• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thrust Allocation with Dynamic Forbidden Sectors in Dynamic Positioning System

    2014-01-19 05:49:48LIBoWANGLei
    船舶力學(xué) 2014年9期
    關(guān)鍵詞:碩士生推進(jìn)器上海交通大學(xué)

    LI Bo,WANG Lei

    (The State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China)

    Thrust Allocation with Dynamic Forbidden Sectors in Dynamic Positioning System

    LI Bo,WANG Lei

    (The State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China)

    Thrust allocation is one component of dynamic positioning system,which allocates the thrusts generated by the control law among the thrusters.Generally,forbidden sectors are set in thrust allocation to prevent thrusters from entering certain azimuth angles in order to avoid large thrust loss on downstream thrusters.In this paper,a novel concept of dynamic forbidden sector is proposed.Based on the results of model test,the extent of forbidden sector could be adjusted according to the propellers’speed ratio.This method could guarantee required safety.And numerical simulation indicates that thrust allocation could give more reasonable results after the introduction of dynamic forbidden sectors.

    dynamic forbidden sector;dynamic positioning system;thruster-thruster interaction

    1 Introduction

    As the exploitation of gas and oil have been going into deep water,dynamic positioning(DP)system is a very essential part of a vessel or platform to maintain their horizontal positions for offshore operations.DP system measures the error between the actual and desired position of the vessel and generates forces through thrusters to counteract the environmental disturbances.As a typical dynamically positioned vessel has several thrusters,thrust allocation is used to allocate the commanded thrust generated by control law among the available thrusters.The thrust allocation method must minimize the fuel consumption of the thrusters and more importantly,the hydrodynamic interaction between azimuth thrusters should also be considered.When a thruster is in a neighboring thruster’s wake,its performance could be significantly reduced.As a result,the thruster may not generate the force we expect and the performance of the whole DP system would be harmed.Several reports are available to illuminate the phenomenon of thrust degradation due to the thruster-thruster interaction,such as Lehn(1980)[1]and Nienhuis(1992)[2].

    In order to prevent the thruster-thruster interaction from reducing the performance of DP system,forbidden sectors are generally included in thrust allocation algorithms to forbid a thruster entering a sector where a neighboring thruster could be affected by its wake.Essentially,thrust allocation is an optimization problem.Several methods have been proposed and tested by many authors.A thorough survey of previously published methods for thrust allocation could be found in Fossen and Johansen(2006)[3].Typically,forbidden sectors are taken into acount in thrust allocation algorithm in two ways.The first one,as Serraris(2009)[4]described,is that the allocation problem is solved without forbidden sectors and if azimuth angles of any thrusters are orientated within the forbidden sector,the azimuth angle is fixed to its nearest boundary.In the second method,forbidden sectors are excluded from the feasible sectors for azimuth angles of thrusters.Consequently,forbidden sectors are dealt with as inequality constraints in the optimization problem directly.

    Generally,forbidden sectors are considered as static zones which will not be changed once they have been determined.However,the propeller rotating speed of thrusters would be changing all the time during DP operation,so the degree of thruster-thruster interaction may not be the same.In order to establish more flexible feasible sectors for azimuth thrusters,a novel concept of dynamic forbidden sectors is proposed in the paper.According to the results of the experiment,forbidden sectors could be modified during the operation due to the rotation ratio of two neighboring thrusters without any cost of the performances of thrusters.Numerical simulation demonstrates that thrust allocation algorithm will give more reasonable results after dynamic forbidden sectors have been integrated into it.

    2 Thruster-thruster interaction

    In order to investigate the phenomenon of thruster-thruster interaction,a model test has been taken with azimuth thrusters.The main parameters of the thruster are listed in Tab.1.

    Tab.1 Main parameters of the azimuth thruster

    2.1 Open water performance

    The open water curves are displayed in Fig.1.KTPand KTdenote the thrust coefficients of the propeller and the whole thruster,respectively.

    2.2 Thrust reduction due to the speed ratio of propellers

    Two azimuth thrusters are placed in tandem condition in open water as showed in Fig.2 in the model test.

    The distance between the two thrusters is 3D(D is the diameter of the propellers).The thrusts of the downstream thruster were measured and compared with the thrust on it when it was established in the flow alone.And this experiment also investigated the influence of dynamically positioned vessel’s drift velocity on the thrust reduction.The results of the experiment are showed in Fig.3.

