• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymptotics for the Tail Probability of Random Sums with a Heavy-Tailed Random Number and Extended Negatively Dependent Summands?

    2014-06-04 06:50:24FengyangCHENGNaLI

    Fengyang CHENG Na LI

    1 Introduction

    Let{X,Xk:k≥1}be a sequence of random variables with a common distributionFand letτbe a nonnegative integer-valued random variable with a distributionFτ.For any distributionGand real numberx,we letand denote its tail byThe aim of the present paper is to investigate the asymptotic behavior of the tail probability of a random sumwhen the random numberτhas a heavier tail than the summands,Random sums play important roles in many applied probability fields such as financial insurance,risk theory,teletraffic,queueing theory and so on.Generally speaking,it is hard to obtain the precise distribution ofSτ,so one possible approachis to discuss the asymptotic behavior of the tail probabilityP(Sτ>x)asx→∞.

    Hereafter,all limit relationships are forx→∞unless otherwise stated.For two positive functionsa(x)andb(x),we writea(x)~b(x)if limand writea(x)=o(b(x))if lim

    Next,we introduce some common distribution classes.A random variableXor its distributionFis said to be heavy-tailed if

    for any positive numbert,and is otherwise light-tailed.Below we list some of the commonly used subclasses of heavy-tailed distributions.

    A random variableXor its distributionFis said to be long-tailed(denoted byX∈orF∈)if=1 for any fixedy>0;to have a consistently varying tail(denoted byX∈CorF∈C)if=1;to have a dominatedly varying tail(denoted byX∈DorF∈D)if<∞for any fixedy∈(0,1);to have a regularly varying tail with an indexαfor someα>0(denoted byX∈R?αorF∈R?α),if=y?αfor any fixedy>0;and to be subexponential(denoted byifF∈Land=2,whereF?2=F?Fdenotes the convolution ofFwith itself.

    It is well-known that

    for anyα≥0.

    In many areas of applied probability,it is found that random sums often have a heavy tail.Many researchers are interested in the questions of what causes the heavy tail of a random sum and what is the relationship among the tail probabilities ofSτ,Xandτ.In one case where the summands have a heavier tail thanit is found that the tail behavior of a random sumSτis decided by the tail ofXand the mean ofτ,and thatSτandXbelong to the same subclass of heavy-tailed distributions(see[4–5,8,10,13–14]etc.).

    Recently,other cases in which the tail ofXis not heavier than that ofτhave attracted a lot of academic attention.Fa? et al.[7]gave sufficient conditions forwhenXhas a lighter tail thanand gave necessary conditions forwhenXhas a lighter tail thanSτ.It states that the tail behavior of a random sumSτis decided by the tail ofτand the mean ofX,and thatSτandτbelong to the same classifSome sufficient conditions forSτ∈Chave been obtained by many authors(see[1,11,15]etc.).

    The purpose of this paper is to give necessary and sufficient conditions forSτ ∈Cwhenin which the summandsare extended negatively dependent random variables(see Definition 2.1 below)defined on(?∞,∞).

    We will introduce some definitions of the dependence structure and give the main results of this paper in Section 2.The proofs of the theorems are given in Section 3.

    2 Main Results

    First,we give some definitions of the dependence structure,which are introduced by Chen et al.[3]and Liu[9].

    Definition 2.1(see[3,9])A finite family of random variables{Xk:1≤k≤n}is said to be

    (1)lower extended negatively dependent(LEND for short)if there exists a constant M≥1,such that for all real numbers x1,x2,···,xn,

    (2)upper extended negatively dependent(UEND for short)if there exists a constant M≥1,such that for all real numbers x1,x2,···,xn,

    (3)extended negatively dependent(END for short)if there exists a constant M≥1,such that both(2.1)and(2.2)hold for all real numbers x1,x2,···,xn,···.

    The constantMin equations(2.1)–(2.2)is said to be dominating constant.A sequence of random variables{Xk:k≥1}is said to be END(LEND,UEND)if each of its finite subfamilies is END(LEND,UEND)for some common dominating constantM.

    The END structure covers many negative dependence structures and,more interestingly,it covers certain positive dependence structures.More detailed discussions and some examples can be found in Chen et al.[3]and Liu[9].

