• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TC-Gorenstein Projective,LC-Gorenstein Injective and HC-Gorenstein Flat Modules?

    2014-06-04 06:50:38ZhenZHANGXiaoshengZHUXiaoguangYAN

    Zhen ZHANGXiaosheng ZHUXiaoguang YAN

    1 Introduction

    Semidualizing modules are the common generalizations of dualizing modules and free modules of rank one.Foxby[4],Vasconcelos[12]and Golod[5]initiated the study of semidualizing modules under different names.A semidualizing moduleCinduces some interesting classes of modules,such as the Auslander classAC(R),the Bass classBC(R),theC-projective modulesPC(R),theC-injective modulesIC(R)and theC-flat modulesFC(R),etc.These classes of modules were investigated by many authors and the Foxby equivalence between the Auslander classAD(R)and the Bass classBD(R)with respect to a dualizing moduleDwas also extended to the semidualizing case(more details can be found in[7,10]).

    Recall that Enochs and Jenda introduced and studied Gorenstein projectiveR-modules as a generalization of Auslander’s G-modules to the non-finitely modules.AnR-moduleMis called Gorenstein projective if there exists an exact sequence

    such that the complex Hom(,Q)is exact for each projective moduleQandThe class of all Gorenstein projectiveR-modules,denoted byGP(R)and the class of all Goren-stein injectiveR-modules,denoted byGI(R),are defined dually,while anR-moduleMis called Gorenstein flat if there is an exact sequence offlatR-modules,

    such that F?Eis exact for any injectiveR-moduleEandThe class of all Gorenstein flatR-modules is denoted byGF(R).

    Recently,Holm,J?rgensen,Sather-Wagstaff,and White extended the Gorenstein projective(injective,flat)modules toC-Gorenstein projective(injective,flat)modules via the completePPC-resolution(FFC-resolution,ICI-resolution).Recall that a completePPC-resolution is an exact sequence ofR-modules

    wherePiandPifori∈are projective,and the complex Hom(,C?RQ)is exact for each projectiveR-moduleQ.And the completeICI-resolution is defined similarly.Note that the completeFFC-resolution is an exact sequence ofR-modules

    whereFiandFifori∈Z are flat,and the complex Hom(C,E)?F is exact for all injective modulesE.The class of allC-Gorenstein projective(injective or flat)modules is denoted byNote that if the semidualizing moduleCis the regular moduleR,thenC-Gorenstein projective(injective or flat)modules are just Gorenstein projective(injective or flat).

    Note that the two functors Hom(C,?)andC??provide equivalences between the class of projective modules andC-projective modules,injective modules andC-injective modules,and flat modules andC- flat modules.A natural question arises:Do the functors HomandC??provide the equivalence between the classesandandor

    The authors noticed that Sather-Wagstaff,Sharif and White[8]defined the classG(PC(R)),whichis consists of the modules that are built by a complete resolution ofPC(R)-modules and they[10]also proved that the functorsC??and Hom(C,?)provide natural equivalence between the classesGP(R)∩AC(R)andG(PC(R)),which helps us to answer the above question significantly.

    In this paper,in order to study the relations between the classes of Gorenstein projective modules andC-Gorenstein projective modules,we define theTC-Gorenstein projective modules.Similarly,we define theLC-Gorenstein injective andHC-Gorenstein flat modules.And we get the following Foxby equivalences,in which the first two can be deduced from Theorem 3.1 and the work of[10](see Corollary 3.1 and Theorem 5.2).

    Corollary ALetting C be a semidualizing R-module,we have the following equivalent classes provided by the functors C??andHom(C,?):

    where(3)holds when R is coherent.

    In Section 4,we study theTC(R)-projective andLC(R)-injective dimensions,and theTC(R)-precovers orLC(R)-preenvelopes,which extends the results of Holm[6].Particularly,we have(see Theorem 4.1)the following result.

    Theorem ALet M be an R-module and n a nonegative integer.Denote P<∞by the class of R-modules with finite projective dimensions.The following are equivalent:

    (1)TC(R)-pd(M)=n<∞.

    (2)M admits a special TC(R)-precover:0→K→T→M→0with T∈TC(R)and pd(K)=n?1.

    (3)M admits a special P<∞-preenvelope:0→M→L→T′→0with pd(L)=n and T′∈TC(R).

    As an application,we prove that the classical finitistic projective dimension and the injective dimension are equal to the finitisticTC(R)-projective dimension and theLC(R)-injective dimension,respectively(see Proposition 4.1).Moreover,we get the following result(see Theorem 4.3).

    Theorem BLet R be a Gorenstein ring and C be a semidualizing module.Then theAuslander classand the Bass class

    In Section 5,we define and study theHC-Gorenstein flat modules over a commutative coherent ringR.We have the following results(see Theorem 5.1 and Proposition 5.1).