    Fig.1 Open water performance of the azimuth thruster

    Fig.2 Model test arrangement for thrusters in tandem condition

    Fig.3 Thrust reduction due to the propellers’speed ratio and advance coefficient

    According to Fig.3,thrust reduction for the downstream thruster and propellers’speed ratio could be viewed as linear relation.Besides,the thrust reduction is almost irrespective of the vessel’s drift,especially at low speed.

    2.3 Thrust reduction due to the azimuth angle of forward thruster

    The distance between the azimuth thrusters was adjusted to 7.64D.The azimuth angle of the forward thruster was steered to several different values to investigate their influence on the thrust reduction of the downstream thruster.The experiments were also conducted in several advance coefficients to study their effects.The experiments’setup is displayed in Fig.4.And Fig.5 shows the results of the experiment.

    As seen from Fig.5,the azimuth angle of the forward thruster has a significant effect on the thrust reduction of the downstream thruster.As the increase of azimuth angle,the thrust reduction reduces.When the azimuth angle of the forward thruster is set to 9 degrees,the thrust reduction decreases to about 10%.The results demonstrate the necessity and effect of the establishment of forbidden sectors in thrust allocation methods.Besides,the advance coefficient seems to have little influence on the thrust reduction of the downstream thruster,especially when the inflow velocity is low.

    Fig.4 Model test arrangement for thrusters with azimuth angles

    Fig.5 Thrust reduction due to azimuth angle of the forward thruster and advance coefficient

    2.4 The relationship between speed ratio and forbidden sectors

    With the results obtained above,we could establish the relationship between propellers’speed ratio and forbidden angles.Section 2.2 indicates that the relationship between downstream thruster’s thrust reduction and two propellers’ speed ratio could be assumed as linear.Due to the results in Section 2.3,we could also establish the relationship between forward thruster’s azimuth angle and thrust reduction of the downstream thruster.Taking the thrust reduction as a bridge,the forbidden sector of the forward thruster could be related to the propellers’speed ratio directly.The steps are indicated as follows.Firstly,similar to the formula proposed by Dang and Laheij(2004)[5],the relationship between forward thruster’s azimuth angle and downstream thruster’s thrust reduction could be described as the Eq.(1).

    where t( αf)is the thrust reduction ratio when the azimuth angle of the forward thruster is αf,and c is a constant to be determined by the data from Section 2.3.The fitting curve and experiment data are displayed in Fig.6.

    According to the results in Section 2.2,we can establish a linear function r( nf/ na)to describe the relationship between the thrust reduction and the propellers’speed ratio when the azimuth angle of the forward thruster is zero.Consequently,Eq.(1)could be rewritten as follows:

    Fig.6 Thrust reduction under azimuth angles

    The forbidden angle is the minimum azimuth angle of the forward thruster which could be set to avoid significant thrust loss of the downstream thruster.And it could be defined by the following expression:

    where tcis the criterion value to determine forbidden angles,which is set to 0.98 in this paper.Combining Eq.(2)and(3),the forbidden angle could be expressed in the following equation.

    Fig.7 The relationship between the forbidden angle and the speed ratio

    Hence,we establish the relationship between the forbidden angle of the forward thruster and the two propellers’speed ratio.Eventually,we obtain Fig.7.

    When nais zero which means the downstream thruster stops rotating for a period of time or fails,the forbidden angle of the forward thruster is set to zero.And in order to avoid very large forbidden angle,the maximum value of it is limited to 45°.

    3 Thrust allocation strategy

    An effective thrust allocation method is one of the key components in a DP system,because it determines whether the commanded thrusts generated by the control law could be allocated to the azimuth thrusters in a fast,reliable and fuel saving way.Generally,thrust allocation is a constrained optimization problem whose objective is to minimize power consumption.The constraints are usually to guarantee that the actual thrusts equal to the commanded ones and the azimuth angles of the forward thrusters are not in the forbidden sectors.However,some other factors should also be taken into accounts such as singular configurations(Sordalen,1997)[6],rate constraints on the azimuth angles and propeller speeds.A quasi-dynamic thrust allocation approach was proposed by Johansen,et al(2004)[7]which considered all the important factors.

    3.1 Three degrees of freedom thrust allocation

    In DP system,only three surface motions are considered,including surge,sway and yaw.The commanded force vector τ= (τX(jué),τY,τN)T∈R3produced jointly by the azimuth thrusters is given by

    The vector T∈Rmcontains the magnitude of the force generated by each individual thruster.The angle αiis the azimuth angle of the i-th thruster,and the vector α∈Rmcontains all these angles.The i-th column of the 3×m matrix B(α) is given by

    The coordinates of the i-th thruster in the horizontal plane is (lxi, lyi)in the coordinate system with origin in the center of gravity,positive x-axis forward,and positive y-axis toward port.A singular configuration is characterized by B(α ) not having full rank,which means that the actual force B(α ) T is restricted to a subspace of R3so that the commanded force cannot be attained.