    Now,we give the main results of this paper as follows.

    Theorem 2.1Let{X,Xk:k≥1}be a sequence of END random variables with a common distribution F satisfying EX>0.Let τ be a nonnegative integer-valued random variable with a distribution Fτ,independent of{X,Xk:k≥1}.Suppose that one of the following two conditions holds:

    (i)Eτ<∞and

    or

    (ii)Eτ=∞and

    for some r≥1and δ>1and

    Then the following two assertions are equivalent:

    (a)∈C;

    (b)Sτ∈C.

    Furthermore,each of them implies that

    Remark 2.1The following question naturally occurs:Can(2.6)imply(a)or(b)?

    The following example gives a negative answer.

    Example 2.1LetXbe degenerate atp>0(soF?C)and letbe any nonnegative integer-valued random variable.Obviously,we have

    This shows that(2.6)may not imply(a)or(b).

    Remark 2.2IfFτ ∈R?αfor someα∈(0,1),then(2.5)holds for anyr≥1 by Karamata’s theorem(see[2,Propositions 1.5.8 and 1.5.9a])andEτ=∞.Remark 4.5 of Fa? et al.[7]gave an example in whichandcan not imply(2.6)ifHence,some extra conditions are needed ifEτ=∞.It is obvious that both(1.4)in[15]and(3.11)in[11]are stronger than(2.5)whenEτ=∞.

    Remark 2.3IfEτ<∞,then(2.3)implies thatEXI(X>0)<∞,whereI(·)is the indicator function of a set.IfEτ=∞,then(2.5)implies thatEXI(X>0)<∞.Hence,the conditions of Theorem 2.1 always imply thatE|X|<∞sinceEX>0.

    3 Proof of Theorem 2.1

    Before giving the proof of the main results,we first give several lemmas.The first lemma is a direct consequence of Definition 2.1 and was mentioned by Chen et al.[3].

    Lemma 3.1If{Xk:1≤k≤n}are UEND(or LEND)random variables for some dominating constant M and{hk(·):1≤k≤n}are non-decreasing functions,then{hk(Xk):1≤k≤n}are still UEND(or LEND)random variables for the same dominating constant M.

    Lemma 3.2Let{Xk:1≤k≤n}be UEND(or LEND)random variables for some dominating constant M.Let{Yk:1≤k≤n}be independent random variables,independent of{Xk:1≤k≤n}.Let

    Then,{Zk:1≤k≤n}are UEND(or LEND)random variables for the same dominating constant M.

    ProofWe only prove the case that{Xk:1≤k≤n}are UEND.For any real numbersx1,x2,···,xn,

    The next lemma is a slight adjustment of Corollary 3.1 of Tang[12].

    Lemma 3.3Let{X,Xk:k≥1}be a sequence of UEND random variables with a common distribution F∈D and a meanμ=EX.Then for each fixed γ>0and some C=C(γ)irrespective to x and n,the inequality

    holds uniformly for all x≥γn and n=1,2,···.

    ProofThe proofis just similar to that of Corollary 3.1 of Tang[12]and hence is omitted.

    The following three lemmas play key roles in the proof of Theorem 2.1.

    Lemma 3.4Let{X,Xk:k≥1}be a sequence of END random variables with a common distribution F satisfying EX∈(0,∞).Let τ be a nonnegative integer-valued random variable with a distribution Fτ,independent of{X,Xk:k≥1}.Then

    for any c>1.

    ProofFor anyc>1 andx>0,we have

    For any fixedε>0,by Theorem 1 in[3],there existsx1>0,such that

    holds for allx>x1andConsequently,for anyx>x1,it follows that

    By the arbitrariness ofε,(3.1)holds for anyc>1.

    Lemma 3.5Under the conditions of Theorem2.1,if Sτ∈L∩D,then we have

    for any v<1.

    ProofObviously,(3.2)holds ifv≤0,so we supposev∈(0,1)in the later discussion.By Remark 2.3,it follows thatE|X|<∞.It is easy to see that

    If we can prove that

    then from(3.3)and(3.4),it immediately follows that

    whichis equivalent to(3.2).So we only need to prove(3.4).

