• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prescribing Curvature Problems on the Bakry-Emery Ricci Tensor of a Compact Manifold with Boundary?

    2014-06-04 06:50:44WeiminSHENGLixiaYUAN

    Weimin SHENG Lixia YUAN

    1 Introduction

    Let(Mn,g),n≥3 be a connected Riemannian manifold,andfa smooth function onM.The Ricci tensor onMis denoted by Ric(or Ricg).In order to study a log Sobolev inequality of the diffusion operator,Bakry and Emery[1]introduced the following Bakry-Emery Ricci tensor:

    In fact,the Bakry-Emery Ricci tensor also occurs naturally in many different subjects(see[12–14]).It has been widely studied recently.Many important geometric results of this tensor have been obtained,such as the measured Gromov-Hausdorffconvergence theorem,volume comparison theorems,the splitting theorem,the rigidity theorem,etc.,see[2,12,17,20]and the references therein.Moreover,the Bakry-Emery Ricci tensor has a closed relation with Ricci flowThere are some other interesting results

    In this paper,we consider the prescribing problems for this tensor.Letbe thek-th elementary symmetric function,namely,

    is an open convex cone.Let Γ?nbe an open convex symmetric cone with the vertex at the origin satisfyingWe call a metricga Γ?-metric if it satisfies

    whereλ(g?1Ricf)is ann-vector composed of the eigenvalues ofg?1Ricf.Let Γ?[g]denote the set of all Γ?-metrics that are conformal tog.

    SupposeF:n→to be a general smooth symmetric homogeneous function of degree one withF=0 on?Γ satisfying the following structure conditions in Γ:

    (C1)Fis positive;

    (C2)Fis concaveis negative semi-definite;

    (C3)Fis monotoneis positive.

    It follows from(C2)andF(0)=0 that there exists some uniform constant Θ>0 such that

    SinceFis homogeneous and of degree one,by(C2),we have

    whereeis the identity ofn(see[19]).

    Letn≥3 be a smooth compact Riemannian manifold with the boundary?M,andGiven a positive functionwe study the problem offinding a smooth complete metric∈Γ?[g]such that

    whereand(resp.is the Ricci tensor(resp.Hessian)with respect to.Note that whenf=const.and(1.1)reduces to the following prescribedk-curvature equation:

    In fact,the equation(1.2)has been extensively studied.Guan[4]and Gursky[5]proved that if Ricg<0,there exists a complete conformal metric of the negative Ricci curvature satisfying(1.2).By a theorem of Lohkamp in[11],there always exist compact smooth metrics onwith negative Ricci curvature.The results in[4–5]imply thatadmits a complete metricgsuch that thek-curvature de fined by the negative eigenvalues of the Ricci tensor equals any given positive function.Note that in the case ofk=1 andψ=const.,the equation(1.2)reduces to the Yamabe equation.Ifk=n,the equation(1.2)becomes the following Monge-Ampère type equation:

    He and Sheng[7]solved the following equation:

    provided that(M,g)has the semi-positive Ricci curvature with a totally geodesic boundary,and is not conformal equivalent to a hemisphere.In the case of?M= ?,Gursky and Viaclovsky in[6]found the solution metricsatisfying(1.2)with<0.Li and Sheng obtained the same result in[9]by using a parabolic argument.Trudinger and Wang[18]solved(1.4)by requiring that(M,g)is not conformally equivalent to the unit sphere and has positive Ricci curvature.

    In[21],we solved the equation(1.1)on a closed manifold.In this paper we study the prescribing curvature problem(1.1)on a compact manifold with boundary.The method we used here is inspired by[4]and a recent work of Li and Sheng[10],in which they considered the prescribing problem on the modified Schouten tensor

    Before stating our results,we first write out the corresponding partial differential equation of the equation(1.1).Let=e2ug,whereuis defined onM.Under this conformal change,we have

    where the covariant derivative is taken with respect to the background metricg.

    Set

    For simplicity,we also use the notationF(A)to denoteF(λ(g?1A))for any smooth symmetric(0,2)-tensorA.Then the equation(1.1)becomes

    In order to find a complete metric satisfying(1.1),we only need to solve the following Dirichlet problem with infinite boundary value,i.e.,

    More generally,given a positive functionand a functionφ∈C∞(?M),we consider the following equation:

    where

    forγ,s,t∈,γ>0,Tis a smooth symmetric(0,2)-tensor,anda(x),b(x)are two smooth functions defined onM. Clearly,(1.7)is fully nonlinear and elliptic for the solutionsuwithλ(g?1W[u])∈Γ (see[21]).Accordingly,we call a functionv∈C2(M)admissible ifλ(g?1W[v])∈Γ.

    Our main results can be stated as follows.

    Theorem 1.1Letn≥3be a smooth compact Riemannian manifold with theboundary?M andIf T∈Γ,φ is a smooth function defined on a neighborhood of?M,andsatisfies

    then there exists a unique admissible solutionof the equation(1.7).

    Remark 1.1Different from the results of[10,15],in this theorem,we need not add any restriction ona(x),b(x)and the coefficientsγ,s,t∈R,and just requireγ>0.

    Applying Theorem 1.1 to the quotient of the elementary symmetric functions,i.e.,F=0≤l

    Corollary 1.1Letn≥3be a smooth compact Riemannian manifold with theboundary?M andIfthen for each function φ∈C∞(?M)and a positive function,there exists a unique smooth metricsatisfying

    By solving the Dirichlet problem(1.7)with infinite boundary data,we can obtain a complete metric satisfying(1.6)(compare with[4,10]).