    3.2 Quasi-Dynamic thrust allocation approach

    In Johansen,et al(2004)[7],the following optimization problem is defined at each sampling instant in real time.T0and α0are thrusts and azimuth angles of the thrusters at the prior sampling time.The total power consumption is estimated by the first term in Eq.(7)where W∈Rm×mis the weight matrix.The second term sTQs penalizes the errors between the commanded and actual force.The slack variable s is necessary in order to guarantee that the optimization problem always has a feasible solution(see Eq.(8)).The weight matrix Q should be very large.The rate-of-change in azimuth angles is minimized by the third term with a weight matrix Ω in Eq.(7).The last term guarantees that singularity configuration should be avoided,where ε>0 is required to avoid numerical problems and ρ>0 is a weighting parameter.Eqs.(9)-(12)define the limitations of individual thruster’s thrust and azimuth angle(forbidden sector)and rate constraint of them as well.These kinds of constraints that represent the physical limits of a thruster could be described by the concept of dynamic thrust region which is showed in Fig.8.

    The optimization problem proposed above is a locally convex quadratic programming which could be readily solved.

    3.3 Dynamic forbidden sectors

    Forbidden sectors for azimuth angles are considered in Eq.(11)by defining a limitation[αmin,αmax]on α.Due to the results of Part 2,the boundary of a forbidden sector could be adjusted according to the propellers’speed ratio without any cost of the thrust on the downstream thruster.Consequently,Eq.(11)could be rewritten as follows:

    Fig.8 A dynamic thrust region

    4 Numerical simulation

    Numerical simulations of a barge-shaped vessel equipped with a DP system which is in-tegrated with dynamic forbidden sectors are conducted in order to investigate the effect of dynamic forbidden sectors on the performance of thrust allocation and the entire DP system.The main parameters of the vessel are listed in Tab.2.

    Tab.2 Main Dimensions of the vessel

    The control law of DP system is PID controller whose coefficients are determined by trial and error.The low-frequent motions of the vessel are obtained through model-based passive nonlinear observer(Fossen and Strand,1999)[8].

    The vessel is equipped with six azimuth thrusters(see Fig.9).The details of the arrangements of the thruster and the shapes of feasible sectors for azimuth angles are indicated in Fig.10.The diameter of the propellers is 3.6 m and the maximum thrust they can deliver is 800 kN.As we can see in Fig.10,the feasible azimuth sectors of Thruster No.1 are divided by the existence of forbidden sectors into two parts,Sector A and Sector B.The interaction between Thrusters No.6 and No.2 is neglected,as well as Thrusters No.5 and No.3.

    Fig.9 The vessel with azimuth thrusters

    Fig.10 Arrangements of the azimuth thrusters

    The DP system is simulated under only wave disturbances.The irregular waves are generated due to JONSWAP spectrum whose significant height is 5.27 m and peak period is 13.4 s with peak shape parameter 3.3.The numerical simulation is conducted on the program based on Matlab/Simulink.Each case is simulated for 3.5 hours of which the first 0.5 hour was excluded from the final analysis.An overview of the simulation cases is in Tab.3.

    Tab.3 Simulation cases

    5 Results

    The results of the simulations are listed below.Because the differences of the vessel’s position and heading between the cases with and without dynamic forbidden sectors are rather small,no results about the position and heading are reported here.The power used by the thrusters is represented by ΣT2(t).

    Tab.4 Results of thrust

    Tab.5 Results of azimuth angles

    Continue Tab.5

    Tab.6 Relative change of power due to dynamic forbidden sectors

    Tabs.4 and 6 demonstrate the effect of dynamic forbidden sectors on the thrust of the azimuth thrusters.After the introduction of dynamic forbidden sectors,mean thrust on the azimuth thrusters changes very slightly.But it is worth noticing that Thrusters No.1 and No.5’s thrust always increases with dynamic forbidden sectors,which means that with larger feasible azimuth angles the thrust allocation algorithm tends to allocate more thrust on them.The tendency is more obvious in Tab.6 which presents the total power of the thrusters.In the case of 130°incoming waves,the introduction of dynamic forbidden sectors makes the allocation algorithm allocate more thrust on Thrusters No.1 and 2,which is what we desire because more moment to counteract the waves could be obtained.At the same time,the thrust on some other thrusters decreases as well as the total one.The thrust allocation method could give more satisfactory results when some thrusters have larger feasible angle zones.Other cases could yield the same conclusions.