    First we discuss case(i)whereEτ<∞:By Lemma 3.4 andv∈(0,1),it follows that

    Combining with(2.3)andSτ∈Dyields that

    Let{Y,Yk:k≥1}be a sequence of independent identically distributed random variables with a common distributionV,whereVis the uniform distribution on the interval[0,1],independent of{X,Xk:k≥1}andτ.LetZ=X+Y,Zk=Xk+Yk,k≥1.Then,by Lemma 2.2,{Z,Zk:k≥1}is a sequence of END random variables with a common distributionF?V.BySτ∈L∩Dand(2.3),it is easy to see thatP(Z>x)=o(P(Sτ>x)).By Lemma 4.4 in[7],there exists a nondecreasing slowly varying functionL(x)satisfying

    Hence there existsx′>0,such that

    holds for allx≥x′.Define a distributionGas follows:

    and let

    where

    It is easy to see thatP(X′≤x)=G(x)for all real numberxand

    By Proposition A.16(d)in[6],it follows thatfor allk≥1,which implies thata.s.for allk≥1 sinceG(x)≤F?V(x)for all real numbersx.Moreover,it follows thatEX≤EX′<∞by the definition ofX′andEτ<∞.Write

    Thenholds for allx≥0 andn≥1 sincea.s.holds for alln≥1.

    For allx>0,we splitp(x)into two parts as

    Note thatSτ∈∩DimpliesG∈∩D.By Lemma 3.3,there exists a positive constantC=C(v)independent ofxandn,such that

    holds for allCombining with(3.5)we have

    On the other hand,by Theorem 1 in[3],we have

    It follows that

    Hence(3.4)follows for the caseEτ<∞.

    Now we discuss the case(ii)whereEτ=∞:Let

    ifr>1;and let

    ifr=1.The assumption(2.4)implies that

    By Lemma 4.4 in[7],there exists a nondecreasing slowly varying functionL(x)satisfying

    Thus there existsx′>1,such that

    holds for allx≥x′.Define a distributionGas follows:

    It is obvious thatG∈R?r?∩D.Without loss of generality,we assume thatFis absolutely continuous,otherwiseFcan be replaced byF?V,whereVis the uniform distribution on the interval[0,1],so thenF?Vis absolutely continuous andLet

    and

    Similarly to the proof of(3.7),there exists a positive constantC=C(v)independent ofxandn,such that

    Hence,for sufficiently largex,we have

    Combining with(3.6)and(3.8),(3.4)is obtained.

    Lemma 3.6Under the conditions of Theorem2.1,if τ∈L∩D,then(3.2)holds for any v<1.

    ProofThe proofis similar to Lemma 3.5 and hence is omitted.

    Proof of Theorem 2.1Obviously,(a)and(2.6)imply(b);and(b)and(2.6)imply(a).Therefore,we need only to prove that either(a)or(b)implies(2.6).We first prove that(b)implies(2.6).It suffices to prove that

    and

    By Lemma 3.4,(3.1)holds for anyc>1.It follows that

    sinceSτ∈C.(3.9)is obtained.

    The proof of(3.10)is similar to that of(3.9).By Lemma 3.5,(3.2)holds for allv<1.It follows that

    The proof of the fact that(a)implies(2.6)is quite similar to the above.By Lemma 3.4,Lemma 3.6 andFτ∈C,it follows that

    and

    This finishes the proof of Theorem 2.1.

    [1]Ale?kevi?iené,A.,Leipus,R.and?Siaulys,J.,Tail behavior of random sums under consistent variation with applications to the compound renewal risk model,Extremes,11,2008,261–279.

    [2]Bingham,N.H.,Goldie,C.M.and Teugels,J.L.,Regular Variation,Cambridge University Press,Cambridge,1987.

    [3]Chen,Y.Q.,Chen,A.Y.and Ng,K.W.,The strong law of large numbers for extended negatively dependent random variables,J.Appl.Probab.,47,2010,908–922.

    [4]Cline,D.B.H.,Convolutions of distributions with exponential and subexponential tails,J.Aust.Math.Soc.Ser.A,43,1987,347–365.

    [5]Embrechts,P.,Goldie,C.M.and Veraverbeke,N.,Subexponentiality and infinite divisibility,Z.Wahrsch.,49,1979,335–347.