    Proposition ALet R be coherent and M an R-module.Then M∈HC(R)?M+∈LC(R).

    Hence,many properties of theHC-Gorenstein flat modules can be obtained from theLCGorenstein injective modules.Particularly,we extend the Foxby equivalence

    Notation AThroughout this paper,Ris a commutative ring with an identity,all the modules are unitary,andCis a semidualizingR-module.The class of all the projective,injective or flatR-modules is denoted byP(R),I(R)orF(R),respectively.For anR-moduleM,letpd(M),id(M),Gpd(M)andGid(M)denote the projective,injective,Gorenstein projective and Gorenstein injective dimensions ofM,respectively.For unexplained concepts and notations,we refer the readers to[8–10].

    2 Preliminaries

    In this section,we introduce a number of definitions,notions and facts which will be used throughout this paper.

    Definition 2.1(cf.[13,1.8])An R-module C is called semidualizing if

    (1)C admits a degreewise finite generated projective resolution,

    (2)the natural homothety map R→HomR(C,C)is an isomorphism,and

    (3)

    Definition 2.2(cf.[11])Let C be a semidualizing R-module.The Auslander class with respect to C,denoted by AC(R),consists of all the R-modules M satisfying

    (1)for any i≥1,

    (2)the natural map M→Hom(C,C?M)is an isomorphism.

    Dually,the Bass class with respect to C,denoted by BC(R),consists of all the R-modulesM satisfying

    (1)for any i≥1,

    (2)the natural evaluation map C?Hom(C,M)→M is an isomorphism.

    Fact 2.1LetCbe a semidualizingR-module.The classesAC(R)andBC(R)are closed under extensions,kernels of epimorphisms and Cokernels of monomorphisms(cf.[7,Corollary 3.6]).The classAC(R)contains all theR-modules offinite flat dimensions and those offiniteIC-injective dimensions,and the categoryBC(R)contains all theR-modules offinite injective dimensions by[7,Corollaries 6.1–6.2].

    LetXbe a class ofR-modules.We denote bythe subcategory ofR-modulesMsuch thatSimilarly,denotes the subcategory of modulesMsuch thatfor all.

    Definition 2.3(cf.[2])Let X be a class of R-modules and M be any R-module.An X-precover of M is called special if there is an exact sequence0→L→X→M→0withandThe special preenvelope is defined dually.

    3 TC-Gorenstein Projective and LC-Gorenstein Injective Modules

    In this section,we give the definitions and some properties of theTC-Gorenstein projective andLC-Gorenstein injective modules.

    Definition 3.1Let C be a semidualizing R-module.An R-module M is called TCGorenstein projective if there exists an exact complex of projective R-modules

    such that the following conditions hold:

    (1)The complex C?is exact.

    (2)The complexHom(,Q)is exact for all the projective R-modules Q.

    (3)There is an isomorphism M≌ Coker(P1→P0).

    Denote the class of all TC-Gorenstein projective modules by TC(R).

    An R-module M is called-Gorenstein injective if there exists an exact complex of injectiveR-modules

    such that the following conditions hold:

    (1)The complexHom(C,I)is exact.

    (2)The complexHom(E,I)is exact for all the injective R-modules E.

    (3)There exists an isomorphism

    Denote the class of all-Gorenstein injective modules by(R).

    Remark 3.1LetCbe a semidualizingR-module.

    (1)WhenC=R,we have that

    (2)By symmetry,every kernel or cokernel of the morphisms in the complexisTCGorenstein projective and every kernel or cokernel of the morphisms in the complex I is-Gorenstein injective.

    (3)By definition,we have

    The following theorem implies that the class ofTC-Gorenstein projective modules or the class ofLC-Gorenstein injective modules shares many common properties with the class of Gorenstein projective or injective modules.

    Theorem 3.1Let C be a semidualizing R-module.Then

    ProofWe only prove(1).By Fact 2.1,the classesAC(R)andBC(R)are closed under extensions,kernels of epimorphisms and cokernels of monomorphisms,soGP(R)∩AC(R)?TC(R)is straightforward to prove.On the other hand,by Remark 3.1(3),TC(R)?GP(R).We only need to showTC(R)?AC(R).In fact,for anyR-moduleM,ifM∈TC(R),then there exists an exact sequence of projective modules

    such thatC?is exact andSofori≥1 andC?is an exact complex ofPC(R)andBy Fact 2.1,Pi∈AC(R)fori∈Z,so HomThus HomClearly,Exti(C,C?M)=0 by[9,Lemma 1.9(b)].HenceM∈AC(R)and the result follows.

    Following from the well-known properties of the classesGP(R),GI(R),AC(R)andBC(R)(cf.[6–7]),by Theorem 3.1,we have the following proposition.