    Theorem 1.2Letn≥3be a smooth compact Riemannian manifold with theboundary?M andGiven any smooth positive functionif T∈Γ,then there exists a unique admissible solutionof the equation

    Moreover,there exist positive constants C and0<θ≤1,depending only on g,γ,s,t,such that

    where ρ(x)is the distance function from x to?M with respect to the background metric g.

    Then we have the following corollary.

    Corollary 1.2Letn≥3be a smooth compact Riemannian manifold with theboundary?M andthen there exists a unique smoothcomplete metric satisfyingand

    In particular,for k=n and l=0,we have

    Remark 1.2Let(M,g)be a Riemannian manifold andfbe a smooth function onM.By[2,13],theN-Bakry-Emery Ricci tensorand theN-Ricci tensor RicNare defined respectively by

    Note that df?dfis invariant under conformal changes.IfMhas a boundary,all the conclusions above are also valid for itsN-Bakry-Emery Ricci tensor and theN-Ricci tensor.

    This paper is organized as follows.In Sections 2–3,we establish a priori boundary and interior estimates of admissible solutions of(1.7).Then we prove Theorem 1.1 in Section 4 by using the a priori estimates and the standard continuity method.In Section 5,we solve the Dirichlet equation(1.10)by constructing two suitable barrier functions,and then prove Theorem 1.2.

    2 Boundary Estimates

    In this section,we establish a priori boundary estimates for the first and second derivatives of admissible solutions of(1.7)with a smooth Dirichlet dataφ.We always assume thatφ∈throughout this paper.

    2.1 Boundary C1estimates

    For convenience,set

    and

    Then

    A functionwis said to be a subsolution of(1.7)if it satisfies the following equation:

    Changing the direction of the inequalities,one gets the definition of the supsolution of(1.7).

    To estimate the gradient on the boundary,we need the following maximum principle for(1.7).

    Proposition 2.1(Maximum Principle)Suppose that w and v are smooth sub-and supsolutions of the equation(1.7)with w|?M≤v|?M,respectively.If?zΨ >0in M×R,then

    One may prove this proposition by a contradictory argument.We omit its proof,and see[10,21]for details.

    By the maximum principle and the boundary distance functionρ(x):=distg(x,?M),we can construct two barrier functions later to control the gradient derivatives.Given any small positive constantδ,we set

    Since?Mis smooth and|?ρ|=1 on?M,we may assume thatρ(x)is smooth andinMδforδsufficiently small.

    For any fixed pointx0∈?M,we choose a local orthonormal coordinate systeminMδ,such that?Mis the planexn=0.Let{e1,···,en?1,en}be the corresponding coordinate vector fields,whereenis the interior normal vector andeαis the tangential direction vector,α=1,2,···,n?1.

    Lemma 2.1Letbe an admissible solution of(1.7).Iffor someconstantμ>0,andthen we have

    where the constant C depends on

    μ,g,γ,s,t,and

    ProofIf there exists a local subsolutionof the equation(1.7),i.e.,

    then we complete the lemma.In fact,the maximum principle implies thatu?(x)≤u(x)onConsequently,for anyx0∈?M,we have

    which implies that

    Now,we construct a local subsolutionu?of(1.7)by using the method whichis similar to that of[4,10].Set

    whereθis a positive constant to be fixed.Thenand

    Choosingwe getu?(x)≤u(x)on?Mδ?M.Thus,u?(x)≤u(x)on?Mδ.

    It remains to verifyF(W[u?])≥Ψ(x,u?)inMδ.Since

    we have

    where the constantsC′andC′′depend onand

    Chooseθ?1≥maxThenγ?tθ>0 and 1+sθ>0.ByinMδand(2.4),we have

    Note thatρ+δ2≤2δand(ρ+δ2)2≤4δ2<4δ.By choosingδ

    which implies that

    Hence,W[u?]∈Γ andu?is admissible.Denote We know that{Fij}is positive definite(see[3]),andNote thatFis homogeneous and of degree one.ThenThus,by(2.5),we have

    Since?zΨ >0 forδsufficiently small,we obtain

    Similarly,we can get the upper bound of?nuon?M.

    Lemma 2.2Letbe an admissible solution of(1.7).Iffor someconstantμ>0,and?zΨ >0on M×,then we have

    where the constant C depends onμ,g,γ,s,t,and

    ProofSinceuis admissible andwe have

    Now,we construct a local supsolutionof(2.6),that is,the functionu+satisfies

    Letτbe a small positive constant to be decided.Define

    A direct calculation shows that

    Chooseτ,such thatwe have

    where the constantsC′andC′′depend on theand other known data.Then forδsufficiently small,we have

    Note thatandFor a smallδ,we have

    Hence,u+satisfies(2.7).By the maximum principle,we haveTherefore,for anyx0∈?M,

    which implies that

    Combining the above two lemmas,we obtain the following proposition.

    Proposition 2.2Suppose thatis an admissible solution of(1.7).Iffor some constantμ>0,and?zΨ >0,then we have

    where the constant C depends on g,γ,s,t,μ,and

    2.2 Boundary C2estimates

    The method we use here to derive the second derivative estimates is similar to that of[4–5,10].For any fixed pointx0∈?M,define a half ballcentered atx0of radiusδby

    We may assume thatr(x)is smooth infor smallδ.Then|?r|=1 inChoose a local orthonormal framee1,···,enatx0,whereenis the inward unit normal vector.Since?ijr2(x0)=2δij,we also assume thatin

    Letbe an admissible solution of(1.7).Define a linearized operatorLby

    whereand

    In order to get the estimates of the normal and tangential derivatives of mixed type,we need the following two lemmas.