    [6]Embrechts,P.,Klüppelberg,C.and Mikosch,T.,Modelling Extremal Events for Insurance and Finance,Springer-Verlag,Berlin,1997.

    [7]Fa?,G.,González-Arévalo,B.,Mikosch,T.and Samorodnitsky,G.,Modelling teletraffic arrivals by a Poisson cluster process,Queueing Syst.Theor.Appl.,54,2006,121–140.

    [8]Foss,S.,Korshunov,D.and Zachary,S.,Convolutions of long-tailed and subexponential distributions,J.Appl.Probab.,46,2009,756–767.

    [9]Liu,L.,Precise large deviations for dependent random variables with heavy tails,Statist.Probab.Lett.,79,2009,1290–1298.

    [10]Pakes A.,Convolution equivalence and infinite divisibility,J.Appl.Probab.,41,2004,407–424.

    [11]Robert,C.Y.and Segers,J.,Tails of random sums of a heavy-tailed number of light-tailed terms,Insurance Math.Econom.,43,2008,85–92.

    [12]Tang,Q.H.,Insensitivity to negative dependence of the asymptotic behavior of precise large deviations,Electron.J.Probab.,11,2006,107–120.

    [13]Watanabe,T.,Convolution equivalence and distributions of random sums,Probab.Theory Related Fields,142,2008,367–397.

    [14]Yu,C.J.,Wang,Y.B.and Yang,Y.,The closure of the convolution equivalent distribution class under convolution roots with applications to random sums,Statist.Probab.Lett.,80,2010,462–472.

    [15]Zhang,J.,Cheng,F.Y.and Wang,Y.B.,Tail behavior of random sums of negatively associated increments,J.Math.Anal.Appl.,376,2011,64–73.