    Proposition 3.1Let C be a semidualizing R-module.Then

    (1)the class TC(R)is closed under direct sums and the class(R)is closed under direct products;

    (2)the class TC(R)is projectively resolving and(R)is injectively resolving;

    (3)both the classes TC(R)and(R)are closed under direct summands.

    Sather-Wagstaff,Sharif and White proved that

    And by Theorem 3.1,we can prove the following equivalence provided by the functorsC??and Hom(C,?),which answers partially the question put forward in the introduction.As the conclusion was also showed by Sather-Wagstaff,Sharif and White[10,Remark 2.11],we omit the proof.

    Corollary 3.1

    4 TC(R)-Precovers and LC(R)-Preenvelopes

    In this section we want to study the existence ofTC(R)-precovers and(R)-preenvelopes.Moreover,we also study theTC(R)projective dimensions and(R)injective dimensions and we get some good results which extend the results of Holm[6].

    Letbe a class ofRmodules.We denote bythe class ofR-modules with finite-projective dimensions and bythe class ofR-modules with finite-injective dimensions.

    Firstly,we prove the following lemma.

    Lemma 4.1Let M be an R-module.Denote by TC(R)-pd(M)and(R)-id(M),the TC-Gorenstein projective and-Gorenstein injective dimensions of M,respectively.

    (1)If TC(R)-pd(M)<∞,then TC(R)-pd(M)=Gpd(M).

    (2)If(R)-id(M)<∞,then(R)-id(M)=Gid(M).

    In particular,and

    ProofWe only prove(1)and the proof of(2)is similar.By Remark 3.1(3),we have an inequalityGpd(M)≤TC(R)-pd(M).Next letGpd(M)=n<∞.Then there exists an exact sequence

    with eachPi∈P(R)andG∈GP(R).By assumption,TC(R)-pd(M)<∞,soM∈AC(R)by Theorem 3.1 and Fact 2.1.SoG∈AC(R)also by Fact 2.1.ThusG∈GP(R)∩AC(R).SoG∈TC(R)by Theorem 3.1.HenceTC(R)-pd(M)≤n=Gpd(M)and(1)follows.

    Theorem 4.1Let M be an R-module and n a nonegative integer.Denote by P<∞the class of R-modules with finite projective dimensions.The following are equivalent.

    (1)TC(R)-pd(M)=n<∞.

    (2)M admits a special TC(R)-precover:0→K→T→M→0with T∈TC(R)and pd(K)=n?1.

    (3)M admits a special P<∞-preenvelope:0→M→L→T′→0with pd(L)=n and T′∈TC(R).

    Proof(1)?(2).By Lemma 4.1,GpdR(M)=TC(R)-pd(M)=n.SoMadmits a surjective Gorenstein projective precover:withGbeing Gorenstein projective andpd(K)=n?1 by[6,Theorem 2.1].Sincepd(K)=n?1<∞,K∈GP(R)⊥.So the Gorenstein projective precover Φ is special by Definition 2.3.We claim thatG∈TC(R).In fact,asTC(R)-pd(M)=n,M∈AC(R)by Theorem 3.1 and Fact 2.1.Clearly,K∈AC(R),and thusG∈AC(R)also by Fact 2.1.SoG∈TC(R)by Theorem 3.1.Hence letT=G,and then Φ:T→M→0 is the desired specialTC(R)-precover ofM.

    (2)?(3).Consider the exact sequence 0→K→T→M→0 withT∈TC(R)andpd(K)=n?1.SinceT∈TC(R),there is an exact sequence 0→T→P→T′→0 withP∈P(R)andT′∈TC(R).Thus we have the following pushout diagram:

    Sincepd(K)=n?1,pd(L)=n<∞by the exact sequence in the middle row of the above pushout diagram.By Definition 3.1,so the exact sequencewithis a specialP<∞-preenvelope ofMby Definition 2.3 and[6,Proposition 2.3].

    (3)?(1).Sincepd(L)=n,there exists an exact sequencewithP0projective andpd(L′)=n?1.Consider the following commutative diagram with exact rows:

    SinceTC(R)is projectively resolving,T′′∈TC(R).Moreover,by the Snake lemma,we get an exact sequence

    Aspd(L′)=n?1,TC(R)-pd(M)=n.And the theorem follows.

    Similarly we have the following result.

    Theorem 4.2Let M be an R-module and n a nonegative integer.Denote by I<∞the class of R-modules with finite injective dimensions.The following are equivalent.

    (1)(R)-id(M)=n<∞.

    (2)M admits a special LC(R)-preenvelope:0→M→L→K→0with L∈(R)and id(K)=n?1.

    (3)M admits a special I<∞-precover:0→L→K→M→0with id(K)=n and L∈LC(R).

