• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Plastic Zone Size Induced by a Single Dwell Overload on the Fatigue Crack Growth Rate under Cyclic Loading

    2014-06-06 08:35:22WANGFangCUIWeichengHadalScienceandTechnologyResearchCenterShanghaiOceanUniversityShanghai201306China
    船舶力學(xué) 2014年9期

    WANG Fang,CUI Wei-cheng(Hadal Science and Technology Research Center,Shanghai Ocean University,Shanghai 201306,China)

    Effect of Plastic Zone Size Induced by a Single Dwell Overload on the Fatigue Crack Growth Rate under Cyclic Loading

    WANG Fang,CUI Wei-cheng
    (Hadal Science and Technology Research Center,Shanghai Ocean University,Shanghai 201306,China)

    Creep and fatigue are involved in the loading of deep manned submersible,which is a rather complex variable amplitude pattern.Reasonable assumptions should be made before calculating the room temperature dwell fatigue life.A typical simplified loading type is the cyclic loading with one period of overloaded dwell time.Retardation effects are observed in the prior experimental research while no proper prediction equations were proposed to explain the phenomenon.In this paper,a new prediction model for the load pattern of cyclic loading with a single dwell overload is proposed.Retardation is explained by the increase of monotonic compressive plastic zone size.The calculation methods of the total monotonic plastic zone size in the vicinity of crack tip,due to the overload and the dwell time are provided and the corresponding variation of crack opening level based on the total monotonic plastic zone can be obtained.Tests are conducted to obtain the parameters used in the crack growth models and creep models together with tensile test results of the material TC4 ELI, which is as an example to calculate the retardation effects of overload and dwell time.It is observed that the model can reasonably reflect the retardation effects due to compressive plastic zone in the vicinity of the crack tip induced by dwell time.

    crack growth rate;dwell overload;plastic zone size;manned pressure hull

    1 Introduction

    The pressure hull of deep manned submersibles during their service life will experience periods of both fluctuating and steady stresses.Hence,creep and fatigue are involved,which may act together in a synergistic manner.In order to obtain a proper fatigue design,it is important to consider the real structural loading history,P()t.Since fatigue failure is a future event,the fatigue loading history for the designed structure can never be known a priori.Many engineering methods are based on finding the worst case scenario,where‘worst’often should be interpreted as a certain severe load condition.Fig.1 gives a schematic representation of typical fatigue loading history with intermittent creep for pressure hull of deep manned submersibles.

    The fatigue failure with creep interaction has attracted attention especially in high temperature condition.Typically,linear accumulation model is used to consider the common interaction of fatigue and creep.In recent years,creep effect on fatigue in room temperature is also highlighted,which is often neglected in the past.

    In the past four decades,significant effort and progress have been made to study dwell fatigue and pure fatigue behavior of metal alloys to find out how the material responds to dwell time.The prior research attributed dwell sensitivity to many deleterious mechanisms.These mechanisms include:time-dependent strain accumulation,micro-structural and micro-texture influences,stress ratio effects,internal hydrogen embrittlement and environmental effects,crystallographic orientation dependence and interactions between creep and fatigue.However,there is no consensus on the basic cause of the dwell fatigue sensitivity of metal alloys,especially titanium alloys used in submersibles.Up to now,the problem remains opened as well on the scientific as on the engineer point of view.

    In 1980,Munz and Bachmann[1]proposed the separation idea to solve the problem.Fig.2 shows the separation of cycles with hold times in cycles with a triangular wave form and a constant load(dwell load).If such a separation is possible, the crack growth rate can be calculated by the addition of two terms:the crack growth rate(da/dN)tiangof a test with a triangular wave form an the crack growth rate da/dt in a constant load test at the stress intensity factor Kmax,corresponding to the maximum load,times the hold time Δt,

    Fig.2 Separation of load cycle with hold time[1]

    The linear summation in Eq.(1)is a simplified crack growth evaluation methods which hasbeen applicable to some structural integrity assessment procedure but has not considered the interaction between fatigue and creep damages.Wakai[2]conducted a benchmark study in predicting creep-fatigue crack growth in 316L(N)cracked plates subjected to a cyclic bending moment.The predictions according to different procedures using linear summation expression were compared with each other.Differences are found between the predictions of the methods. Comparing to the experimental data,it is found that the simplified methods exhibit conservatisms which are significantly reduced when integrating the creep curve continuously without initialization during the experiment.