    成人午夜精彩视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久成人网| 99国产精品99久久久久| 国产一区二区激情短视频 | 免费观看人在逋| 亚洲av片天天在线观看| 操出白浆在线播放| 少妇裸体淫交视频免费看高清 | 可以免费在线观看a视频的电影网站| 国产成人一区二区在线| 久久久久久人人人人人| 91精品伊人久久大香线蕉| 人人澡人人妻人| 久久ye,这里只有精品| 亚洲成国产人片在线观看| 男女下面插进去视频免费观看| 一区福利在线观看| 中文字幕制服av| 久久久精品94久久精品| 麻豆av在线久日| 日本黄色日本黄色录像| 欧美激情 高清一区二区三区| 纯流量卡能插随身wifi吗| 国产成人a∨麻豆精品| 男女高潮啪啪啪动态图| 欧美日韩福利视频一区二区| 国产熟女午夜一区二区三区| 精品免费久久久久久久清纯 | 久久午夜综合久久蜜桃| 在线看a的网站| 亚洲av美国av| 国产91精品成人一区二区三区 | 国产黄色免费在线视频| 女人高潮潮喷娇喘18禁视频| 在线观看www视频免费| 999久久久国产精品视频| 国产日韩欧美视频二区| 黄网站色视频无遮挡免费观看| 下体分泌物呈黄色| 国产精品99久久99久久久不卡| 免费看av在线观看网站| 精品亚洲乱码少妇综合久久| 国产野战对白在线观看| 天天影视国产精品| 日韩视频在线欧美| 亚洲国产看品久久| 国产伦理片在线播放av一区| 一本一本久久a久久精品综合妖精| 深夜精品福利| avwww免费| 亚洲人成网站在线观看播放| 国产伦理片在线播放av一区| 国产在线视频一区二区| 精品人妻熟女毛片av久久网站| 日本黄色日本黄色录像| 视频区欧美日本亚洲| 精品国产一区二区三区久久久樱花| 大话2 男鬼变身卡| 久久久久久久久久久久大奶| 免费人妻精品一区二区三区视频| 日本一区二区免费在线视频| 18禁黄网站禁片午夜丰满| 国产一区二区在线观看av| 在线av久久热| 午夜久久久在线观看| 黄色怎么调成土黄色| 久久精品国产综合久久久| 亚洲精品国产av成人精品| 欧美日韩av久久| 老汉色∧v一级毛片| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 午夜福利乱码中文字幕| 久久亚洲精品不卡| 19禁男女啪啪无遮挡网站| 久久精品人人爽人人爽视色| 最近中文字幕2019免费版| 色精品久久人妻99蜜桃| 1024视频免费在线观看| 永久免费av网站大全| 波野结衣二区三区在线| 美女大奶头黄色视频| 美女主播在线视频| 亚洲精品乱久久久久久| 精品一区在线观看国产| 国产成人a∨麻豆精品| 老司机亚洲免费影院| 婷婷色综合www| 亚洲欧美一区二区三区国产| 热re99久久精品国产66热6| 激情视频va一区二区三区| 黄色 视频免费看| 悠悠久久av| 午夜福利视频在线观看免费| av天堂在线播放| 日韩制服丝袜自拍偷拍| 国产日韩欧美视频二区| 一级黄片播放器| 亚洲成人手机| 久久久久国产精品人妻一区二区| 99久久人妻综合| 亚洲男人天堂网一区| 国产精品av久久久久免费| 香蕉国产在线看| 欧美中文综合在线视频| 色播在线永久视频| 老汉色∧v一级毛片| 国产精品国产av在线观看| 国产精品av久久久久免费| 成人黄色视频免费在线看| 大片电影免费在线观看免费| 丝袜美足系列| 国产片特级美女逼逼视频| 人妻人人澡人人爽人人| 久9热在线精品视频| aaaaa片日本免费| 国产成人啪精品午夜网站| 观看免费一级毛片| 国产亚洲精品av在线| 婷婷精品国产亚洲av| 少妇粗大呻吟视频| 亚洲成人精品中文字幕电影| 免费av毛片视频| 听说在线观看完整版免费高清| 天天添夜夜摸| a级毛片在线看网站| 一本一本综合久久| 精品一区二区三区四区五区乱码| 国产激情久久老熟女| 免费在线观看日本一区| 国产伦在线观看视频一区| 亚洲成人免费电影在线观看| 午夜福利18| 国产精品久久久人人做人人爽| 日韩视频一区二区在线观看| 99久久国产精品久久久| 亚洲av片天天在线观看| 精品高清国产在线一区| 少妇粗大呻吟视频| 欧美黄色淫秽网站| bbb黄色大片| 国产精品久久电影中文字幕| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美日韩在线播放| 人人妻,人人澡人人爽秒播| 女人高潮潮喷娇喘18禁视频| 国产免费av片在线观看野外av| 国产不卡一卡二| 国产伦人伦偷精品视频| 国产欧美日韩一区二区精品| 啦啦啦观看免费观看视频高清| 黑人操中国人逼视频| 婷婷精品国产亚洲av| 午夜福利18| 免费在线观看完整版高清| 18禁美女被吸乳视频| 男人操女人黄网站| 99国产综合亚洲精品| 夜夜看夜夜爽夜夜摸| 国产99白浆流出| 日韩欧美国产一区二区入口| 亚洲成人精品中文字幕电影| 精品乱码久久久久久99久播| 