    Lemma 2.3For any constant β>0,there exist positive constants δ sufficiently small and N sufficiently large such that the barrier function

    satisfies

    where δ and N depend on β,and other known data.

    ProofIt is easy to check that

    where the constantC?depends onγ,|s|,|t|,n,g,andSince{Fij}is positive definite andwe have

    By choosingandN>max,we obtain

    Finally,for the fixedN,we can chooseto ensure thatw≥0 on

    Lemma 2.4LetIf h≤0on?M,h(x0)=0and

    for some positive constant D,then we have

    where the constant C depends on D,β,and other known data,and βisthe same constant as in Lemma2.3.

    ProofBy Lemma 2.3,we can chooseA?β?1 such thatAw(x)+βr2(x)?h(x)≥0 onIt is clear thatwhereC′depends onγandδ.Note thatF≥F(e).By choosing,we have

    It follows from the maximum principle thatAw+βr2?h≥0 inB+δ.Since

    which implies that?nh(x0)≤C.

    Now,we can get the following boundary estimates for the second derivatives.

    Proposition 2.3Suppose thatis an admissible solution of(1.7).Then

    where the constant C depends onthe geometric quan-tities ofand other known data.

    ProofSinceu?φ=0 on?M,for any pointx0∈?M,we have

    where 1≤α,β≤n?1 and Π denotes the second fundamental form of?M.Then one can get

    whereCdepends onand the geometric quantities of

    To get the estimates of the normal and tangential derivatives of mixed type?αnu,we differentiate the equation(1.7)with respect toek,that is,

    By the Ricci identities(2.9)and(2.12),we have

    Then,for eachk=1,···,n,we obtain that

    wheredepends onn,g,γ,|s|,|t|,

    Applying Lemma 2.4 toh=±?α(u?φ),we immediately get the estimates

    It remains to estimate the bound of?nnu.Sinceuis admissible,by(2.6),we have△u(x0)≥?C.Thus,?nnu(x0)has a lower bound by(2.11).Without loss of generality,we can assumeunn(x0)≥0(otherwise we have done).Orthogonally decomposing the matrixW[u]atx0∈?Min terms ofeαanden,and using the known bounds in(2.11)and(2.13),we have

    where the constantCalso depends only onand

    Then,we have

    SinceF≥F(e),we then obtain the upper bound of?nnu(x0).

    3 Global Estimates

    In this section,we first calculate the local interior estimates for admissible solutions of(1.7).By combining the local interior estimates and the boundary estimates in Section 2,we will derive a priori globalC2estimates.Now,we divide the procedure into three steps.

    3.1 Global C0estimate

    Since the manifold is compact,we can get a globalC0estimate easily.

    Proposition 3.1Let T∈Γ,φ∈C∞(?M)andsatisfies(1.9),then for any admissible solutionof(1.7),we have

    where the constant C0only depends on

    ProofLetxminbe the minimum point of the functionuonthen the lower bound ofucan be obtained by

    Ifxminis an interior point ofM,then atxmin,we have?u(xmin)=0,?2u(xmin)≥0.Note thatγ>0 andT∈Γ.Then

    Hence,we can get the lower bound ofuby the condition

    Similarly,we can get the upper bound ofuby considering its maximum and using the fact that

    3.2 Global C1estimate

    LetBr?Mbe a geodesic ball of radiusr>0.There exists a cutofffunctionsuch thatand

    for some constantb0>0.

    Lemma 3.1Letandbe an admissible solu-tion of(1.7).Then there exists a constant C depending only onand C0such that

    ProofConsider the following auxiliary function:

    whereandηis a function to be chosen later.Suppose thatGattains its maximum at an interior pointx0∈Br.Choose a local normal coordinate frameei,i=1,···,natx0with respect togsuch thatW[u](x0)is diagonal.Then atx0we have

    that is

    and

    By(3.5)and the Schwarz inequality,we have

    whereαis any positive constant and we will choose a suitable one later.Note that

    Substituting(3.7)–(3.8)into(3.6),we have

    Note that the first term of the inequality above is non-negative,then by(3.2)and the Ricci identities,we have

    where the constantCdepends onnandb0.Similarly,we can get

    By(3.9)–(3.10),we have

    It follows from(3.5),(3.8)and(2.12)that

    By(3.2),the equality above implies

    where the constantCdepends only on

    SinceFis homogeneous and of degree one,then

    Note that?kΨ = Ψk+Ψuuk.It follows from(3.11)–(3.13)that

    whereCalso depends onγ,g,and

    Letη(u)=v?N,whereNis a large positive constant to be determined later and

    Since<0 andthen

    Then for any fixedα∈(0,1),we have

    Note that 1≤v<2C0.We may chooseandNlarge enough such that

    Therefore,by(3.14)–(3.15),

    We can assume|?u(x0)|≥1(otherwise we have done).Then

    which implies that

    where the constantCalso depends onNandC0,from which it is easy to derive(3.3).

    Choosingζ≡1,we obtain the following global gradient estimates by(2.8)and(3.3).

    Proposition 3.2Let T∈ΓandThen for any admissible solutionof(1.7),we have

    where the constant C1depends onand

    3.3 Global C2estimate

    As in Section 3.2,we first establish the interior second derivative estimates.