    The load history shown in Fig.1 is a variable amplitude load pattern.However,due to the complexity to consider the variable amplitude problem,the load pattern must be simplified. Based on the results in literature,valuable results on the relationship of fatigue,creep and dwell fatigue at room temperature can be summarized as follows:

    (1)There will be a‘transition stress level’.The failure sequence among normal fatigue, creep and dwell fatigue will be different when the stress level is lower or higher than the transition stress level.At the lower stress level,the dwell fatigue life(cycles)will be approximate to the cyclic fatigue life(cycles),however,at the higher stress level around or higher than yield stress,damage accumulation will mostly exist in holding time period and the dwell fatigue life will be approximate to the room temperature creep life when the holding time in each cycle is relatively long.

    (2)There will be a‘saturated holding time’.At the higher stress level,the holding time length will affect the dwell fatigue life.When the holding time length(may be several minutes or hours)reaches to a certain value that we can call‘saturated holding time’,the dwell fatigue life(hours)will be largely approximate to the creep life(hours).when the holding time is a short period,the dwell fatigue life (cycles)will be approximate to the low-cycle fatigue life(cycles).

    According to the above conclusions, several assumption can be made before calculating the room temperature dwell fatigue life in the model for pressure hull submersibles as shown in Fig.1,in the following,

    (1)Most of the cycles at the lower stress level can be treated as normal cyclic loading as shown in the base triangle cycles of Fig.3(a);

    Fig.3 Schematic representation of the load patterns for (a)cyclic loading with one overload and(b)cyclic loading with overloaded dwell time

    (2)The cycle with holding time at the higher stress level can be treated as the single/multiple overload with a period of hold-ing time(cyclic loading with overloaded dwell time),as shown in Fig.3(b).

    So the cyclic loading with a single dwell overload is a typical simplified load pattern.Overload effect exists when holding stress is higher than base maximum stress.Room temperature creep at a crack tip and its influence on the fatigue crack growth behavior of a 304 stainless steel have been studied by Zhao et al[3].The load patterns of fatigue with dwell time shown in Fig.4 are considered in the test.A time-dependent deformation has been observed at the crack tips under various stress intensity factors.The deformation increases with increasing stress intensity factor.Either acceleration or retardation of fatigue crack growth rate is found after holding time, which depends on the load pattern.Retardation occurs in the load pattern A.A demarcation line is observed on the fracture surface following the holding period. This implies that the crack propagation root or mode changed after the dwell time.Improvement of the prediction equations should be proposed to explain more phenomenon of creep effect on fatigue crack growth rate.

    In this paper,a possible model is proposed to consider the load pattern shown in Fig.4(b), based on the unified fatigue life prediction method proposed by the authors’group[4].The study aims at searching for a proper method to consider the effect of plastic zone size induced by a single dwell overload on the fatigue crack propagation under cyclic loading.

    2 The model for cyclic loading with a single dwell overload

    Fig.4 A schematic of load patterns of fatigue with dwell time[3]

    The improved constitutive model can be expressed by Eqs.(2)[4].

    Considering this phenomenon that at higher load ratio the experimental data are closure free,we propose that the term ΔKeffin the constitution relation is expressed by the above piece-wise function.And Newman’s function[5]for fopis modified by introducing a constraint factor α′as follows:

    where A is a material-and environmentally-sensitive constant of dimensions(MPa)-2;m is a constant representing the slope of the corresponding fatigue crack growth rate curve;n is the index indicating the unstable fracture;KICis the plane strain fracture toughness of the material;KCfis the fracture toughness of the material under fatigue loading;reis an empirical material constant of the inherent flaw length of the order of 1 μm;a is the modified crack length which is equal to replus the actual crack length;σmaxis the maximum applied stress,σminis the minimum applied stress;Y(a)is a geometrical factor;Y(re)is a geometrical factor when a is equal to re;R is the stress ratio(=σmin/σmax);ΔKthis the threshold value of stress intensity factor range;ath is the threshold value corresponding to ΔKth;ΔKeffis the effective range of the stress intensity factor;ΔKeffthis the effective range of the stress intensity factor at the threshold level;Kopis the stress intensity factor at the opening level;α′is the crack tip stress/strain constraint ratio,which is 1 for the plane stress state and 1/(1-2v)for the plane strain state. The effect of n is significant only in the unstable propagation region;a constant value of 6 is recommended for a quick and simple engineering analysis.Eq.(4)can be used to determine the value of ΔKeffthand we recommend the values of β and β1are 0.4 and 0.36 respectively for titanium alloys.But the prediction error in the unstable region reflects the inaccuracy of the assumption of KCf=KIC.