    In cases 7 and 8,the azimuth angles of Thrusters No.1 and 5 are set to Sector B instead of Sector A.With the incoming waves at 110°,it seems reasonable that azimuth angles in Sector B are a better choice because their direction could be just opposite to the wave direction.As we expect,dynamic forbidden sectors make little difference when azimuth angles in Sector B.Even with larger feasible angle sectors,there is no need for allocation algorithm to place the thruster into the former forbidden sectors(see Tab.5).And Tab.6 indicates the great difference in power with azimuth angles in more proper positions.

    6 Conclusions

    Based on the results of model test,the concept of dynamic forbidden sectors for azimuth thrusters is proposed in this paper.It is demonstrated that the forbidden sectors are not necessarily static as formerly considered.They could change due to the ratio of two propellers’speed.The adjustment of forbidden sectors has several advantages.First,if the speed ratio of two propellers increases which indicates larger thruster-thruster interaction,the forbidden sectors will be enlarged so that significant thrust loss could be avoided and better performance of DP system could be guaranteed.Second,when the degree of interaction decreases,the size of forbidden sectors will also be smaller.And given larger feasible azimuth zones,thrust allocation algorithm could give better allocation scheme among the thrusters.It is also important to place the azimuth angle into a suitable feasible sector at the first place,because the azimuth angle cannot cross the whole forbidden sector into other feasible ones.

    [1]Lehn E.Thruster interaction effects[R].Ship Research Institute of Norway,Marine Technology Center.NSFI Report-120.1980:1-22.

    [2]Nienhuis U.Analysis of thruster effectivity for dynamic positioning and low speed manoeuvring[D].Dissertation of Technical University Delft,1992.

    [3]Fossen T I,Johansen T A.A survey of control allocation methods for ships and underwater vehicles[C]//In 14th IEE Mediterranean Conference on Control and Automation,June 2006.Ancona,Italy,2006.

    [4]Serraris J J.Time domain analysis for DP simulations[C].ASME Conference Proceedings,2009(43413):595-605.

    [5]Dang J,Laheij H.Hydrodynamic aspects of steerable thrusters[C].Dynamic Positioning Conference,2004.

    [6]S?rdalen O.Optimal thrust allocation for marine vessels[J].Control Engineering Practice,1997,5(9):1223-1231.

    [7]Johansen T A,Fossen T I,Berge S P.Constrained nonlinear control allocation with singularity avoidance using sequential quadratic programming[J].Control Systems Technology,IEEE Transactions on,2004,12(1):211-216.

    [8]Fossen T,Strand J.Passive nonlinear observer design for ships using Lyapunov methods:Full-scale experiments with a supple vessel[J].Automatica AUT,1999,35(1):3-16.

    采用動(dòng)態(tài)禁止角的動(dòng)力定位系統(tǒng)推力分配策略

    李 博,王 磊

    (上海交通大學(xué) 海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200030)

    動(dòng)力定位系統(tǒng)利用推力分配策略將總推力需求分配到多個(gè)推進(jìn)器上。為了避免由推進(jìn)器尾流造成的推進(jìn)器之間的水動(dòng)力干擾,通常會(huì)在推力分配策略中設(shè)置推進(jìn)器回轉(zhuǎn)方向的禁止角。全回轉(zhuǎn)推進(jìn)器水動(dòng)力干擾試驗(yàn)的結(jié)果顯示,推進(jìn)器之間水動(dòng)力干擾的程度前后隨推進(jìn)器的相對(duì)轉(zhuǎn)速而變化。以模型試驗(yàn)的數(shù)據(jù)為基礎(chǔ),文章首次提出了動(dòng)態(tài)禁止角的概念和數(shù)學(xué)模型。通過(guò)在推力分配策略中設(shè)置動(dòng)態(tài)禁止角,回轉(zhuǎn)方向的禁止角將隨推進(jìn)器的相對(duì)轉(zhuǎn)速變化而進(jìn)行調(diào)整,從而完全避免推進(jìn)器之間的水動(dòng)力干擾問(wèn)題。動(dòng)力定位系統(tǒng)的數(shù)值模擬結(jié)果顯示新的推力分配策略可以給出更合理的分配結(jié)果。

    動(dòng)態(tài)禁止角;動(dòng)力定位系統(tǒng);推進(jìn)器水動(dòng)力干擾

    U661.31+3

    A

    李 博(1987-),男,碩士生;

    王 磊(1971-),男,上海交通大學(xué)副教授。

    U661.31+3

    A

    10.3969/j.issn.1007-7294.2014.09.002

    1007-7294(2014)09-1024-11

    date:2014-06-13

    Supported by National Natural Science Foundation of China(Grant No.51179103)

    Biography:LI Bo(1987-),male,master of Shanghai Jiao Tong University,E-mail:lither0627@gmail.com;

    WANG Lei(1971-),male,associate professor,E-mail:wanglei@sjtu.edu.cn.

