av在线观看网站| 欧美精品一区二区大全| 高潮久久久久久久久久久不卡| 亚洲国产最新在线播放| 熟女av电影| 成年女人毛片免费观看观看9 | 丝袜人妻中文字幕| 色视频在线一区二区三区| 美女午夜性视频免费| 久9热在线精品视频| 超碰成人久久| 叶爱在线成人免费视频播放| 午夜免费鲁丝| 欧美在线黄色| 在线观看免费午夜福利视频| 日韩一区二区三区影片| 老司机影院毛片| 国产精品一区二区免费欧美 | 婷婷色av中文字幕| 国产精品av久久久久免费| 国产亚洲欧美精品永久| 91字幕亚洲| 久久精品成人免费网站| 午夜91福利影院| 成在线人永久免费视频| 亚洲欧美日韩高清在线视频 | 欧美97在线视频| 十八禁人妻一区二区| 成人手机av| 国产成人精品久久二区二区免费| 国产精品一区二区在线不卡| 国产日韩欧美亚洲二区| 人人妻人人澡人人看| 亚洲av综合色区一区| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 国产av精品麻豆| 无限看片的www在线观看| videosex国产| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 一级片'在线观看视频| 老熟女久久久| 在线观看免费午夜福利视频| 免费看av在线观看网站| 色精品久久人妻99蜜桃| 国产日韩欧美视频二区| 亚洲美女黄色视频免费看| 亚洲欧美精品综合一区二区三区| 国产高清不卡午夜福利| 亚洲国产欧美网| 欧美激情极品国产一区二区三区| 欧美中文综合在线视频| 天天影视国产精品| 操美女的视频在线观看| 久久人人97超碰香蕉20202| 后天国语完整版免费观看| 久久久久久久国产电影| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 婷婷色综合www| 国产av精品麻豆| 亚洲国产最新在线播放| 色94色欧美一区二区| 久久99热这里只频精品6学生| 免费在线观看完整版高清| 91老司机精品| 欧美激情极品国产一区二区三区| 天堂8中文在线网| 中文字幕人妻丝袜一区二区| 中文字幕av电影在线播放| 天天添夜夜摸| 老司机影院成人| 久久免费观看电影|