    Lemma 3.2Let T∈Γ,Ψ(x,z)∈C∞(M×R),and u∈C4(Br)be an admissible solu-tion of(1.7).Then there exists a constant C depending only on g,b0,γ,r?1,|s|,|t|,such that

    ProofConsider the following auxiliary function:

    whereξ∈TxMis a unit vector,satisfiesand(3.2),and the functionηis chosen later.Suppose thatHattains its maximum at a pointx0∈Brandξ∈Tx0M.Choose a local orthnormal frame{ei,i=1,···,n}atx0with respect togsuch thate1(x0)=ξand{W[u]ij}(x0)is diagonal.DenoteWithout loss of generality,we can assumeK(x0)>1.Then atx0,we have

    that is

    and

    By(3.20)–(3.21),we have

    Note that

    By(3.22)–(3.23)and the Ricci identities,we have

    where the constantCdepends only ong,b0andSimilarly,we have

    By(3.24)–(3.25),we have

    By(2.12),we have

    where the constantCdepends onand

    Differentiating the equation(1.7)twice,by the concavity ofF,we obtain

    where the constantCdepends only ong,γ,|s|,|t|,and

    Substituting(3.27)–(3.28)into(3.26),we have

    By(3.20),(3.23)and the Ricci identities,we have

    Note that

    where the constantCdepends only on

    Substituting(3.30)–(3.31)into(3.29),we have

    Since{W[u]ij(x0)}is diagonal,|uij|=|?suiuj?2buifj?Tij|≤Cfori≠j.Hence,

    Note that 1

    Since

    we have

    Let

    whereandαis a small positive constant to be chosen later.Then we have

    If we choosethen

    Then by(2.12)and(3.35),we have

    Combining(3.34)and(3.36),we have

    Multiplyingζon both sides of(3.37),we obtain

    Hence,This implies that

    Since,△uhas a lower bound by Lemma 3.2.Then by(3.39),we get

    Thus,(3.18)follows from(3.39)–(3.40).

    Letζ≡1.By(3.18)and(2.10),we derive the following global estimate for the second derivatives.

    Proposition 3.3Let T∈ΓandThen for any admissible solutionof(1.7),we have

    where the constant C2depends only onand

    4 Proof of Theorem 1.1

    For any functionhonM,define

    Then any solutionuof(1.7)satisfiesP[u]=0.Letup=u+pvforp∈R.The linearized operator of equation(1.7)is

    Lemma 4.1be an admissible solution of equation(1.7).If?zΨis positiveonis invertible.

    ProofSince?zΨ is positive onthe coefficient of the zero order term in(4.1)is strictly negative.Hence,is invertible in the H¨older space

    Proof of Theorem 1.1Note that the maximum principle in Proposition 2.1 ensures the uniqueness of solutions of(1.7).Now,we complete the proof by using the continuity method.Consider the following equation:

    where

    Clearly,Tβand Ψβsatisfy the following conditions:

    (1)where the constantCis independent ofβ;

    (2)and

    (3)whereCis independent ofβ.

    It follows from Section 2 and Section 3 that for eachβ,the admissible solution of(4.2)has uniform a prioriC2estimates(independent ofβ).Then we obtain the uniformC2,αestimates by the Evans-Krylov’s theory.Define

    Clearly,u≡0 is the unique admissible solution of(4.2).Hence,I≠ ?.Then by Proposition 2.1,I?[0,1]is open.By the uniform a prioriC2,αestimates and the standard degree theory,we conclude thatIis also closed.Forβ=1,the equation(1.7)is solvable.

    5 Proof of Theorem 1.2

    The argument of the proofis similar to the one in[4,10].To solve the infinite boundary data Dirichlet problem(1.10),we consider a family of equations below

    wheremis any positive integer andθis a positive constant which will be chosen later.

    For any fixedm,it follows from Theorem 1.1 that(5.1)has a unique admissible solutionThe maximum principle implies that

    Next,for anymand a smallδ>0,define a local barrier function by

    whereρ(x)=distg(x,?M),.Then,and

    Therefore,we can chooseδsmall enough such thaton the boundary ofMδinM.By a direct calculation,we have

    where the constantsC′andC′′depend only onand other known data.

    ChooseandByinMδand(5.3),we have

    If we require,then

    Therefore,the maximum principle implies that

    In order to control the upper bound ofum,we consider the following equation:

    where

    By(5.1),everyumis a subsolution of(5.5).Thus,we only need to construct a local supsolution of(5.5).For any fixed point,letx0be the nearest point ofy0on?M.Choose the geodesic fromx0toy0,passing throughy0and going out a small distance to another pointz0.Denoteandfor any pointx∈.Whenρ0andδare small enough,we can assume thatr(x)is smooth in the ballBz0(R).Choose a local orthonormal frame{ei,i=1,···,n}atz0.Note thatA,CandDare positive constants.

    Case(a)If 2s?nt>0,thenB>0.Consider the function∈Bz0(R)defined by

    whereτandεare two positive constants to be chosen later.By a direct calculation,we have

    and

    Note that|?r|=1.Then we have

    Since△r2(z0)=2n,we can assumen≤△r2≤3ninBz0(R).Also note thatB>0,and then by(5.6)we obtain

    ChooseandIt follows from(5.7)that

    Note thatis in finite onFor anym≥1,applying the maximum principle on this ball,we conclude thatThus,

    So

    By(5.2),(5.4)and(5.8),we have

    and

    near the boundary?M.

