許湧深,邱守季,楊 磊,葛 悅(天津大學(xué)化工學(xué)院,天津 300072)
反相微乳液法制備納米PMMA-SiO2復(fù)合微粒
許湧深,邱守季,楊 磊,葛 悅
(天津大學(xué)化工學(xué)院,天津 300072)
以甲苯為連續(xù)相、水為分散相、十二烷基苯磺酸為乳化劑兼作催化劑、正戊醇為助乳化劑,制備反相微乳液.然后引入正硅酸乙酯(TEOS),在水核中形成二氧化硅納米粒子.接著加入通過溶液聚合制備的甲基丙烯酸甲酯(MMA)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)共聚物的甲苯溶液,實(shí)現(xiàn)共聚物對(duì)納米二氧化硅的包覆.通過TEM、FTIR、TG等測(cè)試,證實(shí)得到了共聚物包覆二氧化硅的核殼結(jié)構(gòu)納米粒,平均粒徑約為36,nm.當(dāng)共聚物中KH570質(zhì)量分?jǐn)?shù)為5%時(shí),獲得最高的包覆率,聚合物占復(fù)合粒子質(zhì)量的47%.
反相微乳液;二氧化硅;包覆;納米復(fù)合
納米SiO2具有優(yōu)越的穩(wěn)定性、高強(qiáng)高韌和特殊的光電效應(yīng)等奇異特性,因此利用納米SiO2改進(jìn)聚合物性能得到人們的廣泛研究[1].但納米SiO2粒徑小,表面能很大,表面含有大量的羥基,親水性強(qiáng),并且團(tuán)聚傾向大,在聚合物中分散困難.制備納米SiO2/聚合物復(fù)合微粒通常需要借助一些特殊技術(shù)[2-5].反相微乳液具有大的分散界面、透明性、熱力學(xué)穩(wěn)定性以及獨(dú)特多變的結(jié)構(gòu),可以形成特殊的微環(huán)境,進(jìn)而用作制備特殊形貌和性質(zhì)的納米復(fù)合體系的“微反應(yīng)器”[6-7].沈淑玲等[8]先制備含納米SiO2的微乳液,然后向其中添加單體,引發(fā)原位聚合,制得PMMA-SiO2復(fù)合微粒.Donescu等[9]在反相微乳液中同步進(jìn)行TEOS的sol-gel反應(yīng)和MMA與MPS自由基共聚,制備PMMA-SiO2雜化物.Palkovits等[10]直接以MMA為連續(xù)相,采用反相微乳液法制備了透明PMMA-SiO2納米復(fù)合粒子.Xu等[11]先將納米SiO2用偶聯(lián)劑包覆改性,然后用微乳液法制備PMMA-SiO2納米雜化體系.這些方法中,聚合物在微乳液中形成,與SiO2縮合的官能團(tuán)在聚合物鏈段中分布不均,造成接枝包覆效果不好.而且乳化劑含量通常較高,功能單一,還需要加入催化劑促進(jìn)無機(jī)前驅(qū)體的水解縮合,影響以后分離提純.
筆者先通過溶液聚合制備甲基丙烯酸甲酯和KH570的共聚物P(MMA-co-KH570),通過調(diào)節(jié)反應(yīng)溫度、時(shí)間和加料工藝,可以方便地控制聚合物的相對(duì)分子質(zhì)量和可水解縮合基團(tuán)的分布.并選用DBSA,既是乳化劑又是酸催化劑.在反相微乳液中TEOS溶膠凝膠反應(yīng)形成納米SiO2,同時(shí)與共聚物縮合,制備了納米PMMA-SiO2復(fù)合粒子.
1.1 微乳液擬三元相圖的繪制
利用Shah法在DBSA/正戊醇的質(zhì)量比一定的情況下,向DBSA/正戊醇和甲苯體系中滴加水,充分?jǐn)嚢?,觀察體系剛變渾濁,記為相變點(diǎn).改變DBSA/正戊醇的量,重復(fù)上述方法,繪制出微乳液三元相圖.
1.2 溶液聚合制備P(MMA-co-KH570)
以一定量的甲苯為溶劑,加入0.1,g AIBN,攪拌溶解,控溫80,℃,將一定量的KH570/MMA混合溶液(質(zhì)量比分別為1/99、2/98、3/97、5/95、10/90)通過滴液漏斗,緩慢滴加到甲苯中,約1,h滴完.保溫4,h得到P(MMA-co-KH570)的甲苯溶液.