    The next proposition is an application of Theorems 4.1–4.2.

    Recall that the finitistic projective dimension FPD(R)is defined as FPD(R)=sup{pd(M)|pd(M)<∞}and the finitistic injective dimension FID(R)=sup{id(M)|id(M)<∞}.Holm[6]defined the finitistic Gorenstein projective dimension FGPD(R)and the finitistic Gorenstein injective dimension FGID(R),and he proved the equalities FGPD(R)=FPD(R)and FGID(R)=FID(R)(cf.[6,Theorems 2.28 and 2.29]).Similarly,we prove the following equalities and note that we use a different way from Holm’s.

    Proposition 4.1LetFTPD(R)=sup{TC(R)-pd(M)|TC(R)-pd(M)<∞}andFLID(R)=sup{(R)-id(M)|-id(M)<∞}denote the finitistic TC(R)-Gorenstein projective and(R)-Gorenstein injective dimensions of the base ring R,respectively.ThenFPD(R)=FTPD(R)andFID(R)=FLID(R).

    ProofWe only prove FPD(R)=FTPD(R).Clearly FPD(R)≤FTPD(R).On the other hand,ifMis a module with 0≤TC(R)-pd(M)≤n,wherenis a nonegative integer,then there exists a moduleLwithpd(L)=nby Theorem 4.1.Hence,if we assume that 0≤FTPD(R)=n,then we can find anR-moduleLwithpd(L)=n,so FPD(R)≥n,and FPD(R)=FTPD(R).

    Enochs,Jenda and Xu[3,Corollaries 2.4 and 2.6]showed that whenRis a local Cohen-Macaulay ring with a dualizing moduleD,the Auslander classes with respect toDare exactly theR-modules with finite Gorenstein projective(flat)dimensions and the Bass classes with respect toDare exactly theR-modules with finite Gorenstein injective dimensions.While the Gorenstein ring is always a local Cohen-Macaulay ring,in this case,Ris the only dualizing module(cf.[2,Remark 9.5.15]).Enochs and Jenda[2,Theorem 12.3.1]proved that everyR-module has finite Gorenstein projective dimensions,if and only if everyR-module has finite Gorenstein flat dimensions,if and only if everyR-module has finite the Gorenstein injective dimensions over Gorenstein ringR.Hence we have the following result,noting that whenC=R,the result is exactly the[3,Corollaries 2.4 and 2.6]:

    Theorem 4.3Let R be a Gorenstein ring and C be a semidualizing module.Then theAuslander classand the Bass class

    ProofBy Lemma 4.1,we know thatandBC(R).Moreover,Ris Gorenstein,so everyR-module has a finite Gorenstein projective and Gorenstein injective dimension.Hence we have thatandSo

    5 HC(R)-Gorenstein Flat Modules

    In this section,we will give the definition ofHC(R)-Gorenstein flat modules which share the common properties with the Gorenstein flatR-modules.

    Definition 5.1Let C be a semidualizing R-module.An R-module M is called HCGorenstein flat if there is an exact complex offlat R-modules

    such that the following conditions hold:

    (1)The complex C?Fis exact.

    (2)The complex I?Fis exact for any injective R-module I.

    (3)There exists an isomorphism

    Denote the class of allHC-Gorenstein flat modules byHC(R).

    Clearly,any flat module isHC-Gorenstein flat,and anyHC-Gorenstein flat module is Gorenstein flat.Moreover,whenC=R,HC(R)is exactly the class of Gorenstein flat modules.

    Theorem 5.1Particularly,an R-module M is in GF(R)∩AC(R),if and only if there exists an exact sequence

    such that both C?Fand I?Fare exact for any injective R-module I and

    ProofClearlyAssumeso there exists an exact complex offlat modules F such thatThus ToriAsfor every flat moduleF,HomHence the exact complexC?is Hom(C,?)-exact and HomMoreover,by[9,Lemma 1.9],we get that Extifori≥1.ThusM∈AC(R)by Definition 2.2 andThe converse containment follows from Fact 2.1 and Definition 5.1.

    Hence,following the properties of the classesGF(R)andAC(R)(cf.[6–7]),we know that the class ofHC(R)is projective resolving.Furthermore,HC(R)is closed under direct sums and direct summands.

    WhenRis coherent,Holm[6,Theorem 3.6]showed thatMis a Gorenstein flat module if and only if the Pontryagin dualM+=HomZ(M,Q/)is Gorenstein injective,and Sather-Wagstaff,Sharif and White[9,Lemma 4.2]proved thatMisGC-flat,if and only if the Pontryagin dualM+isGC-injective.

    By Theorem 5.1,we have the extension result.

    Proposition 5.1Let R be coherent and M an R-module.Then M∈HC(R)?M+∈C(R).