    For any compact subsetby the boundary control(5.9)and the a priori estimates in Section 2 and Section 3,we obtain

    where 0<α<1,andC=C(K)is independent ofm.Hence,the standard compactness argument and the Schauder regularity theory imply thatis an admissible solution of(1.10).

    Case(b)If 2s?nt≤0,thenB≤0.This case is much simpler than Case(a).Set bv∈Bz0(R)defined by

    whereεis a positive constant to be decided.Then

    ChooseεandRas above,i.e.,ε

    The remaining argument is similar to the part in Case(a),and we omit it here.

    [1]Bakry,D.andémery,M.,Diffusions Hypercontractives in Séminaire de Probabilités XIX,1983/84,Lecture Notes in Math,Springer-Verlag,Berlin,1123,1985,177–206.

    [2]Bakry,D.and Qian,Z.,Volume comparison theorems without Jacobi field in current trends in potential theory,Theta Ser.Adv.Math.,4,2005,115–122.

    [3]Caffarelli,L.A.,Nirenberg,L.and Spruck,J.,The Dirichlet problem for nonlinear second order elliptic equations,III:Functions of eigenvalues of the Hessians,Acta Mathematica,155,1985,261–301.

    [4]Guan,B.,Complete conformal metrics of negative Ricci curvature on compact manifolds with boundary,Int.Math.Res.Not.,2008,2008,1–25.

    [5]Gursky,M.,Streets,J.and Warren,M.,Existence of complete conformal metrics of negative Ricci curvature on manifolds with boundary,Calc.Var.Partial Diff.Equ.,41(1–2),2011,21–43.

    [6]Gursky,M.and Viaclovsky,J.,Fully nonlinear equations on Riemannian manifolds with negative curvature,Indiana Univ.Math.J.,52,2003,399–419.

    [7]He,Y.and Sheng,W.M.,Prescribing the symmetric function of the eigenvalues of the Schouten tensor,Proc.Amer.Math.Soc.,139(3),2011,1127–1136.

    [8]Ledoux,M.,The geometry of Markov diffusion generators,Ann.Fac.Sci.Toulouse Math.,9(6),2000,305–366.

    [9]Li,J.and Sheng,W.M.,Deforming metrics with negative curvature by a fully nonlinear flow,Calc.Var.Partial Diff.Equ.,23,2005,33–50.

    [10]Li,Q.R.and Sheng,W.M.,Some Dirichlet problems arising from conformal geometry,Pacific J.Math.,251(2),2011,337–359.

    [11]Lohkamp,J.,Metrics of negative Ricci curvature,Ann.Math.,140,1994,655–683.

    [12]Lott,J.,Some geometric properties of the Barkry-émery-Ricci tensor,Comment.Math.Helv.,78(4),2003,865–883.

    [13]Lott.J.and Villani,C.,Ricci curvature for metrici-measure spaces via optimal transport,Ann.Math.,169,2009,903–991.

    [14]Perelman,G.,Theentropy formulafortheRicciflow and itsgeometricapplications,arXiv:math.DG/0211159,2002.

    [15]Sheng,W.M.,Trudinger,N.S.and Wang,X.J.,The Yamabe problem for higher order curvatures,J.Diff.Geom.,77,2007,515–553.

    [16]Sturm,K.T.,On the geometry of metric measure spaces,I,II,Acta Math.,196(1),2006,65–177.

    [17]Su,Y.H.and Zhang,H.C.,Rigidity of manifolds with Bakry-Emery Ricci curvature bounded below,Geom.Dedicata,160,2012,321–331.

    [18]Trudinger,N.S.and Wang,X.J.,The intermediate case of the Yamabe problem for higher order curvatures,Int.Math.Res.Not.,2010(13),2010,2437–2458.

    [19]Urbas,J.,An expansion of convex hypersurfaces,J.Diff.Geom.,33,1991,91–125.

    [20]Wei,G.and Wylie,W.,Comparison geometry for the Bakry-émery-Ricci tensor,J.Diff.Geom.,83(2),2009,337–405.

    [21]Yuan,L.X.,Prescribing curvature problem of Bakry-Emery Ricci tensor,Sci.China Math.,DOI:10.1007/s11425-013-4595-z.