亚洲人成电影免费在线| 亚洲成a人片在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 淫妇啪啪啪对白视频| av电影中文网址| 精品一区二区三区视频在线观看免费| 18禁观看日本| 一区福利在线观看| 色综合站精品国产| 免费人成视频x8x8入口观看| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 91大片在线观看| 精品国内亚洲2022精品成人| 婷婷亚洲欧美| 国产成+人综合+亚洲专区| 亚洲精品国产区一区二| 99久久99久久久精品蜜桃| 一区二区三区精品91| 免费在线观看亚洲国产| 成人亚洲精品av一区二区| 丁香六月欧美| 亚洲精品在线美女| 亚洲欧美日韩无卡精品| 日韩三级视频一区二区三区| 99国产精品一区二区蜜桃av| 两人在一起打扑克的视频| 淫妇啪啪啪对白视频| 欧美性长视频在线观看| 999精品在线视频| 国产在线观看jvid| 亚洲av美国av| 欧美zozozo另类| 国产单亲对白刺激| 国内精品久久久久精免费| 国产伦一二天堂av在线观看| 熟女电影av网| 巨乳人妻的诱惑在线观看| 国产一区二区在线av高清观看| 午夜亚洲福利在线播放| 99在线视频只有这里精品首页| 伦理电影免费视频| 亚洲专区字幕在线| 久久香蕉精品热| 国产野战对白在线观看| 波多野结衣高清作品| 亚洲精品中文字幕一二三四区| tocl精华| 伦理电影免费视频| 国产免费男女视频| av中文乱码字幕在线| 宅男免费午夜| 午夜亚洲福利在线播放| 午夜老司机福利片| 日韩大尺度精品在线看网址| av电影中文网址| 韩国精品一区二区三区| 丰满的人妻完整版| 久久中文字幕一级| 欧美乱妇无乱码| 日本三级黄在线观看| 91九色精品人成在线观看| 美女国产高潮福利片在线看| av天堂在线播放| 美女高潮喷水抽搐中文字幕| 母亲3免费完整高清在线观看| 久久久精品国产亚洲av高清涩受| 日本一本二区三区精品| 少妇 在线观看| 一区二区日韩欧美中文字幕| 欧美日韩乱码在线| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 成人永久免费在线观看视频| 国产99白浆流出| 无遮挡黄片免费观看| 国产三级在线视频| 亚洲精品国产精品久久久不卡| 国产精品二区激情视频| 亚洲av第一区精品v没综合| 亚洲一卡2卡3卡4卡5卡精品中文| 男女那种视频在线观看| 一二三四在线观看免费中文在| 久久久国产欧美日韩av| 亚洲国产欧洲综合997久久, | 99热6这里只有精品| 黄片播放在线免费| 少妇熟女aⅴ在线视频| 日韩欧美国产一区二区入口| 亚洲av成人av| 两性夫妻黄色片| 99热这里只有精品一区 | 日本免费一区二区三区高清不卡| 国产av一区二区精品久久| 久久久久久国产a免费观看| 国产亚洲av嫩草精品影院| 老司机福利观看| 久久久久免费精品人妻一区二区 | www.999成人在线观看| 欧美成人性av电影在线观看| 国产日本99.免费观看| 色综合欧美亚洲国产小说| 免费一级毛片在线播放高清视频| 亚洲最大成人中文| 男人舔女人的私密视频| 琪琪午夜伦伦电影理论片6080| 在线观看免费日韩欧美大片| 校园春色视频在线观看| 亚洲五月色婷婷综合| 黄网站色视频无遮挡免费观看| 18禁观看日本| 久久中文看片网| 色精品久久人妻99蜜桃| 日本一区二区免费在线视频| 一级毛片女人18水好多| 亚洲精品国产区一区二| 亚洲久久久国产精品| 久久久国产成人免费| 欧美久久黑人一区二区| 久热爱精品视频在线9| 在线永久观看黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 性色av乱码一区二区三区2| 桃红色精品国产亚洲av| 在线av久久热| 天天一区二区日本电影三级| 久久久久亚洲av毛片大全| 久久久国产精品麻豆| 在线观看免费午夜福利视频| 黄片播放在线免费| 亚洲精品国产区一区二| 亚洲熟妇中文字幕五十中出| 亚洲五月婷婷丁香| 色尼玛亚洲综合影院| 熟妇人妻久久中文字幕3abv| 久久久久久九九精品二区国产 | 国产精品二区激情视频| 午夜精品在线福利| 一级毛片精品| 黄色 视频免费看| 深夜精品福利| 欧美乱妇无乱码| 啦啦啦观看免费观看视频高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一青青草原| 别揉我奶头~嗯~啊~动态视频| 99精品在免费线老司机午夜| 少妇粗大呻吟视频| 久久久久久久午夜电影| 国产麻豆成人av免费视频| 99久久99久久久精品蜜桃| 亚洲国产精品999在线| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 亚洲自偷自拍图片 自拍| 国产av在哪里看| 国产伦人伦偷精品视频| 91麻豆av在线| 