    ProofOn one hand,M∈AC(R)?M+∈BC(R)by[1,(3.2.9)].On the other hand,M∈GF(R)?M+∈GI(R)by[6,Theorem 3.6].Hence the result follows from Theorem 5.1.

    Based on Proposition 5.1,we can easily get the following result.

    Theorem 5.2The functorsC??andHom(C,?)provide the equivalence between theclasses HC(R)and

    ProofOn one hand,by Proposition 5.1,M∈HC(R)?M+∈LC(R).Moreover,by Corollary 3.1,

    But Hom(C,M+)~=(C?M)+,so

    by[9,Lemma 4.2]and[1,(3.2.9)].On the other hand,by[9,Lemma 4.2]and[1,(3.2.9)],By Corollary 3.1,by Proposition 5.1,we have that

    As any projective module isHC-Gorenstein flat,everyR-module has anHC(R)-projective dimension.By Fact 2.1 and Theorem 5.1,we can easily get that

    Hence we have the extended Foxby equivalence

    AcknowledgementsThe authors would like to express their sincere thanks to the referees for their careful reading of the manuscript and helpful suggestions.

    [1]Christensen,L.W.,Gorenstein Dimensions,Lecture Notes in Mathematics,Springer-Verlag,Berlin,2000.

    [2]Enochs,E.E.and Jenda,O.M.G.,Relative homological algebra,De Gruyter,Berlin,New York,2000.

    [3]Enochs,E.E.,Jenda,O.M.G.and Xu,Jinzhong,Foxby duality and Gorenstein injective and projective modules,Trans.Amer.Math.Soc.,348(8),1996,3223–3234.

    [4]Foxby,H.B.,Gorenstein modules and related modules,Math.Scand,31,1972,267–284.

    [5]Golod,E.S.,G-dimension and generalized perfect ideals,Algebraic geometry and its applications,Trudy Mat.Inst.Steklov,165,1984,62–66(in Russian).

    [6]Holm,H.,Gorenstein homological dimensions,J.Pure Appl.Algebra,189,2004,167–193.

    [7]Holm,H.and White,D.,Foxby equivalence over associative rings,J.Math.Kyoto Univ.,47,2008,781–808.

    [8]Sather-Wagstaff,S.,Sharif,T.and White,D.,Stability of Gorenstein categories,J.London Math.Soc.,77(2),2008,481–502.

    [9]Sather-Wagstaff,S.,Sharif,T.and White,D.,AB-context and stabiity for Gorenstein flat modules with respect to semidualizing modules,Algebra and Representation Theory,54,2010,430–435.

    [10]Sather-Wagstaff,S.,Sharif,T.and White,D.,Tate cohomology with respect to semidualizing modules,J.Algebra,324,2010,2336–2368.

    [11]Takahashi,R.and White,D.,Homological aspects of semidualizing modules,Math.Scand,106(1),2010,5–22.

    [12]Vasconcelos,W.V.,Divisor theory in module categories,North-Holland Publishing Co.,Amsterdam,1974.

    [13]White,D.,Gorenstein projective dimension with respect to a semidualizing module,J.Commut.Algebra,2(1),2010,111–137.