1.3 納米PMMA-SiO2復(fù)合微粒的制備
參照第1.1節(jié)繪制的相圖,以甲苯為連續(xù)相,DBSA為乳化劑,正戊醇為助乳化劑,水為分散相,加入適量的TEOS,得到反相微乳液,先使其中TEOS sol-gel反應(yīng)一段時(shí)間,然后加入一定量第1.2節(jié)制得的溶液,超聲混合均勻,一定溫度下反應(yīng)一段時(shí)間.
1.4 測(cè)試
用TDA305型凝膠滲透色譜儀測(cè)定共聚物的相對(duì)分子質(zhì)量和分布.將第1.3節(jié)體系破乳,離心洗滌后,50,℃烘干,然后用丙酮抽提30,h,得到白色粉末樣品.根據(jù)GB/T9345.1—2008進(jìn)行灰分的測(cè)定,得到復(fù)合微粒中SiO2含量.用傅里葉變換紅外分析儀(Fourier transform infrared spectroscope,F(xiàn)TIR)測(cè)定樣品的物質(zhì)組成.用凝膠滲透色譜儀(GPC)測(cè)定共聚物的相對(duì)分子質(zhì)量.用JEM-2100F場(chǎng)發(fā)射透射電子顯微鏡(transmission electron microscope,TEM)測(cè)定粒子的形貌、大小及分散狀況.用熱重分析儀(TGA)測(cè)定復(fù)合粒子中聚合物含量.
2.1 P(MMA-co-KH570)相對(duì)分子質(zhì)量及分布
MMA和KH570共聚反應(yīng)中,單體自聚傾向比共聚大.本文采用較高反應(yīng)溫度和單體饑餓滴加方式,緩慢滴加單體混合物,使滴入的單體迅速聚合,然后補(bǔ)充新單體,強(qiáng)迫達(dá)到均勻聚合的目的,使可水解縮合的硅氧烷基團(tuán)在共聚合物鏈段中分布均勻[12].并且相對(duì)分子質(zhì)量大小可以通過反應(yīng)時(shí)間、引發(fā)劑量方便的調(diào)控.本研究中GPC測(cè)得其為3,240,d==1.5.
2.2 反相微乳液法制備復(fù)合微粒的初始組分選取
圖1中標(biāo)記出W/O型微乳液的穩(wěn)定區(qū)域,在該區(qū)域內(nèi)的微乳液從外觀上看透明或近乎透明,是流動(dòng)性好的均相體系.油水比直接影響反相微乳液水核的大小,進(jìn)而影響產(chǎn)物粒徑.所以應(yīng)選擇圖1中W/O區(qū)域內(nèi)油水比合適的初始組分.
圖1 微乳液擬三元相圖Fig.1 Pseudo-ternary phase diagram of microemulsion
2.3 紅外光譜分析
圖2為復(fù)合粒子和SiO2的紅外光譜.對(duì)SiO2粒子,3,439,cm-1為Si—OH的伸縮振動(dòng)吸收峰,1,600,cm-1處為表面吸附的自由水層.而對(duì)于復(fù)合粒子,除具有與SiO2相同的特征峰外,2,953,cm-1及1,451,cm-1處分別為—CH3的伸縮振動(dòng)峰和彎曲振動(dòng)峰,1,733,cm-1處為羰基的振動(dòng)吸收峰,表明有P(MMA-co-KH570)通過化學(xué)鍵作用在SiO2表面實(shí)現(xiàn)復(fù)合.樣品1~5分別為KH570與MMA質(zhì)量比為1/99、2/98、3/97、5/95、10/90聚合物包覆SiO2納米粒子.根據(jù)圖2中特征峰強(qiáng)度和表1灰分測(cè)試結(jié)果可知,特征峰相對(duì)強(qiáng)度越大,則復(fù)合物中共聚物的含量越高.說明在一定范圍內(nèi),隨著共聚物中KH570含量增加,形成的納米粒子聚合物含量增加,繼續(xù)提高KH570含量,聚合物含量反而下降.在KH570與MMA質(zhì)量比為5/95時(shí),有機(jī)物含量最高,包覆效果最好.表明在一定KH570含量范圍內(nèi),隨著其含量的增加,有利于共聚物與SiO2表面的硅羥基共縮合,增強(qiáng)有機(jī)物的包覆效果;超過這一范圍時(shí),共聚物自交聯(lián)傾向變大,不利于形成包覆,所以復(fù)合物中有機(jī)物含量下降.