    In considering overload effect,it is assuming that the single overload effect is due to variations in crack closure stress in metals and the large plastic zone as a result of overloading can raise the stress intensity factor at the opening level.A large plastic zone is created as a re-sult of an overload,and the crack closure level instantaneously rises to the maximum value, and then gradually recovers to the initial level under constant amplitude loading when the crack penetrates the large plastic zone in the subsequent cycles.A modified coefficient,Φ,on the basis of Wheeler model has been introduced as a magnification factor to correct the amount of the stress intensity factor at crack opening level during the recovering period after an overload in the improved constitutive model illustrated in Fig.5.

    Fig.5 Schematic representation of the assumed change of Kopunder load sequence with single overloading

    To account for the change of the crack closure level,a coefficient,Φ,is introduced in the improved constitutive model,

    Then it is important to estimate the plastic zone size in front of the crack tip first.Liu et al[6]proposed an equation to calculate the plastic zone size in front of the crack tip as follows:

    The plastic zone size mentioned above is also called monotonic plastic zone,which can be used to calculate the plastic zone due to one overload.As the minimum cyclic load in a cycle is approached,yielding in compression occurs in a region of a smaller size,called the cyclic plastic zone,as expressed in Eq.(7)[7]:

    Suppose that the single tensile overload and a short period of holding time will not induce crack propagation but just result in a monotonic plastic zone.Based on the assumption, Fig.6 is proposed to illustrate the plastic zone distribution due to the cyclic loading with overload dwell time.Among them,rdtis defined as the plastic zone increment due to dwell time. Then the total monotonic plastic zone can be expressed as the assumption of rOLand rdt.And Eq.(5)will be modified to,

    Fig.6 Schematic representation of the plastic zone due to cyclic loading with overloaded dwell time

    The physical mechanisms causing creep differ markedly for different classes of materials. In addition,even for a given material,different mechanisms act at various combinations of stress and temperature[8].During low temperature creep(<0.25Tm)of many metals and alloys,primary creep is the dominant deformation mode.At low creep stresses and creep strains(<2×10-3), the primary creep deformation of many metals and alloys has been described by a logarithmic creep law of the form ε=llnt+C.In cases where there is larger accumulation of primary creep strains,the deformation can be often described by a power law function of creep strain with time,

    where C and k are constants.And the dimension of T is second.

    According to the Ramberg-Osgood stress-strain curve,

    Creep deformation due to creep in room temperature is plastic

    deformation.And if thecreep strain is equivalent to the value due to monotonic stress σcreep,then the stress can be expressed as,

    Then the monotonic plastic zone can be simply modified to the following equation,

    where KOLCresults from the combined effects of an instant overload and the load holding time T,which can be expressed as follows:

    The above equation can be used to calculate the assumption of rOLand rdtduring the overload dwell time as follows:

    Then,the crack growth rate for the load pattern of Fig.4(b)can be calculated by combining E-qs.(2),(8)and(14).

    3 Example

    An example for a candidate titanium alloys used for deep manned submersibles,TC4 ELI will be used to show the application of the proposed model.The chemical compositions of the present tested sample of TC4 ELI,is given in Tab.1.Its tensile test results will not specifically illustrated here,which can be referred to Wang et al[9]Normal crack growth and creep tests are conducted first to obtain the room temperature creep parameters.All crack growth test specimens were conducted using a MTS810 servo-hydraulic testing machine.Standard C-T specimens with dimensions of B=12.5 mm;W=50 mm were cut and machined from three layers of 90 mm-thick hot rolled thick plate at three load ratios,i.e.0.0,0.5,0.8 to obtain date over a wide range of growth rates, with 2 specimens under each stress level,respectively from two sampling directions,parallel to rolling direction and vertical to rolling direction.Crack growth test results can be shown in Fig.7 together with the prediction curves using the unified crack growth rate model.

    Fig.7 Crack growth test results of TC4 ELI specimens

    Tab.1 Chemical composition of TC4 ELI(wt.%)

    Standard specimens were prepared for room temperature creep testing.The force is to be held constant for 84 hours.The creep strain or deformation is measured with time and the time rupture is recorded if this occurs during the test.The creep behavior for one specimen can be observed on a graph of displacement versus time as shown in Fig.8.There is an initial nearly instantaneous occurrence of elastic and perhaps also plastic deformation(or strain)followed by accumulation of creep deformation(or strain).Then the deformation rate d(Δl)/dt,hence the slope of the Δl versus t plot,is at first relatively high.However,the rate decreases and becomes approximately constant with time increasing.