    91精品三级在线观看| 久久久国产欧美日韩av| 久久热在线av| 国产区一区二久久| 少妇被粗大的猛进出69影院| 久久久久久久国产电影| 五月天丁香电影| 国产欧美日韩综合在线一区二区| 精品人妻1区二区| 日韩免费高清中文字幕av| 亚洲伊人久久精品综合| 夜夜爽天天搞| 免费高清在线观看日韩| 亚洲视频免费观看视频| 色婷婷久久久亚洲欧美| 最近最新中文字幕大全电影3 | 午夜福利乱码中文字幕| 久久久久久久大尺度免费视频| 亚洲欧洲日产国产| 交换朋友夫妻互换小说| 日本精品一区二区三区蜜桃| 亚洲国产毛片av蜜桃av| 一级黄色大片毛片| 中文字幕高清在线视频| 久久午夜综合久久蜜桃| 麻豆国产av国片精品| 嫁个100分男人电影在线观看| 日韩欧美三级三区| 99久久人妻综合| 精品高清国产在线一区| 国产精品一区二区精品视频观看| 亚洲国产成人一精品久久久| 国产又爽黄色视频| 十八禁网站免费在线| av网站免费在线观看视频| 99香蕉大伊视频| 亚洲avbb在线观看| 日韩免费高清中文字幕av| 国产成人欧美| 人妻一区二区av| 亚洲欧美一区二区三区黑人| 国产精品美女特级片免费视频播放器 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲欧美精品永久| 午夜91福利影院| 亚洲中文字幕日韩| h视频一区二区三区| 国产精品二区激情视频| 久久亚洲精品不卡| 国产老妇伦熟女老妇高清| 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 不卡一级毛片| 国产精品影院久久| 日本五十路高清| 国产精品国产av在线观看| 精品人妻在线不人妻| 另类亚洲欧美激情| 午夜免费成人在线视频| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 精品福利观看| 国产一区有黄有色的免费视频| 成年动漫av网址| 国产亚洲欧美在线一区二区| 亚洲精品自拍成人| 夫妻午夜视频| 国产精品国产高清国产av | 日本精品一区二区三区蜜桃| 国产麻豆69| 精品高清国产在线一区| 国产男靠女视频免费网站| 天天添夜夜摸| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情久久久久久爽电影 | 免费久久久久久久精品成人欧美视频| 亚洲精品一二三| 激情视频va一区二区三区| 欧美成人午夜精品| 老司机深夜福利视频在线观看| 国产成人免费无遮挡视频| 久久影院123| 在线av久久热| 777米奇影视久久| 首页视频小说图片口味搜索| 99香蕉大伊视频| 久久这里只有精品19| 国产熟女午夜一区二区三区| 欧美精品一区二区免费开放| 国产精品欧美亚洲77777| netflix在线观看网站| 美女视频免费永久观看网站| 深夜精品福利| 久久久久国内视频| 首页视频小说图片口味搜索| 国产1区2区3区精品| 欧美久久黑人一区二区| 人妻久久中文字幕网| 国产精品美女特级片免费视频播放器 | 欧美人与性动交α欧美软件| 午夜日韩欧美国产| 国产亚洲午夜精品一区二区久久| 国产精品欧美亚洲77777| 两人在一起打扑克的视频| 成人黄色视频免费在线看| 欧美乱妇无乱码| 99香蕉大伊视频| 99久久国产精品久久久| 国产高清国产精品国产三级| 一级毛片女人18水好多| 精品福利观看| 国产精品亚洲一级av第二区| 国产高清视频在线播放一区| 五月天丁香电影| 久久青草综合色| 日韩大片免费观看网站| 美女主播在线视频| 男女边摸边吃奶| 成在线人永久免费视频| 精品免费久久久久久久清纯 | 久久性视频一级片| 人人妻人人爽人人添夜夜欢视频| 他把我摸到了高潮在线观看 | 中文字幕人妻丝袜制服| 欧美激情高清一区二区三区| 久久人妻熟女aⅴ| 香蕉丝袜av| 亚洲精品美女久久av网站| 欧美激情极品国产一区二区三区| 90打野战视频偷拍视频| 国产福利在线免费观看视频| 日韩熟女老妇一区二区性免费视频| 免费少妇av软件| 精品国产一区二区三区四区第35| 新久久久久国产一级毛片| 人人澡人人妻人| 一本—道久久a久久精品蜜桃钙片| 极品人妻少妇av视频| 桃花免费在线播放| 国产成人免费观看mmmm| 久久精品国产99精品国产亚洲性色 | 亚洲一码二码三码区别大吗| 中文字幕人妻丝袜制服| 日韩三级视频一区二区三区| 中亚洲国语对白在线视频| 丰满迷人的少妇在线观看| 热re99久久精品国产66热6| 久久久水蜜桃国产精品网| 精品久久久久久电影网| 国产亚洲av高清不卡| 十八禁网站免费在线| 色婷婷av一区二区三区视频| 国产精品一区二区精品视频观看| 露出奶头的视频| 在线av久久热| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 欧美国产精品一级二级三级| 国产精品久久久久久精品古装| 欧美激情极品国产一区二区三区| 国产亚洲午夜精品一区二区久久| 999精品在线视频| 国产精品自产拍在线观看55亚洲 | 丝袜美足系列| 国产欧美日韩一区二区三| 精品国产乱码久久久久久小说| 亚洲自偷自拍图片 自拍| 国产不卡av网站在线观看| 久久香蕉激情| 一二三四在线观看免费中文在| 天堂动漫精品| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 国产成人精品无人区| 久久影院123| av线在线观看网站| 久久性视频一级片| 成年人午夜在线观看视频| 欧美黄色片欧美黄色片| 欧美一级毛片孕妇| 丝袜在线中文字幕| 18禁美女被吸乳视频| svipshipincom国产片| 亚洲精品在线美女| 亚洲精品中文字幕一二三四区 | 成人亚洲精品一区在线观看| 国产片内射在线| 