    猜你喜歡
    碩士生推進(jìn)器上海交通大學(xué)
    上海交通大學(xué)
    我國(guó)2021年在學(xué)研究生規(guī)模達(dá)333萬(wàn)人
    基于CFD扇翼推進(jìn)器敞水性能預(yù)報(bào)分析
    上海交通大學(xué)參加機(jī)器人比賽
    發(fā)揮考核“指揮棒”“推進(jìn)器”作用
    趙燕磊
    社會(huì)資本視角下女碩士生就業(yè)狀況研究
    讓黨建成為信仰播種機(jī)和工作推進(jìn)器
    瓦錫蘭推出全新一代推進(jìn)器產(chǎn)品系列
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    王馨瑶露胸无遮挡在线观看| 日本wwww免费看| 熟女少妇亚洲综合色aaa.| 窝窝影院91人妻| 又紧又爽又黄一区二区| 久久久欧美国产精品| 日本a在线网址| 亚洲国产av新网站| 咕卡用的链子| 搡老岳熟女国产| 成在线人永久免费视频| 少妇的丰满在线观看| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| 国产精品免费一区二区三区在线 | 国产成人精品久久二区二区91| a在线观看视频网站| 午夜福利在线观看吧| 纵有疾风起免费观看全集完整版| 狠狠狠狠99中文字幕| 叶爱在线成人免费视频播放| 久久久久精品人妻al黑| 亚洲精品国产精品久久久不卡| 欧美日韩中文字幕国产精品一区二区三区 | 久久99热这里只频精品6学生| 国产成人免费无遮挡视频| 亚洲av片天天在线观看| 女性被躁到高潮视频| 中文字幕精品免费在线观看视频| 搡老熟女国产l中国老女人| 老汉色∧v一级毛片| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久小说| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 精品视频人人做人人爽| 又大又爽又粗| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 国产欧美日韩精品亚洲av| 国产精品成人在线| 免费一级毛片在线播放高清视频 | 精品乱码久久久久久99久播| 亚洲成人国产一区在线观看| 两个人免费观看高清视频| 欧美老熟妇乱子伦牲交| 亚洲成av片中文字幕在线观看| 精品人妻熟女毛片av久久网站| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 99国产精品免费福利视频| 国产欧美亚洲国产| 成年人免费黄色播放视频| 亚洲av电影在线进入| 亚洲av欧美aⅴ国产| 成年女人毛片免费观看观看9 | 水蜜桃什么品种好| 99精品欧美一区二区三区四区| 嫁个100分男人电影在线观看| av天堂久久9| 一边摸一边做爽爽视频免费| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| 日韩中文字幕视频在线看片| 精品福利观看| 亚洲男人天堂网一区| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频 | 成年女人毛片免费观看观看9 | 每晚都被弄得嗷嗷叫到高潮| 久久人妻福利社区极品人妻图片| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| av视频免费观看在线观看| 久久久久国内视频| 国产1区2区3区精品| 亚洲全国av大片| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 亚洲午夜精品一区,二区,三区| 人妻 亚洲 视频| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 妹子高潮喷水视频| 免费高清在线观看日韩| 亚洲欧洲日产国产| 欧美日韩黄片免| 亚洲精品美女久久av网站| 国产精品美女特级片免费视频播放器 | 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 最黄视频免费看| 色播在线永久视频| avwww免费| 国产黄色免费在线视频| 在线观看免费高清a一片| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 啦啦啦视频在线资源免费观看| 99久久人妻综合| 黄频高清免费视频| 国产aⅴ精品一区二区三区波| 妹子高潮喷水视频| 国产一区二区激情短视频| 亚洲人成伊人成综合网2020| 欧美国产精品va在线观看不卡| 一区福利在线观看| 久久精品成人免费网站| 国产一区二区在线观看av| 久久精品国产99精品国产亚洲性色 | 俄罗斯特黄特色一大片| 欧美精品一区二区大全| 交换朋友夫妻互换小说| 一区在线观看完整版| 成人国语在线视频| 青青草视频在线视频观看| 啦啦啦中文免费视频观看日本| 午夜日韩欧美国产| 国产精品98久久久久久宅男小说| 999精品在线视频| 久久久精品免费免费高清| 18在线观看网站| 国产成人av激情在线播放| 12—13女人毛片做爰片一| 成在线人永久免费视频| 成人影院久久| 