    Fig.8 Normal creep test results of TC4 ELI

    Fig.9 Total results of creep strain versus time curves for normal creep of TC4 ELI

    Fig.9 gives the total results of creep strain versus time curves for normal creep of TC4 ELI. A relatively large scatter is observed comparing results for different specimens,which may result from different position and direction of the specimens as well as some discrepancy of microstructures of the specimens.The most conservative curve can be chosen for life analysis.Thenthe power law function of creep strain with time for TC4 ELI can be expressed as follows:

    Then all of parameters used in the crack growth models and creep models can be obtained together with tensile test results of the material,which are listed in Tab.2.Based on that,the crack length versus cycles curve under cyclic load pattern with one overload and a single dwell overload(10 minutes)can be obtained using the proposed model,as shown in Fig.10.It can be seen that retardation will occur under the effect of overload and a period of dwell time.It is from the compressive plastic zone in the vicinity of the crack tip.

    Tab.2 Parameters of crack growth rate model and creep model for Ti6Al4V ELI(R=0.1)

    Fig.10 Crack length versus cycles curve under cyclic load pattern with a single dwell overload(10 minutes)

    4 Summary and conclusions

    In this paper,a new prediction model for the load pattern of cyclic loading with a single dwell overload is proposed.The calculation methods of the total monotonic plastic zone size in the vicinity of crack tip,due to the overload and the dwell time are provided and the corre-sponding variation of crack opening level based on the total monotonic plastic zone can be obtained.Tests are conducted to obtain the parameters used in the crack growth models and creep models together with tensile test results of the material TC4 ELI,which is as an example to calculate the retardation effects of overload and dwell time.It is observed that the model can reasonably reflect the retardation effects due to compressive plastic zone in the vicinity of the crack tip induced by dwell time.The model can theoretically explain the retardation phenomenon and validation tests will be conducted in the future’s research.

    Acknowledgments

    This work is supported by Youth Foundation of Jiangsu Province‘Study on the time-scale crack growth rate model used in fatigue life assessment of pressure hull of deep-sea submersibles’(Project No.BK2012095);Special program for Hadal Science and Technology of Shanghai Ocean University(Project No.HAST-T-2013-01);The doctoral research fund of Shanghai Ocean University(2013-2015).

    [1]Munz D,Bachmann V.Effect of hold time and environment on fatigue crack growth rate in Ti alloys[J].Material wissenschaft und Werkstofftechnik,1980,11(5):168-172.

    [2]Wakai T,Poussard C,Drubay B.A comparison between Japanese and French A16 defect assessment procedures for creepfatigue crack growth[J].Nuclear Engineering and Design,2003,224(3):245-252.

    [3]Zhao J,Mo T,Nie D F,Ren M F,Guo X L,Chen W X.Acceleration and retardation of fatigue crack growth rate due to room temperature creep at crack tip in a 304 stainless steel[J].Journal of Materials Science,2006,41(19):6431-6434.

    [4]Cui W,Wang F,Huang X.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011,24 (2):153-181.

    [5]Newman J J.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4): 131-135.

    [6]Liu Q,Wang F,Huang X P,Cui W C.Three dimensional FE analysis of the plastic zone size near the crack tip[J].Journal of Ship Mechanics,2006,10(5):90-99.

    [7]Voorwald H J C,Torres M A S,Pinto Júnior C C E.Modelling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [8]Dowling N E.Mechanical behavior of materials:engineering methods for deformation,fracture,and fatigue[M].Prentice Hall,1993.

    [9]Wang F,Cui W,Pan B,Shen Y,Huang X.Normalised fatigue and fracture properties of candidate titanium alloys used in the pressure hull of deep manned submersibles[J].Ships and Offshore Structures,(ahead-of-print),2013:1-14.

    U661.4Document code:A

    10.3969/j.issn.1007-7294.2014.09.010

    1007-7294(2014)09-1117-12

    date:2014-04-23

    Supported by Youth Foundation of Jiangsu Province(BK2012095);Special program for Hadal Science and Technology of Shanghai Ocean University(HAST-T-2013-01);The doctoral research fund of Shanghai Ocean University(2013-2015)

    Biography:WANG Fang(1979-),female,Associate researcher of Shanghai Ocean University,E-mail: wangfang@shou.edu.cn;CUI Wei-cheng(1963-),male,professor/tutor.