国产欧美日韩一区二区三区在线| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 波多野结衣av一区二区av| 久久久久国内视频| 天天躁日日躁夜夜躁夜夜| 午夜福利乱码中文字幕| 国产麻豆69| 午夜激情av网站| 亚洲精品粉嫩美女一区| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说 | 精品国产超薄肉色丝袜足j| 性高湖久久久久久久久免费观看| 午夜久久久在线观看| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 国产人伦9x9x在线观看| tube8黄色片| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 免费观看a级毛片全部| 国产老妇伦熟女老妇高清| 在线天堂中文资源库| 狂野欧美激情性xxxx| 侵犯人妻中文字幕一二三四区| 久久久水蜜桃国产精品网| 亚洲第一欧美日韩一区二区三区 | 国产在线观看jvid| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人| 中亚洲国语对白在线视频| 精品国产一区二区久久| 精品第一国产精品| 欧美乱码精品一区二区三区| 欧美+亚洲+日韩+国产| 人人妻,人人澡人人爽秒播| 国产高清激情床上av| 久久亚洲真实| 亚洲成国产人片在线观看| 久久久久久久久免费视频了| 午夜激情av网站| 丝袜喷水一区| 少妇裸体淫交视频免费看高清 | 成年版毛片免费区| 日韩视频一区二区在线观看| 淫妇啪啪啪对白视频| 在线观看人妻少妇| 中文字幕人妻熟女乱码| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 欧美久久黑人一区二区| 少妇被粗大的猛进出69影院| 午夜激情久久久久久久| 好男人电影高清在线观看| 久久精品成人免费网站| 一本大道久久a久久精品| 99国产精品免费福利视频| 大片电影免费在线观看免费| 国产精品影院久久| 在线观看免费午夜福利视频| 另类精品久久| 午夜福利在线观看吧| 丰满少妇做爰视频| 女性生殖器流出的白浆| 搡老乐熟女国产| 丁香六月天网| 亚洲人成伊人成综合网2020| 美女视频免费永久观看网站| 亚洲精华国产精华精| 美国免费a级毛片| 国产欧美日韩精品亚洲av| 亚洲欧洲日产国产| 巨乳人妻的诱惑在线观看| bbb黄色大片| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 飞空精品影院首页| av欧美777| 久久免费观看电影| 国产麻豆69| 午夜福利一区二区在线看| 性少妇av在线| 精品一区二区三区视频在线观看免费 | 国产亚洲精品第一综合不卡| 人妻一区二区av| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 国产在线一区二区三区精| 国产一区二区激情短视频| 18禁黄网站禁片午夜丰满| 国产99久久九九免费精品| 亚洲全国av大片| 久久精品成人免费网站| 国产精品久久久久久精品电影小说| 一个人免费在线观看的高清视频| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 国产xxxxx性猛交| 午夜老司机福利片| 12—13女人毛片做爰片一| 1024视频免费在线观看| 曰老女人黄片| 天堂中文最新版在线下载| 精品国内亚洲2022精品成人 | 欧美黑人欧美精品刺激| 久久人妻av系列| 日韩精品免费视频一区二区三区| 欧美一级毛片孕妇| 天天影视国产精品| 国产97色在线日韩免费| 乱人伦中国视频| 制服诱惑二区| 国产精品久久久久久精品古装| 男女边摸边吃奶| 女性被躁到高潮视频| 黑丝袜美女国产一区| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| 黄色丝袜av网址大全| 国产不卡一卡二| 18禁裸乳无遮挡动漫免费视频| 成人国产一区最新在线观看| 久久香蕉激情| 久久久久久人人人人人| 久9热在线精品视频| 天堂俺去俺来也www色官网| a级毛片在线看网站| 色婷婷久久久亚洲欧美| 免费观看av网站的网址| 一本久久精品| 香蕉丝袜av| 99久久99久久久精品蜜桃| 岛国毛片在线播放| 99精品在免费线老司机午夜| 高清视频免费观看一区二区| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 国产亚洲午夜精品一区二区久久| 欧美在线黄色| 777米奇影视久久| 免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 国产三级黄色录像| 亚洲人成电影免费在线| 丰满少妇做爰视频| 欧美在线黄色| 国产精品偷伦视频观看了| 50天的宝宝边吃奶边哭怎么回事| 伊人久久大香线蕉亚洲五| 狠狠婷婷综合久久久久久88av| 国产片内射在线| 中文字幕制服av| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 久久久国产精品麻豆| 久久久久视频综合| 亚洲精品在线美女| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 久久国产精品大桥未久av| 国产成人啪精品午夜网站| 午夜视频精品福利| 俄罗斯特黄特色一大片| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 真人做人爱边吃奶动态| 视频区欧美日本亚洲| 91精品国产国语对白视频| 美女高潮到喷水免费观看| 怎么达到女性高潮| 