激情在线观看视频在线高清| 在线视频色国产色| 午夜亚洲福利在线播放| 91麻豆av在线| 国产精品99久久99久久久不卡| 99热只有精品国产| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 国内少妇人妻偷人精品xxx网站 | 亚洲精品av麻豆狂野| 国产在线观看jvid| 桃红色精品国产亚洲av| 国产亚洲精品一区二区www| 宅男免费午夜| 一进一出抽搐动态| 亚洲国产欧美网| 亚洲欧美日韩无卡精品| 欧美黑人巨大hd| 黄片播放在线免费| 人人妻人人澡欧美一区二区| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 白带黄色成豆腐渣| 午夜福利一区二区在线看| 18禁裸乳无遮挡免费网站照片 | 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 最近在线观看免费完整版| 免费在线观看日本一区| 国产亚洲精品第一综合不卡| 一夜夜www| 一本精品99久久精品77| 精品不卡国产一区二区三区| 久久久水蜜桃国产精品网| 国产真实乱freesex| 可以在线观看毛片的网站| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看 | 老司机福利观看| 亚洲五月色婷婷综合| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 久久久久久久久久黄片| 国内久久婷婷六月综合欲色啪| 美女免费视频网站| 中文字幕精品亚洲无线码一区 | 草草在线视频免费看| 中亚洲国语对白在线视频| 91老司机精品| 日本黄色视频三级网站网址| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 亚洲国产高清在线一区二区三 | 麻豆国产av国片精品| 高潮久久久久久久久久久不卡| 日本五十路高清| 亚洲国产欧美一区二区综合| 99精品在免费线老司机午夜| 精品久久久久久,| 搡老妇女老女人老熟妇| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产超薄肉色丝袜足j| 一夜夜www| 最近最新中文字幕大全电影3 | 午夜福利免费观看在线| 色尼玛亚洲综合影院| 最好的美女福利视频网| 又大又爽又粗| 国产亚洲精品av在线| 亚洲精品美女久久久久99蜜臀| 亚洲av电影不卡..在线观看| 少妇粗大呻吟视频| 欧美zozozo另类| 国产激情欧美一区二区| 丁香欧美五月| 久久香蕉激情| 婷婷亚洲欧美| videosex国产| 色综合欧美亚洲国产小说| 99久久久亚洲精品蜜臀av| 久久人妻福利社区极品人妻图片| 日韩欧美在线二视频| 久久久久久九九精品二区国产 | 这个男人来自地球电影免费观看| 99国产精品99久久久久| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看 | 51午夜福利影视在线观看| 亚洲 欧美一区二区三区| 男女下面进入的视频免费午夜 | 国产成人精品久久二区二区免费| 色综合亚洲欧美另类图片| 十分钟在线观看高清视频www| 麻豆久久精品国产亚洲av| 大型av网站在线播放| 波多野结衣巨乳人妻| 亚洲成人国产一区在线观看| 成人三级做爰电影| 人人妻,人人澡人人爽秒播| 香蕉国产在线看| 777久久人妻少妇嫩草av网站| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 亚洲国产看品久久| 国产成人av教育| 欧美日韩黄片免| 亚洲五月天丁香| 久久久久免费精品人妻一区二区 | 91国产中文字幕| 日韩精品中文字幕看吧| 久久久久久大精品| 精品一区二区三区av网在线观看| avwww免费| 成人国语在线视频| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 日本熟妇午夜| 黑丝袜美女国产一区| 欧美一级a爱片免费观看看 | 免费在线观看完整版高清| 亚洲av电影不卡..在线观看| 精品人妻1区二区| 国产真实乱freesex| 黑人巨大精品欧美一区二区mp4| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 日本精品一区二区三区蜜桃| 一本大道久久a久久精品| 色综合亚洲欧美另类图片| 欧美中文日本在线观看视频| 久久精品人妻少妇| 久久午夜亚洲精品久久| 在线观看66精品国产| 久久精品国产亚洲av高清一级| 国产亚洲精品av在线| 19禁男女啪啪无遮挡网站| 亚洲人成网站高清观看| 午夜免费观看网址| 99热这里只有精品一区 | 18禁裸乳无遮挡免费网站照片 | 丰满的人妻完整版| √禁漫天堂资源中文www| 欧美在线黄色| 两人在一起打扑克的视频| 天天躁夜夜躁狠狠躁躁| 