圖2 不同KH570含量的P(MMA-co-KH570)/SiO2復(fù)合納米粒子與納米SiO2的紅外光譜圖Fig.2 FTIR spectrum of P(MMA-co-KH570)/SiO2nanocomposite particles for different mass fractions of KH570 in copolymer and nanosilica
表1 不同KH570含量的P(MMA-co-KH570)/SiO2復(fù)合納米粒子的SiO2質(zhì)量分?jǐn)?shù)Tab.1 Mass fraction of SiO2of P(MMA-co-KH570)/SiO2nanocomposite particles with different mass fractions of KH570 in copolymer
2.4 TG分析
抽提并烘干后,測(cè)得樣品4的熱失重曲線如圖3所示.PMMA均聚物的熱分解溫度約為225,℃[13],樣品4高于262,℃以后會(huì)分解.抽提后有47%的PMMA不能被抽提出來,且這部分的分解溫度比PMMA均聚物的分解溫度提高了37,℃,這是由于該部分PMMA與SiO2表面形成共價(jià)鍵作用.并且根據(jù)第2.1節(jié)分析可知,可水解縮合的硅氧烷基團(tuán)在共聚物鏈段中分布均勻,使得共聚物與SiO2表面接枝點(diǎn)分布均勻,而文獻(xiàn)[8,13]中接枝官能團(tuán)分布在鏈端,所以本方法制備的PMMA/SiO2熱穩(wěn)定性和聚合物含量均有較大的提高.
圖3 KH570含量為5%的納米P(MMA-co-KH570)/ SiO2復(fù)合微粒的熱失重曲線Fig.3 TG curve of P(MMA-co-KH570)/SiO2nanocomposite particles with 5% mass fraction of KH570
2.5 TEM分析
圖4表明制得納米復(fù)合微粒分散均勻.統(tǒng)計(jì)計(jì)算得到其平均粒徑約為36,nm.進(jìn)一步放大,可見得到核殼結(jié)構(gòu)的復(fù)合微粒,即較黑的部分為納米SiO2核,較淺的部分為PMMA殼層.
圖4 PMMA-SiO2納米復(fù)合粒子透射電鏡圖Fig.4TEM images of PMMA-silica nanocomposite particles
根據(jù)研究結(jié)果可以推知形成PMMA-SiO2納米復(fù)合粒子的機(jī)理如下:在反相微乳液水核中,硅酸乙酯被十二烷基苯磺酸催化水解,進(jìn)一步縮合形成無機(jī)交聯(lián)網(wǎng)絡(luò),即納米級(jí)二氧化硅粒子.同時(shí)P(MMA-co-KH570)中的硅氧烷基團(tuán)也在水核表面被催化水解,與納米二氧化硅表面的羥基縮合,形成共聚物包覆層,最終得到PMMA-SiO2納米復(fù)合粒子.其形成過程示意如圖5所示.
具體過程如下.
(1) 根據(jù)第2.1節(jié)中的分析,甲基丙烯酸甲酯與KH570共聚,形成共聚物的甲苯溶液,其反應(yīng)式為
圖5 P(MMA-co-KH570)包覆納米SiO2機(jī)理Fig.5 Mechanism of nanosilica encapsulated by P(MMA-co-KH570)
(2) 在水核中,TEOS被DBSA催化,發(fā)生水解縮合反應(yīng),最終形成納米SiO2,其反應(yīng)式為
(3) 而共聚物不溶于水,不能進(jìn)入水核,但微乳液的相界面面積很大,分散在水核表面與水核接觸的部分中的硅氧烷基團(tuán),也同樣被DBSA催化水解,形成硅羥基.它與納米SiO2表面的羥基縮合,最終P(MMA-co-KH570)以Si—O—C鍵接枝到SiO2表面,其反應(yīng)式為
(1) 繪制出DBSA/正戊醇、甲苯和水三元體系反相微乳液區(qū)域相圖,得到合適的初始組分比例.
(2) 在甲苯中用溶液聚合方法,制備了甲基丙烯酸甲酯/KH570不同比例,可水解縮合基團(tuán)分布均勻的共聚物.
(3) 采用反相微乳液法,制備了PMMA-SiO2納米復(fù)合粒子,所得復(fù)合微粒分散均勻.當(dāng)共聚物中KH570質(zhì)量分?jǐn)?shù)為5%時(shí),復(fù)合微粒中聚合物含量最高為47.0%,其平均粒徑約36,nm.
[1] 張玉龍,高樹理. 納米改性劑 [M]. 北京:國防工業(yè)出版社,2004. Zhang Yulong,Gao Shuli. Nanometer Modifier for Materials[M]. Beijing:National Defence Industrial Press,2004(in Chinese).