    一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久av美女十八| 欧美中文综合在线视频| 最近最新免费中文字幕在线| 听说在线观看完整版免费高清| 美女高潮喷水抽搐中文字幕| 国产av在哪里看| 国产精品影院久久| 一级黄色大片毛片| 亚洲午夜精品一区,二区,三区| 91在线观看av| 亚洲 欧美一区二区三区| 精品久久久久久久久久久久久 | 老司机午夜十八禁免费视频| 给我免费播放毛片高清在线观看| 国产成人欧美在线观看| 亚洲av成人一区二区三| 精品国产超薄肉色丝袜足j| 免费看a级黄色片| 日韩欧美一区二区三区在线观看| 久热这里只有精品99| 国产精品一区二区三区四区久久 | 97超级碰碰碰精品色视频在线观看| 99久久精品国产亚洲精品| 黑人欧美特级aaaaaa片| 老司机在亚洲福利影院| 久久人人精品亚洲av| 宅男免费午夜| 最近最新免费中文字幕在线| 国产激情久久老熟女| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| 国产精品日韩av在线免费观看| 久久久国产精品麻豆| 这个男人来自地球电影免费观看| 欧美另类亚洲清纯唯美| 中文字幕精品免费在线观看视频| 女同久久另类99精品国产91| 亚洲精品中文字幕在线视频| 1024香蕉在线观看| 国产成人精品无人区| 别揉我奶头~嗯~啊~动态视频| 午夜激情福利司机影院| 国产人伦9x9x在线观看| 亚洲精品av麻豆狂野| 香蕉久久夜色| 亚洲精品在线观看二区| 黄片小视频在线播放| 搡老妇女老女人老熟妇| 狂野欧美激情性xxxx| 国产精品电影一区二区三区| 少妇 在线观看| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 久久久久久久精品吃奶| 成年免费大片在线观看| 黄色a级毛片大全视频| 精品卡一卡二卡四卡免费| 亚洲国产高清在线一区二区三 | 亚洲精品国产精品久久久不卡| 又大又爽又粗| 久久草成人影院| 国产激情欧美一区二区| 在线观看免费视频日本深夜| 黄色女人牲交| 他把我摸到了高潮在线观看| 一级片免费观看大全| 国产亚洲欧美98| 日韩大尺度精品在线看网址| 色哟哟哟哟哟哟| 少妇被粗大的猛进出69影院| 啪啪无遮挡十八禁网站| 夜夜夜夜夜久久久久| 看免费av毛片| 欧美一区二区精品小视频在线| 亚洲激情在线av| 亚洲av熟女| 亚洲人成伊人成综合网2020| 亚洲一区二区三区不卡视频| 国产三级在线视频| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 久久性视频一级片| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人av| 国产精品久久久久久人妻精品电影| 女警被强在线播放| 免费在线观看日本一区| 一级a爱视频在线免费观看| 国产三级在线视频| 一夜夜www| 精品一区二区三区四区五区乱码| 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 母亲3免费完整高清在线观看| www.精华液| 变态另类成人亚洲欧美熟女| 国产精品二区激情视频| 十分钟在线观看高清视频www| 国产伦一二天堂av在线观看| 精品国产一区二区三区四区第35| 大香蕉久久成人网| 看黄色毛片网站| 午夜免费成人在线视频| 色播亚洲综合网| 成年女人毛片免费观看观看9| 国产精品国产高清国产av| 欧美在线黄色| 久久性视频一级片| 精品国产国语对白av| 男女午夜视频在线观看| 又大又爽又粗| 亚洲av中文字字幕乱码综合 | 非洲黑人性xxxx精品又粗又长| 一本精品99久久精品77| 在线国产一区二区在线| 国产精品亚洲一级av第二区| 亚洲 国产 在线| 1024香蕉在线观看| 欧美日韩乱码在线| 最近在线观看免费完整版| 国产精品久久电影中文字幕| 成人永久免费在线观看视频| 男人舔女人的私密视频| 亚洲,欧美精品.| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一小说| 国产成人啪精品午夜网站| 黑人操中国人逼视频| 国产亚洲av高清不卡| 999久久久国产精品视频| 久久中文看片网| 久久精品91无色码中文字幕| 色综合欧美亚洲国产小说| 久久 成人 亚洲| 中文亚洲av片在线观看爽| 久久狼人影院| 亚洲国产欧洲综合997久久, | 成人亚洲精品av一区二区| svipshipincom国产片| 精品国内亚洲2022精品成人| 亚洲最大成人中文| 国产成人系列免费观看| 久久久久国内视频| 看片在线看免费视频| 亚洲成人精品中文字幕电影| 久久亚洲真实| 黄色毛片三级朝国网站| 国产在线观看jvid| 欧美色视频一区免费| 人人妻人人看人人澡| 村上凉子中文字幕在线| 免费看十八禁软件| 