    黄色视频在线播放观看不卡| 日韩熟女老妇一区二区性免费视频| 看免费成人av毛片| 国产黄色免费在线视频| 精品一区在线观看国产| 又紧又爽又黄一区二区| 国产主播在线观看一区二区 | 亚洲国产最新在线播放| 男女午夜视频在线观看| 老司机影院毛片| 免费在线观看黄色视频的| 人人澡人人妻人| 亚洲精品成人av观看孕妇| 午夜影院在线不卡| 精品福利永久在线观看| 国产一区亚洲一区在线观看| 制服人妻中文乱码| 色婷婷久久久亚洲欧美| 每晚都被弄得嗷嗷叫到高潮| 国产真人三级小视频在线观看| 国产在线视频一区二区| 午夜老司机福利片| 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 最近中文字幕2019免费版| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 亚洲av成人不卡在线观看播放网 | 69精品国产乱码久久久| 国产成人a∨麻豆精品| 黄色 视频免费看| 欧美黄色片欧美黄色片| 香蕉国产在线看| 两个人看的免费小视频| 亚洲熟女毛片儿| 热99久久久久精品小说推荐| 欧美成狂野欧美在线观看| 两个人看的免费小视频| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 亚洲人成电影观看| 欧美久久黑人一区二区| 女人被躁到高潮嗷嗷叫费观| 高清视频免费观看一区二区| 日本色播在线视频| 久久青草综合色| 亚洲精品国产区一区二| 成人亚洲精品一区在线观看| 极品人妻少妇av视频| 99久久99久久久精品蜜桃| 亚洲精品国产av蜜桃| 日韩,欧美,国产一区二区三区| 日本av免费视频播放| 欧美日韩视频高清一区二区三区二| 国产精品国产三级国产专区5o| 久久久欧美国产精品| 亚洲一区二区三区欧美精品| 国产一区二区 视频在线| 亚洲三区欧美一区| 亚洲久久久国产精品| 两性夫妻黄色片| 国产精品一区二区免费欧美 | 男女床上黄色一级片免费看| 中文字幕人妻丝袜制服| 午夜福利免费观看在线| 一边摸一边做爽爽视频免费| 又黄又粗又硬又大视频| 国产精品久久久久成人av| 国产免费视频播放在线视频| 在线 av 中文字幕| 九色亚洲精品在线播放| 国产一级毛片在线| 新久久久久国产一级毛片| 久久久久精品人妻al黑| 色婷婷av一区二区三区视频| 欧美国产精品va在线观看不卡| 少妇精品久久久久久久| 老鸭窝网址在线观看| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 日韩伦理黄色片| 制服人妻中文乱码| 999精品在线视频| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看| 欧美人与善性xxx| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 99热网站在线观看| 国产精品99久久99久久久不卡| 亚洲视频免费观看视频| 免费在线观看黄色视频的| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 日韩一本色道免费dvd| 久久午夜综合久久蜜桃| 黄色 视频免费看| videosex国产| 女人精品久久久久毛片| 少妇 在线观看| 黄片小视频在线播放| 午夜av观看不卡| 啦啦啦视频在线资源免费观看| 日本五十路高清| 免费观看av网站的网址| av一本久久久久| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 777米奇影视久久| 午夜激情av网站| 久久亚洲国产成人精品v| 日本av免费视频播放| 国产1区2区3区精品| 欧美+亚洲+日韩+国产| 欧美日韩亚洲综合一区二区三区_| 亚洲综合色网址| 日韩 亚洲 欧美在线| 欧美黑人欧美精品刺激| 性少妇av在线| 手机成人av网站| 久久久欧美国产精品| 亚洲天堂av无毛| 午夜日韩欧美国产| 久久毛片免费看一区二区三区| 香蕉国产在线看| 午夜福利视频精品| 日韩欧美一区视频在线观看| 操出白浆在线播放| 国产精品久久久久久精品电影小说| av视频免费观看在线观看| 成人手机av| 高清不卡的av网站| 精品国产一区二区三区四区第35| 午夜av观看不卡| 国产人伦9x9x在线观看| 中文字幕av电影在线播放| 欧美人与善性xxx| 国产熟女欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 99国产精品99久久久久| 国产欧美日韩一区二区三区在线| 亚洲久久久国产精品| 国产一区二区三区av在线| 国产精品欧美亚洲77777| 午夜激情av网站| 热99久久久久精品小说推荐| 满18在线观看网站| 性少妇av在线| 亚洲av片天天在线观看| av天堂在线播放| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 国产男女内射视频| 大片免费播放器 马上看| 国产精品99久久99久久久不卡| 中文字幕制服av| 日韩 欧美 亚洲 中文字幕| 99国产综合亚洲精品| 国产成人91sexporn| 9热在线视频观看99| 国产精品二区激情视频| xxx大片免费视频| 亚洲熟女毛片儿| videosex国产| 国产成人啪精品午夜网站| 国产精品久久久久久精品古装| 亚洲人成77777在线视频| 午夜久久久在线观看| 国产精品久久久久久精品古装| 国产av精品麻豆| 亚洲欧洲日产国产| av天堂在线播放| 母亲3免费完整高清在线观看| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 在线观看免费日韩欧美大片| 在线 av 中文字幕| 国产成人精品在线电影| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文字幕日韩| 免费看不卡的av| 亚洲成人免费av在线播放| 亚洲第一av免费看| 欧美激情 高清一区二区三区| 母亲3免费完整高清在线观看| 一边亲一边摸免费视频| 王馨瑶露胸无遮挡在线观看| 国产精品免费视频内射| 午夜福利视频在线观看免费| 国产欧美亚洲国产| 亚洲天堂av无毛| 精品一区在线观看国产| 成年人午夜在线观看视频| 自线自在国产av| 黄色一级大片看看| 亚洲黑人精品在线| 18禁裸乳无遮挡动漫免费视频| 丁香六月欧美| 国产高清视频在线播放一区 | 人人妻,人人澡人人爽秒播 | 满18在线观看网站| 欧美亚洲 丝袜 人妻 在线| 亚洲天堂av无毛| 