在线观看人妻少妇| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 他把我摸到了高潮在线观看 | 免费看a级黄色片| 亚洲av日韩在线播放| 欧美精品av麻豆av| 久久久久久人人人人人| 夜夜爽天天搞| 亚洲av片天天在线观看| 午夜福利欧美成人| 免费在线观看黄色视频的| 午夜福利影视在线免费观看| 国产精品香港三级国产av潘金莲| 欧美日韩福利视频一区二区| 手机成人av网站| 日韩欧美三级三区| 成年女人毛片免费观看观看9 | 乱人伦中国视频| 最近最新中文字幕大全免费视频| 窝窝影院91人妻| 无遮挡黄片免费观看| 男女边摸边吃奶| 亚洲色图综合在线观看| 欧美黑人精品巨大| 精品国产一区二区久久| 欧美精品亚洲一区二区| 日韩视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 菩萨蛮人人尽说江南好唐韦庄| 少妇猛男粗大的猛烈进出视频| tube8黄色片| 国产黄色免费在线视频| 一本大道久久a久久精品| 久久精品国产亚洲av香蕉五月 | 麻豆国产av国片精品| 可以免费在线观看a视频的电影网站| www.熟女人妻精品国产| 在线观看舔阴道视频| 岛国在线观看网站| 12—13女人毛片做爰片一| 亚洲国产看品久久| 人人妻人人澡人人爽人人夜夜| 这个男人来自地球电影免费观看| 亚洲伊人久久精品综合| 老司机福利观看| 免费一级毛片在线播放高清视频 | 国产真人三级小视频在线观看| 久久精品人人爽人人爽视色| 久久性视频一级片| www.精华液| 真人做人爱边吃奶动态| 亚洲色图av天堂| 999久久久国产精品视频| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 免费观看人在逋| 欧美精品高潮呻吟av久久| 天堂动漫精品| 国产黄色免费在线视频| 久久久久国产一级毛片高清牌| 午夜福利视频精品| 免费在线观看影片大全网站| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品一区二区大全| 亚洲午夜理论影院| 十八禁网站网址无遮挡| 夫妻午夜视频| 国产亚洲精品第一综合不卡| 最黄视频免费看| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放| 高清av免费在线| 欧美亚洲日本最大视频资源| 亚洲精华国产精华精| 国产成人免费无遮挡视频| 日韩精品免费视频一区二区三区| 两人在一起打扑克的视频| 国产亚洲av高清不卡| 国产免费现黄频在线看| 国产一区二区 视频在线| 丁香六月天网| 国产极品粉嫩免费观看在线| 一区二区三区激情视频| 纵有疾风起免费观看全集完整版| 91九色精品人成在线观看| 国产一卡二卡三卡精品| 操美女的视频在线观看| 在线亚洲精品国产二区图片欧美| 男女边摸边吃奶| 精品国产国语对白av| 18禁国产床啪视频网站| 美女扒开内裤让男人捅视频| 在线观看人妻少妇| bbb黄色大片| 一级a爱视频在线免费观看| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 女性被躁到高潮视频| 亚洲久久久国产精品| 亚洲成a人片在线一区二区| 亚洲中文字幕日韩| 国产成人精品无人区| 久久 成人 亚洲| 亚洲精品久久成人aⅴ小说| bbb黄色大片| 精品少妇一区二区三区视频日本电影| 国产福利在线免费观看视频| 国产成人精品久久二区二区免费| 日本黄色日本黄色录像| 久久午夜综合久久蜜桃| 丝袜喷水一区| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 一级,二级,三级黄色视频| 天天躁日日躁夜夜躁夜夜| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 丁香六月天网| 国产精品美女特级片免费视频播放器 | 一个人免费在线观看的高清视频| xxxhd国产人妻xxx| 国产精品免费一区二区三区在线 | 人人澡人人妻人| 免费少妇av软件| 热99re8久久精品国产| 欧美成人午夜精品| 亚洲国产欧美一区二区综合| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 91精品国产国语对白视频| 宅男免费午夜| 男女高潮啪啪啪动态图| avwww免费| av片东京热男人的天堂| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区| 欧美激情久久久久久爽电影 | 一级a爱视频在线免费观看| 亚洲九九香蕉| 一区二区三区国产精品乱码| 在线天堂中文资源库| 久久久久精品国产欧美久久久| 波多野结衣av一区二区av| 最黄视频免费看| 国产亚洲av高清不卡| 国产免费福利视频在线观看| 国产成人精品久久二区二区免费| 国产一区二区激情短视频| 成人18禁高潮啪啪吃奶动态图| 99re在线观看精品视频| 大码成人一级视频| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 伊人久久大香线蕉亚洲五| 青草久久国产| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 又大又爽又粗| 精品一区二区三区av网在线观看 | 亚洲熟妇熟女久久| 最黄视频免费看| 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| www.999成人在线观看| 欧美成狂野欧美在线观看| 国产99久久九九免费精品| 悠悠久久av| 精品少妇黑人巨大在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦在线免费观看视频4| 久久精品国产a三级三级三级| 免费观看人在逋| 在线观看免费高清a一片| 99精品欧美一区二区三区四区| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 99国产极品粉嫩在线观看| av福利片在线| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 另类精品久久| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 91九色精品人成在线观看| 性高湖久久久久久久久免费观看| 国产亚洲欧美精品永久| 女同久久另类99精品国产91| 国产精品一区二区在线观看99| av国产精品久久久久影院| 免费在线观看完整版高清| 国产片内射在线| 亚洲国产看品久久| 高清av免费在线| 搡老岳熟女国产| 日韩大片免费观看网站| 十八禁高潮呻吟视频| 人人妻人人澡人人看| 少妇粗大呻吟视频| 在线观看免费午夜福利视频| 男人舔女人的私密视频| 日本wwww免费看| 18禁观看日本| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 久久久久久亚洲精品国产蜜桃av| 色在线成人网| 久久久久国产一级毛片高清牌| 在线观看人妻少妇| 大码成人一级视频| 精品一品国产午夜福利视频| 狠狠狠狠99中文字幕| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影 | 久久久欧美国产精品| 69精品国产乱码久久久| 一级毛片女人18水好多| 亚洲精品在线观看二区| 精品国产一区二区三区久久久樱花| 深夜精品福利| 久久香蕉激情| 一本久久精品| 欧美在线黄色| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 我要看黄色一级片免费的| 少妇裸体淫交视频免费看高清 | 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| av国产精品久久久久影院| 99在线人妻在线中文字幕 | 婷婷成人精品国产| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 99国产精品免费福利视频| 国产精品免费大片| 午夜福利一区二区在线看| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 国产av国产精品国产| 亚洲熟妇熟女久久| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 日韩大码丰满熟妇| 免费在线观看影片大全网站| 一区二区av电影网| 18禁观看日本| 国产97色在线日韩免费| 国产成人系列免费观看| 欧美国产精品一级二级三级| 亚洲精品一二三| 成人18禁高潮啪啪吃奶动态图| 免费在线观看完整版高清| 国产成人av激情在线播放| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 性高湖久久久久久久久免费观看| 美国免费a级毛片| 天堂中文最新版在线下载| 在线 av 中文字幕| 国产黄色免费在线视频| 欧美亚洲日本最大视频资源| 午夜老司机福利片| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 一区二区日韩欧美中文字幕| 黄片播放在线免费| 视频区欧美日本亚洲| 久久精品国产综合久久久| 91av网站免费观看| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 黄色 视频免费看| 最黄视频免费看| 99久久人妻综合| 日韩大片免费观看网站| 国产主播在线观看一区二区| 国产在线精品亚洲第一网站| 成人免费观看视频高清| 高清欧美精品videossex| 国产成人精品久久二区二区91| 欧美精品亚洲一区二区| 成人手机av| 纯流量卡能插随身wifi吗| 亚洲伊人久久精品综合| 久久狼人影院| 9色porny在线观看| 久久久国产精品麻豆| 一本综合久久免费| 夜夜爽天天搞| 婷婷成人精品国产| 免费不卡黄色视频| 国产精品香港三级国产av潘金莲| 9色porny在线观看| 91成年电影在线观看| 夜夜骑夜夜射夜夜干| 欧美精品一区二区大全| 另类精品久久| 性少妇av在线| 久久亚洲精品不卡| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 色尼玛亚洲综合影院| 人人妻人人爽人人添夜夜欢视频| 一区二区三区国产精品乱码| 日本a在线网址| 少妇 在线观看| 国产欧美日韩一区二区精品| 涩涩av久久男人的天堂| 国产男女内射视频| 天堂动漫精品| 