[2] Zou Hua,Wu Shishan,Shen Jian. Polymer/silica nanocomposites:Preparation,characterization,properties,and applications [J]. Chem Rev,2008,108(9):3893-3957.
[3] Landfester K,Weiss C K. Encapsulation by miniemulsion polymerization [J]. Adv Polym Sci,2010,229:1-49.
[4] Zhang Jianan,Liu Nannan,Wang Mozhen,et al. Preparation and characterization of polymer/silica nanocomposites via double in situ miniemulsion polymerization [J]. Journal of Polymer Science(Part A):Polymer Chemistry,2010,48(14):3128-3134.
[5] 嚴(yán) 微,彭 亮,李小龍,等. 乳液聚合制備Fe3O4/聚(苯乙烯-甲基丙烯磺酸鈉)磁性高分子微球[J]. 納米技術(shù)與精密工程,2012,10(2):165-169. Yan Wei,Peng Liang,Li Xiaolong,et al. Fe3O4/poly (styrene-co-sodium methylallyl sulfonate) magneticpolymer microspheres prepared by emulsion polymerization[J]. Nanotechnology and Precision Engineering,2012,10(2):165-169(in Chinese).
[6] Pavel F M. Microemulsion polymerization [J]. Journal of Dispersion Science and Technology,2004,25(1):1-16.
[7] Aubert T,Grasset F,Mornet S,et al. Functional silica nanoparticles synthesized by water-in-oil microemulsion processes [J]. Journal of Colloid and Interface Science,2010,341(2):201-208.
[8] 沈淑玲,毋 偉,郭 鍇,等. 兩步反相微乳液法原位制備納米SiO2/聚甲基丙烯酸甲酯復(fù)合微粒[J]. 硅酸鹽學(xué)報(bào),2005,33(3):304-308. Shen Shuling,Wu Wei,Guo Kai,et al. In situ preparation of nano-silica/polymethylmethacrylate composite particles by two-step inverse microemulsion method[J]. Journal of the Chinese Ceramic Society,2005,33(3):304-308(in Chinese).
[9] Donescu D,Teodorescu M,Serban S,et al. Hybrid materials obtained in microemulsion from methylmethacrylate,methacryloxypropyltrimeth-oxysilane,tetraethoxysilane[J]. European Polymer Journal,1999,35(9):1679-1686.
[10] Palkovits R,Althues H,Rumplecker A,et al. Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites [J]. Langmuir,2005,21 (13):6048-6053.
[11] Xu Peng,Wang Haitao,Tong Rong,et al. Preparation and morphology of SiO2/PMMA nanohybrids by microemulsion polymerization [J]. Colloid Polym Sci,2006,284(7):755-762.
[12] 汪長春,包啟宇. 丙烯酸酯涂料[M] 北京:化學(xué)工業(yè)出版社,2005.Wang Changchun,Bao Qiyu. Polyacrylates Coatings [M]. Beijing:Chemical Industry Press,2005(in Chinese).
[13] Hideki S,Kazuki D,Eiji N,et al. Preparation and properties of poly (methylmethacrylate)-silica hybrid materials incorporating reactive silica nanoparticles[J]. Polymer,2006,47(11):3754 -3759.
(責(zé)任編輯:田 軍)
Preparation of PMMA-Silica Nanocomposite Particles by Inverse Microemulsion Method
Xu Yongshen,Qiu Shouji,Yang Lei,Ge Yue
(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China)
Inverse microemulsions were prepared with toluene as continuous phase, water as dispersed phase, dodecylbenzene sulfonic acid (DBSA) as emulsifier and catalyst, and n-pentanol as co-emulsifier. Then tetraethylorthosilicates (TEOS) were introduced into the inverse microemulsion to hydrolyze and condense, forming nanosilica particles in the water pools. Subsequently the solutions of copolymer of methyl methacrylate (MMA) and γmethacryloxypropyltrimethoxy silane (KH570) in toluene were added to the inverse microemulsion. Thus the nanosilicas were encapsulated by copolymer via the co-condensation reaction of silanols between the copolymers and silica. It was evidenced by TEM, FTIR, and TG characterization that the core-shell structured PMMA-silica nanocomposite particles with an average size of 36,nm were obtained. The mass fraction of polymers encapsulated in the nanocomposites was 47% when the mass fraction of KH570 in the copolymer was 5%.
inverse microemulsion;silica;encapsulation;nanocomposites
O635
A
0493-2137(2014)04-0321-05
10.11784/tdxbz201205058
2012-05-22;
2012-08-16.
許湧深(1947— ),男,博士,教授.
許湧深,yongshen@tju.edu.cn.