色综合欧美亚洲国产小说| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 亚洲av电影在线进入| 精品国产一区二区久久| 日日爽夜夜爽网站| 精品久久久久久电影网| 国产精品一区二区免费欧美 | 搡老岳熟女国产| 久久性视频一级片| 国产精品一区二区精品视频观看| 国产熟女欧美一区二区| 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 国产精品人妻久久久影院| 丝袜在线中文字幕| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 90打野战视频偷拍视频| xxxhd国产人妻xxx| 美女午夜性视频免费| 在线精品无人区一区二区三| 国产黄频视频在线观看| 男人操女人黄网站| 日本猛色少妇xxxxx猛交久久| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 视频区欧美日本亚洲| 成年人黄色毛片网站| 日韩中文字幕视频在线看片| 99国产精品99久久久久| 国产高清视频在线播放一区 | 亚洲七黄色美女视频| 国产精品三级大全| 91字幕亚洲| 丝袜人妻中文字幕| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| √禁漫天堂资源中文www| 久久人人97超碰香蕉20202| 亚洲精品日韩在线中文字幕| 久久久久网色| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 80岁老熟妇乱子伦牲交| 色综合欧美亚洲国产小说| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 久久天躁狠狠躁夜夜2o2o | 男人舔女人的私密视频| 亚洲精品美女久久久久99蜜臀 | 天堂俺去俺来也www色官网| 亚洲国产看品久久| 伊人亚洲综合成人网| 色播在线永久视频| 国产精品二区激情视频| 久久久精品94久久精品| 午夜影院在线不卡| e午夜精品久久久久久久| 婷婷色av中文字幕| 日韩大码丰满熟妇| 成年人午夜在线观看视频| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 啦啦啦在线观看免费高清www| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 一级黄色大片毛片| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 一个人免费看片子| 国产有黄有色有爽视频| 久久久久国产一级毛片高清牌| 精品久久久精品久久久| 99热全是精品| 高清视频免费观看一区二区| 亚洲五月婷婷丁香| 高清欧美精品videossex| 女人久久www免费人成看片| 亚洲av电影在线观看一区二区三区| 欧美精品高潮呻吟av久久| 久久精品久久久久久噜噜老黄| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 成年人午夜在线观看视频| 精品国产一区二区三区久久久樱花| 看免费av毛片| 亚洲成人国产一区在线观看 | www.999成人在线观看| 国产亚洲午夜精品一区二区久久| 国产真人三级小视频在线观看| 日韩一卡2卡3卡4卡2021年| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 老司机影院成人| 国产精品av久久久久免费| 久久 成人 亚洲| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 国产一区有黄有色的免费视频| 久久这里只有精品19| 免费看av在线观看网站| 国产色视频综合| 亚洲精品第二区| 精品福利永久在线观看| 黄色视频在线播放观看不卡| 天天操日日干夜夜撸| av电影中文网址| 波野结衣二区三区在线| 热re99久久国产66热| 18禁国产床啪视频网站| 十八禁人妻一区二区| 久久人妻福利社区极品人妻图片 | 中文字幕精品免费在线观看视频| 国产xxxxx性猛交| 亚洲精品自拍成人| 真人做人爱边吃奶动态| 午夜福利视频在线观看免费| 老司机影院毛片| 国产一区二区 视频在线| 丝袜喷水一区| 这个男人来自地球电影免费观看| 一区二区三区四区激情视频| 精品一品国产午夜福利视频| 亚洲七黄色美女视频| 亚洲精品国产色婷婷电影| 老司机在亚洲福利影院| 久久av网站| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| av又黄又爽大尺度在线免费看| 亚洲精品成人av观看孕妇| 免费观看av网站的网址| 五月天丁香电影| 51午夜福利影视在线观看| 一本综合久久免费| 男女之事视频高清在线观看 | 国产在线视频一区二区| 黄色毛片三级朝国网站| 波野结衣二区三区在线| 一本久久精品| 久久精品国产亚洲av高清一级| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜制服| 亚洲一区中文字幕在线| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 国产成人影院久久av| 亚洲欧美日韩另类电影网站| 日韩大码丰满熟妇| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 在线观看免费午夜福利视频| 校园人妻丝袜中文字幕| av线在线观看网站| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 亚洲国产精品999| 男女国产视频网站| 日本五十路高清| 嫁个100分男人电影在线观看 | 高清黄色对白视频在线免费看| 久久国产亚洲av麻豆专区| 亚洲第一青青草原| 高清av免费在线| 97在线人人人人妻| 午夜老司机福利片| 丝袜在线中文字幕| 国产精品国产三级专区第一集| 日韩免费高清中文字幕av| 一本一本久久a久久精品综合妖精| 成人国语在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 天天添夜夜摸| 大片免费播放器 马上看| www.av在线官网国产| 在线观看国产h片| 精品国产一区二区三区四区第35| 日韩大片免费观看网站| 999久久久国产精品视频| 欧美日韩成人在线一区二区| 亚洲精品日本国产第一区| 天天添夜夜摸| 日日摸夜夜添夜夜爱| 搡老岳熟女国产| 视频在线观看一区二区三区| 高潮久久久久久久久久久不卡| 