精品国产国语对白av| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 好男人电影高清在线观看| 日韩欧美免费精品| 怎么达到女性高潮| 免费看a级黄色片| 一级片免费观看大全| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 久久九九热精品免费| 色播在线永久视频| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 精品少妇一区二区三区视频日本电影| 露出奶头的视频| 精品久久久久久成人av| 91字幕亚洲| 亚洲国产欧洲综合997久久, | 精品欧美国产一区二区三| 日韩大码丰满熟妇| 国产v大片淫在线免费观看| 日韩欧美国产在线观看| 99国产精品一区二区三区| 一级a爱片免费观看的视频| 国产高清有码在线观看视频 | 亚洲成av片中文字幕在线观看| 久久人妻福利社区极品人妻图片| 国产v大片淫在线免费观看| 国产黄片美女视频| 男女做爰动态图高潮gif福利片| 免费看十八禁软件| 亚洲人成网站高清观看| a在线观看视频网站| 在线观看日韩欧美| 亚洲 欧美一区二区三区| 不卡一级毛片| 亚洲激情在线av| 久久天躁狠狠躁夜夜2o2o| 国产v大片淫在线免费观看| 免费一级毛片在线播放高清视频| 日韩精品免费视频一区二区三区| 一进一出抽搐动态| 国产精品亚洲一级av第二区| av在线天堂中文字幕| 久久伊人香网站| 精品电影一区二区在线| 日韩大码丰满熟妇| 日本熟妇午夜| 亚洲精品国产精品久久久不卡| 色综合欧美亚洲国产小说| 亚洲一区二区三区色噜噜| 香蕉丝袜av| xxx96com| 欧美在线黄色| 国内精品久久久久久久电影| 日本黄色视频三级网站网址| 亚洲aⅴ乱码一区二区在线播放 | 777久久人妻少妇嫩草av网站| 99在线人妻在线中文字幕| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 欧美成人性av电影在线观看| 日日爽夜夜爽网站| 香蕉av资源在线| 99热6这里只有精品| 少妇 在线观看| 国产一区二区三区在线臀色熟女| 怎么达到女性高潮| 欧美午夜高清在线| 久久久久久亚洲精品国产蜜桃av| 亚洲成人久久性| av视频在线观看入口| 亚洲 欧美一区二区三区| 99re在线观看精品视频| 操出白浆在线播放| 波多野结衣高清无吗| 人成视频在线观看免费观看| 久久精品国产综合久久久| 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 亚洲 国产 在线| 久久精品成人免费网站| 国产伦一二天堂av在线观看| 日韩三级视频一区二区三区| 久久久久精品国产欧美久久久| 老司机在亚洲福利影院| 国产一区二区激情短视频| 国产日本99.免费观看| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| 桃色一区二区三区在线观看| 999久久久国产精品视频| 色精品久久人妻99蜜桃| 女性被躁到高潮视频| av有码第一页| 国产精品一区二区免费欧美| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 一级毛片精品| 一二三四社区在线视频社区8| 国产v大片淫在线免费观看| 日韩免费av在线播放| 在线观看午夜福利视频| 成年版毛片免费区| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 好男人电影高清在线观看| 高清毛片免费观看视频网站| 国产精品1区2区在线观看.| 丝袜美腿诱惑在线| 我的亚洲天堂| 亚洲激情在线av| 首页视频小说图片口味搜索| 日韩欧美国产一区二区入口| 免费在线观看黄色视频的| 日本熟妇午夜| 制服丝袜大香蕉在线| 日日爽夜夜爽网站| 久久精品影院6| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| bbb黄色大片| 麻豆成人av在线观看| 日韩欧美免费精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人av| 91老司机精品| 在线免费观看的www视频| 成人三级做爰电影| 亚洲第一av免费看| 狂野欧美激情性xxxx| 自线自在国产av| 欧美乱妇无乱码| 免费无遮挡裸体视频| 极品教师在线免费播放| 精品国产国语对白av| 长腿黑丝高跟| 久久热在线av| 日韩欧美一区视频在线观看| 91麻豆av在线| 久久国产精品男人的天堂亚洲| 精品一区二区三区四区五区乱码| 久久精品人妻少妇| 日本一区二区免费在线视频| 一区二区三区高清视频在线| 在线观看免费日韩欧美大片| 日本成人三级电影网站| 一夜夜www| 中文资源天堂在线| 亚洲狠狠婷婷综合久久图片| 亚洲av片天天在线观看| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频| 