桃红色精品国产亚洲av| 成人国产综合亚洲| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| www.999成人在线观看| 成人18禁高潮啪啪吃奶动态图| 久久婷婷人人爽人人干人人爱| 婷婷丁香在线五月| 亚洲美女黄片视频| 亚洲成a人片在线一区二区| 亚洲全国av大片| 国产精品美女特级片免费视频播放器 | 一个人免费在线观看的高清视频| 精品久久久久久久久久免费视频| 色综合亚洲欧美另类图片| 亚洲国产精品久久男人天堂| 国产一区在线观看成人免费| 操出白浆在线播放| 精品国产超薄肉色丝袜足j| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品中文字幕一二三四区| 在线观看舔阴道视频| 日韩视频一区二区在线观看| 看黄色毛片网站| 亚洲成av片中文字幕在线观看| 久久人妻av系列| 久久久久久久久久黄片| 日韩欧美国产在线观看| 日韩欧美一区二区三区在线观看| 精品日产1卡2卡| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 999久久久精品免费观看国产| 国产亚洲av嫩草精品影院| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放 | 国产免费男女视频| 亚洲狠狠婷婷综合久久图片| 丁香六月欧美| 中国美女看黄片| 777久久人妻少妇嫩草av网站| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 高清在线国产一区| 两个人免费观看高清视频| 久久婷婷成人综合色麻豆| 久久久久亚洲av毛片大全| 午夜激情福利司机影院| 亚洲av成人不卡在线观看播放网| 亚洲成人久久爱视频| 伊人久久大香线蕉亚洲五| 老司机午夜十八禁免费视频| 午夜影院日韩av| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 国产精品一区二区免费欧美| 国产av不卡久久| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 免费高清视频大片| 可以在线观看毛片的网站| videosex国产| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 欧美乱色亚洲激情| 狠狠狠狠99中文字幕| 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 国产亚洲av嫩草精品影院| 黄色 视频免费看| 人人妻人人澡人人看| 亚洲真实伦在线观看| 国产亚洲欧美98| 国产在线观看jvid| 国产成人啪精品午夜网站| 国产精品久久久久久精品电影 | 啦啦啦免费观看视频1| 欧美国产日韩亚洲一区| 亚洲男人天堂网一区| 丁香六月欧美| videosex国产| 国产精品国产高清国产av| 免费在线观看黄色视频的| 草草在线视频免费看| 99久久99久久久精品蜜桃| 男人的好看免费观看在线视频 | 最近最新中文字幕大全免费视频| 丝袜在线中文字幕| 成人三级做爰电影| 成人免费观看视频高清| 黑人巨大精品欧美一区二区mp4| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 久久久久国产精品人妻aⅴ院| av福利片在线| 色综合亚洲欧美另类图片| 美国免费a级毛片| 精品欧美国产一区二区三| 国产精品香港三级国产av潘金莲| 中文字幕高清在线视频| 桃红色精品国产亚洲av| 18禁黄网站禁片免费观看直播| 亚洲 欧美一区二区三区| av超薄肉色丝袜交足视频| av中文乱码字幕在线| 91老司机精品| 色播亚洲综合网| 成人国产一区最新在线观看| 久久午夜综合久久蜜桃| 一夜夜www| 亚洲全国av大片| 中文在线观看免费www的网站 | 色av中文字幕| 欧美性猛交黑人性爽| 黄网站色视频无遮挡免费观看| 国产v大片淫在线免费观看| 亚洲成av片中文字幕在线观看| 亚洲av成人一区二区三| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 夜夜夜夜夜久久久久| 国产精品久久久久久精品电影 | 国产精品日韩av在线免费观看| 一本综合久久免费| 中国美女看黄片| 国内少妇人妻偷人精品xxx网站 | 91成年电影在线观看| 一本大道久久a久久精品| 亚洲国产欧美一区二区综合| 亚洲一区二区三区色噜噜| xxxwww97欧美| avwww免费| 一级毛片女人18水好多| 久久中文字幕一级| 国产精品免费视频内射| 午夜精品久久久久久毛片777| 亚洲成人精品中文字幕电影| 在线播放国产精品三级| 久久香蕉国产精品| 亚洲最大成人中文| 久久九九热精品免费| 欧美日本亚洲视频在线播放| 丰满人妻熟妇乱又伦精品不卡|