亚洲伊人色综图| 亚洲人成电影观看| 黄色毛片三级朝国网站| 男女午夜视频在线观看| 亚洲激情五月婷婷啪啪| 国产成人av激情在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲激情五月婷婷啪啪| 久久热在线av| 精品亚洲成国产av| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 午夜福利视频在线观看免费| 国产精品国产三级专区第一集| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 两个人看的免费小视频| 中文字幕亚洲精品专区| 精品国产乱码久久久久久男人| 男女高潮啪啪啪动态图| 亚洲 国产 在线| 亚洲人成电影观看| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 国产99久久九九免费精品| 欧美黑人精品巨大| 观看av在线不卡| 国产精品久久久久久精品电影小说| 老汉色av国产亚洲站长工具| 午夜久久久在线观看| 日韩制服丝袜自拍偷拍| 丝袜人妻中文字幕| 国产精品熟女久久久久浪| 国产免费现黄频在线看| 日日夜夜操网爽| 性高湖久久久久久久久免费观看| 国产有黄有色有爽视频| 女性被躁到高潮视频| 又大又爽又粗| 18禁观看日本| 狂野欧美激情性xxxx| 成人午夜精彩视频在线观看| 黄色a级毛片大全视频| 90打野战视频偷拍视频| 亚洲国产精品成人久久小说| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 狂野欧美激情性xxxx| 少妇被粗大的猛进出69影院| 高清不卡的av网站| 男女免费视频国产| 日韩中文字幕欧美一区二区 | 精品亚洲乱码少妇综合久久| 亚洲国产中文字幕在线视频| 国产在线视频一区二区| 中文字幕精品免费在线观看视频| 最新的欧美精品一区二区| 纯流量卡能插随身wifi吗| 18禁裸乳无遮挡动漫免费视频| 欧美变态另类bdsm刘玥| 亚洲精品av麻豆狂野| 欧美激情高清一区二区三区| 久热爱精品视频在线9| 69精品国产乱码久久久| 国产成人系列免费观看| 国产日韩一区二区三区精品不卡| 波野结衣二区三区在线| 日韩 亚洲 欧美在线| 观看av在线不卡| 波多野结衣av一区二区av| 亚洲精品国产色婷婷电影| 大香蕉久久网| 亚洲精品日本国产第一区| 91国产中文字幕| 国产在线一区二区三区精| 一边亲一边摸免费视频| 国产在线视频一区二区| av不卡在线播放| 免费看十八禁软件| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产一区二区精华液| 午夜福利,免费看| 精品国产国语对白av| 一级片免费观看大全| 蜜桃国产av成人99| 中文字幕色久视频| 亚洲,欧美,日韩| 9191精品国产免费久久| 日韩人妻精品一区2区三区| 欧美日韩亚洲高清精品| 亚洲精品乱久久久久久| 亚洲第一青青草原| 91九色精品人成在线观看| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 一边亲一边摸免费视频| 欧美激情极品国产一区二区三区| 中文乱码字字幕精品一区二区三区| 制服诱惑二区| 搡老岳熟女国产| 天堂8中文在线网| 国产精品av久久久久免费| 久久国产精品影院| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 黄色毛片三级朝国网站| av网站免费在线观看视频| 欧美 日韩 精品 国产| 91麻豆av在线| 久久鲁丝午夜福利片| 无限看片的www在线观看| 国产精品偷伦视频观看了| videos熟女内射| 青春草亚洲视频在线观看| 最近中文字幕2019免费版| 麻豆乱淫一区二区| 最新在线观看一区二区三区 | 国产成人啪精品午夜网站| 国产在线免费精品| 老司机在亚洲福利影院| 国产欧美日韩综合在线一区二区| 男人添女人高潮全过程视频| av国产精品久久久久影院| 亚洲av日韩在线播放| 欧美成人精品欧美一级黄| 久久久久国产一级毛片高清牌| 99国产精品免费福利视频| 欧美国产精品va在线观看不卡| 男人操女人黄网站| 久久狼人影院| 91精品伊人久久大香线蕉| 日韩av不卡免费在线播放| 亚洲av成人不卡在线观看播放网 | 亚洲熟女毛片儿| 国产97色在线日韩免费| 人人妻人人爽人人添夜夜欢视频| 又黄又粗又硬又大视频| 男人操女人黄网站| 日韩精品免费视频一区二区三区| 少妇猛男粗大的猛烈进出视频| 天天躁夜夜躁狠狠久久av| 成人国产一区最新在线观看 | 90打野战视频偷拍视频| 欧美成人午夜精品| 欧美日韩视频精品一区| 亚洲 国产 在线| 亚洲精品乱久久久久久| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 亚洲少妇的诱惑av| 国产成人91sexporn| 欧美精品高潮呻吟av久久| 狂野欧美激情性xxxx| 国产精品麻豆人妻色哟哟久久| www.精华液| 免费看不卡的av| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 脱女人内裤的视频| 国产男女超爽视频在线观看| 国产在视频线精品| 大型av网站在线播放| 久久人人爽人人片av| 免费观看a级毛片全部| 自线自在国产av| 欧美精品av麻豆av| 欧美日韩亚洲综合一区二区三区_| 超碰97精品在线观看| 又粗又硬又长又爽又黄的视频| 亚洲中文av在线| 亚洲专区国产一区二区| 老司机午夜十八禁免费视频| 国产一区有黄有色的免费视频| 激情五月婷婷亚洲| 视频区欧美日本亚洲| 午夜两性在线视频| 日韩大片免费观看网站| 赤兔流量卡办理| 啦啦啦在线免费观看视频4| 国产伦人伦偷精品视频| 丝袜在线中文字幕| 一级毛片电影观看| 久久中文字幕一级| 国产一级毛片在线| 一级毛片电影观看| 国产亚洲精品久久久久5区| 中文字幕亚洲精品专区| 亚洲欧洲精品一区二区精品久久久| 美女脱内裤让男人舔精品视频| 黄色 视频免费看| 久久久精品94久久精品| 免费女性裸体啪啪无遮挡网站| 久久久久久久国产电影| 国产日韩一区二区三区精品不卡| 久久99一区二区三区| 国产在线一区二区三区精| 我的亚洲天堂| 老鸭窝网址在线观看| 午夜福利视频在线观看免费| 高清不卡的av网站| 只有这里有精品99| 国产免费又黄又爽又色| 王馨瑶露胸无遮挡在线观看| 亚洲熟女精品中文字幕| 亚洲人成网站在线观看播放| 99国产精品一区二区三区| 亚洲欧美成人综合另类久久久|