欧美乱码精品一区二区三区| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产一区二区精华液| 亚洲第一青青草原| 亚洲国产欧美网| 国产在线免费精品| 色视频在线一区二区三区| 久久天堂一区二区三区四区| 亚洲综合色网址| 免费少妇av软件| 精品久久蜜臀av无| 免费看a级黄色片| 菩萨蛮人人尽说江南好唐韦庄| 999精品在线视频| 91国产中文字幕| 国产精品一区二区精品视频观看| 免费观看av网站的网址| 中文字幕高清在线视频| 99re6热这里在线精品视频| 色尼玛亚洲综合影院| 在线观看一区二区三区激情| 日本vs欧美在线观看视频| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 99国产精品一区二区蜜桃av | av天堂久久9| avwww免费| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 国产成人精品无人区| 亚洲专区字幕在线| 香蕉丝袜av| 国产亚洲精品一区二区www | 日韩视频一区二区在线观看| 日日摸夜夜添夜夜添小说| 99在线人妻在线中文字幕 | 在线观看舔阴道视频| 国产精品一区二区在线观看99| 啦啦啦视频在线资源免费观看| 久久久久精品人妻al黑| 黄片播放在线免费| 欧美激情 高清一区二区三区| 久久影院123| 国产一卡二卡三卡精品| 欧美大码av| 久久中文看片网| 欧美久久黑人一区二区| 免费在线观看完整版高清| 精品第一国产精品| 欧美黑人欧美精品刺激| 91大片在线观看| 久久天堂一区二区三区四区| 9色porny在线观看| 国产伦理片在线播放av一区| 成人18禁高潮啪啪吃奶动态图| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 国产精品久久久人人做人人爽| 欧美成人免费av一区二区三区 | 国产av国产精品国产| 亚洲第一青青草原| 国产aⅴ精品一区二区三区波| 欧美变态另类bdsm刘玥| 热re99久久国产66热| 一级片免费观看大全| 成人av一区二区三区在线看| 午夜激情久久久久久久| 捣出白浆h1v1| 久久国产亚洲av麻豆专区| 视频区欧美日本亚洲| 啦啦啦在线免费观看视频4| 国产三级黄色录像| 国产精品电影一区二区三区 | 啦啦啦 在线观看视频| 啦啦啦视频在线资源免费观看| 大香蕉久久网| 精品高清国产在线一区| 黑丝袜美女国产一区| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av高清一级| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 亚洲欧美激情在线| 免费观看a级毛片全部| 天天躁夜夜躁狠狠躁躁| 三级毛片av免费| 涩涩av久久男人的天堂| 亚洲成国产人片在线观看| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 国产免费av片在线观看野外av| 亚洲欧洲精品一区二区精品久久久| 欧美老熟妇乱子伦牲交| 精品国产乱子伦一区二区三区| 岛国毛片在线播放| 中文字幕av电影在线播放| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 精品国产乱码久久久久久男人| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看. | 午夜老司机福利片| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 亚洲精品自拍成人| 另类精品久久| 国产一区二区在线观看av| 久久久国产欧美日韩av| 中文字幕色久视频| 成年动漫av网址| 成人18禁高潮啪啪吃奶动态图| 天堂动漫精品| 国产免费视频播放在线视频| 久久天躁狠狠躁夜夜2o2o| 97在线人人人人妻| 天堂8中文在线网| 亚洲一码二码三码区别大吗| 大型黄色视频在线免费观看| 久久ye,这里只有精品| 中文字幕人妻丝袜制服| 飞空精品影院首页| 国产精品欧美亚洲77777| 天天添夜夜摸| 国产精品99久久99久久久不卡| 国产黄频视频在线观看| 久久久久久人人人人人| 日本wwww免费看| 久久精品熟女亚洲av麻豆精品| 精品少妇内射三级| 国产精品偷伦视频观看了| 国产xxxxx性猛交| 免费一级毛片在线播放高清视频 | 午夜精品国产一区二区电影| 国产高清videossex| 国产av精品麻豆| 亚洲精品在线美女| 国产精品免费大片| 99精国产麻豆久久婷婷| 亚洲一区中文字幕在线| 欧美精品一区二区免费开放| 最近最新中文字幕大全电影3 | 久久久久久久久免费视频了| 欧美午夜高清在线| 50天的宝宝边吃奶边哭怎么回事| 成人免费观看视频高清| 欧美 亚洲 国产 日韩一| 久久天躁狠狠躁夜夜2o2o| 不卡一级毛片| av片东京热男人的天堂| 午夜福利乱码中文字幕| 人人澡人人妻人| 在线看a的网站| 人人妻,人人澡人人爽秒播| 国产在线精品亚洲第一网站| 高清黄色对白视频在线免费看| 成人国产一区最新在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲一码二码三码区别大吗| 亚洲精品在线观看二区| 亚洲精品久久午夜乱码| 亚洲av国产av综合av卡|