99热只有精品国产| 观看免费一级毛片| 香蕉av资源在线| 国产激情久久老熟女| 成人三级黄色视频| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 一进一出抽搐动态| 97碰自拍视频| 日韩有码中文字幕| 久久久久久人人人人人| 久99久视频精品免费| 动漫黄色视频在线观看| 桃红色精品国产亚洲av| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看 | 精品国内亚洲2022精品成人| 亚洲成人国产一区在线观看| 久久热在线av| 国产精品一区二区三区四区久久 | 日韩 欧美 亚洲 中文字幕| 最新在线观看一区二区三区| 精品久久久久久,| 午夜激情福利司机影院| 久久久久亚洲av毛片大全| 欧美人与性动交α欧美精品济南到| 侵犯人妻中文字幕一二三四区| 亚洲一码二码三码区别大吗| 在线十欧美十亚洲十日本专区| 黑丝袜美女国产一区| 成人精品一区二区免费| 亚洲av电影在线进入| 真人做人爱边吃奶动态| 美女高潮到喷水免费观看| 欧美最黄视频在线播放免费| 久久久水蜜桃国产精品网| 观看免费一级毛片| 国产成年人精品一区二区| 成人18禁高潮啪啪吃奶动态图| 国产蜜桃级精品一区二区三区| 国产激情久久老熟女| 中文字幕人成人乱码亚洲影| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| 国内精品久久久久久久电影| 午夜影院日韩av| 欧美色欧美亚洲另类二区| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区精品| 精品电影一区二区在线| 很黄的视频免费| 99国产极品粉嫩在线观看| 免费在线观看黄色视频的| 国产爱豆传媒在线观看 | 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| 脱女人内裤的视频| 视频区欧美日本亚洲| 久久国产亚洲av麻豆专区| 国产av不卡久久| 午夜免费鲁丝| 琪琪午夜伦伦电影理论片6080| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 国产成+人综合+亚洲专区| 精品国产乱码久久久久久男人| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲| 99精品在免费线老司机午夜| 午夜福利免费观看在线| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 老司机在亚洲福利影院| 俺也久久电影网| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 丝袜在线中文字幕| 非洲黑人性xxxx精品又粗又长| 午夜福利在线在线| 在线av久久热| av在线播放免费不卡| 日韩欧美在线二视频| 午夜福利一区二区在线看| 国产久久久一区二区三区| 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久| avwww免费| 高清在线国产一区| 亚洲国产欧洲综合997久久, | 亚洲av第一区精品v没综合| 天天一区二区日本电影三级| 亚洲av熟女| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| a级毛片在线看网站| 国产精品国产高清国产av| 日本 欧美在线| 欧美成人午夜精品| 一级作爱视频免费观看| 亚洲av成人不卡在线观看播放网| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av在线| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 欧美激情极品国产一区二区三区| 在线观看舔阴道视频| 精品免费久久久久久久清纯| 国产精品免费视频内射| 黄片大片在线免费观看| 亚洲精品在线美女| 麻豆成人午夜福利视频| 欧美又色又爽又黄视频| 欧美成人免费av一区二区三区| 日韩欧美一区视频在线观看| 亚洲在线自拍视频| 午夜福利免费观看在线| 国产亚洲精品综合一区在线观看 | 国产单亲对白刺激| 国产av一区二区精品久久| 久久人妻av系列| 国产午夜精品久久久久久| 精品国产国语对白av| 亚洲七黄色美女视频| 国产亚洲精品一区二区www| 国产精品自产拍在线观看55亚洲| 又黄又爽又免费观看的视频| 嫁个100分男人电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 99久久综合精品五月天人人| 丰满的人妻完整版| 精品第一国产精品| 午夜福利免费观看在线| 亚洲国产精品合色在线| 亚洲一码二码三码区别大吗| 在线观看免费视频日本深夜| 久9热在线精品视频| 神马国产精品三级电影在线观看 | 熟妇人妻久久中文字幕3abv| 夜夜爽天天搞| 精品国产超薄肉色丝袜足j| 国产国语露脸激情在线看| 亚洲全国av大片| 国产成人欧美在线观看| 香蕉av资源在线| 日日夜夜操网爽| 日韩欧美免费精品| 久热爱精品视频在线9| 91国产中文字幕| 自线自在国产av| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 欧美久久黑人一区二区| 国产一区二区三区在线臀色熟女| 色老头精品视频在线观看| 久久久久九九精品影院| 波多野结衣高清无吗| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 日日夜夜操网爽| 精品国产乱码久久久久久男人| 国产精品99久久99久久久不卡| 成年人黄色毛片网站| 一区二区三区激情视频| 日韩有码中文字幕| 美女午夜性视频免费| 国产又黄又爽又无遮挡在线| 一个人免费在线观看的高清视频| 老司机在亚洲福利影院| 中文字幕人妻熟女乱码| 亚洲第一av免费看| 亚洲在线自拍视频| 欧美激情高清一区二区三区| 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 婷婷精品国产亚洲av| 一级作爱视频免费观看| 巨乳人妻的诱惑在线观看| 正在播放国产对白刺激| 午夜福利免费观看在线| 国语自产精品视频在线第100页| 香蕉国产在线看| 男女午夜视频在线观看| 亚洲天堂国产精品一区在线| or卡值多少钱| 国语自产精品视频在线第100页| 别揉我奶头~嗯~啊~动态视频| 2021天堂中文幕一二区在线观 | 亚洲精品国产精品久久久不卡| 欧美性长视频在线观看| 午夜精品在线福利| 2021天堂中文幕一二区在线观 | 色综合站精品国产| 亚洲专区字幕在线| 免费人成视频x8x8入口观看| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 国产欧美日韩精品亚洲av| 超碰成人久久| 一边摸一边抽搐一进一小说| 波多野结衣高清无吗| 久久伊人香网站| 欧美日韩中文字幕国产精品一区二区三区| 激情在线观看视频在线高清| 好男人在线观看高清免费视频 | 精品第一国产精品| 欧美日韩亚洲综合一区二区三区_| 亚洲五月色婷婷综合| 久久这里只有精品19| 国产蜜桃级精品一区二区三区| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 免费高清视频大片| 麻豆一二三区av精品| 欧美黑人巨大hd| 一进一出抽搐gif免费好疼| 亚洲av电影不卡..在线观看| 国产黄a三级三级三级人| 亚洲一区中文字幕在线| 国产熟女午夜一区二区三区| 一a级毛片在线观看| 可以在线观看毛片的网站| 人成视频在线观看免费观看| 男人舔女人的私密视频| 国内久久婷婷六月综合欲色啪| 久久香蕉国产精品| av免费在线观看网站| 日本一区二区免费在线视频| 久久婷婷人人爽人人干人人爱| 中文字幕高清在线视频| 最近最新免费中文字幕在线| 国产精品影院久久| 久久午夜综合久久蜜桃| 91av网站免费观看| 亚洲精品国产区一区二| 欧美日韩亚洲国产一区二区在线观看| 老汉色av国产亚洲站长工具| 老熟妇乱子伦视频在线观看| 无人区码免费观看不卡| 久久精品aⅴ一区二区三区四区| 看黄色毛片网站| 又大又爽又粗| 波多野结衣av一区二区av| 精品国产乱子伦一区二区三区| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 色综合欧美亚洲国产小说| 女生性感内裤真人,穿戴方法视频| 成人国产综合亚洲| 午夜老司机福利片| 久久中文看片网| 国产免费男女视频| 午夜精品久久久久久毛片777| 日本 av在线| 精品国产国语对白av| 禁无遮挡网站| 日韩 欧美 亚洲 中文字幕| 亚洲av中文字字幕乱码综合 | 香蕉国产在线看| 午夜福利视频1000在线观看| 亚洲成国产人片在线观看| 国产乱人伦免费视频| 深夜精品福利| 国产麻豆成人av免费视频| 久久精品亚洲精品国产色婷小说| 91成人精品电影| 亚洲精品久久国产高清桃花| 一级毛片精品| 91成人精品电影| 18美女黄网站色大片免费观看| 久久人妻av系列| 久久久国产欧美日韩av| 99在线视频只有这里精品首页| 色播在线永久视频| 99re在线观看精品视频| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 18禁国产床啪视频网站| 操出白浆在线播放| 欧美日韩精品网址| 天堂动漫精品| 久久久国产成人精品二区| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看| 久久久久国产一级毛片高清牌| 欧美亚洲日本最大视频资源| 国产高清有码在线观看视频 | 久久精品国产99精品国产亚洲性色| 亚洲va日本ⅴa欧美va伊人久久| 人人妻,人人澡人人爽秒播| 久久中文字幕人妻熟女|