美女高潮到喷水免费观看| 一级毛片精品| 色94色欧美一区二区| 亚洲成人手机| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 久久久久久久久久久久大奶| 国产日韩欧美视频二区| 国产av又大| 国产无遮挡羞羞视频在线观看| 成年人黄色毛片网站| 动漫黄色视频在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 欧美+亚洲+日韩+国产| 久久久精品国产亚洲av高清涩受| 91成人精品电影| 桃花免费在线播放| 精品国产一区二区三区四区第35| 色尼玛亚洲综合影院| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线 | 日日摸夜夜添夜夜添小说| 亚洲精品美女久久av网站| 日日摸夜夜添夜夜添小说| 久久久国产精品麻豆| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 黄色成人免费大全| 久久亚洲真实| 搡老熟女国产l中国老女人| 欧美激情 高清一区二区三区| 欧美日韩成人在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 老汉色av国产亚洲站长工具| 国产精品电影一区二区三区 | 午夜老司机福利片| 色在线成人网| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| 真人做人爱边吃奶动态| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 国产成人精品久久二区二区91| 国产精品99久久99久久久不卡| 最新的欧美精品一区二区| 国产无遮挡羞羞视频在线观看| 精品熟女少妇八av免费久了| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 丝袜喷水一区| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 一个人免费看片子| 一区在线观看完整版| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 日韩免费av在线播放| 国产成人一区二区三区免费视频网站| 在线观看一区二区三区激情| 多毛熟女@视频| 日韩视频在线欧美| 久久ye,这里只有精品| 亚洲男人天堂网一区| 国产亚洲精品久久久久5区| 人妻久久中文字幕网| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 国产精品久久久久成人av| 十八禁网站网址无遮挡| 国产片内射在线| 丁香六月天网| av福利片在线| 中文亚洲av片在线观看爽 | 亚洲欧洲日产国产| 男女床上黄色一级片免费看| 精品卡一卡二卡四卡免费| 精品免费久久久久久久清纯 | 黄片小视频在线播放| 精品少妇久久久久久888优播| 国产精品一区二区在线观看99| 老司机深夜福利视频在线观看| av超薄肉色丝袜交足视频| 动漫黄色视频在线观看| 国产成人一区二区三区免费视频网站| 美女午夜性视频免费| 国产精品一区二区在线不卡| 久久久水蜜桃国产精品网| 黄色视频不卡| 久久精品亚洲精品国产色婷小说| 亚洲精品自拍成人| 中文字幕制服av| 亚洲成国产人片在线观看| 精品人妻在线不人妻| 91老司机精品| 国内毛片毛片毛片毛片毛片| 水蜜桃什么品种好| 久9热在线精品视频| 男女午夜视频在线观看| √禁漫天堂资源中文www| 免费在线观看完整版高清| 中文字幕高清在线视频| 高清黄色对白视频在线免费看| 日韩中文字幕欧美一区二区| 国产成人一区二区三区免费视频网站| av在线播放免费不卡| 久久热在线av| 极品教师在线免费播放| 亚洲色图av天堂| 如日韩欧美国产精品一区二区三区| 人人妻,人人澡人人爽秒播| 欧美另类亚洲清纯唯美| 午夜福利,免费看| 热re99久久国产66热| 在线看a的网站| 精品国产超薄肉色丝袜足j| 国产一区二区在线观看av| 日韩精品免费视频一区二区三区| 久久青草综合色| 国产有黄有色有爽视频| 国产亚洲av高清不卡| 国产成人av教育| 国产精品麻豆人妻色哟哟久久| 男女高潮啪啪啪动态图| 岛国毛片在线播放| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看| 999久久久国产精品视频| 少妇的丰满在线观看| 亚洲,欧美精品.| 大片免费播放器 马上看| cao死你这个sao货| 12—13女人毛片做爰片一| 成年女人毛片免费观看观看9 | 叶爱在线成人免费视频播放| 国产视频一区二区在线看| 国产精品秋霞免费鲁丝片| 美女午夜性视频免费| 50天的宝宝边吃奶边哭怎么回事| 丝袜美腿诱惑在线| 建设人人有责人人尽责人人享有的| 老司机午夜十八禁免费视频| 欧美午夜高清在线| 99九九在线精品视频| 视频在线观看一区二区三区| 乱人伦中国视频| 一级毛片电影观看| 女性生殖器流出的白浆| 国产精品99久久99久久久不卡| 美女主播在线视频| 久久精品熟女亚洲av麻豆精品| 国产99久久九九免费精品| 男女免费视频国产| 悠悠久久av| 老司机福利观看| 欧美日本中文国产一区发布| a级毛片黄视频| av福利片在线| 久久精品aⅴ一区二区三区四区| 啦啦啦视频在线资源免费观看| 大型av网站在线播放| 欧美日韩亚洲高清精品| 国产精品久久电影中文字幕 | 欧美在线一区亚洲| 久久久久久久大尺度免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频网站a站| 在线播放国产精品三级| 99在线人妻在线中文字幕 | 亚洲精品中文字幕在线视频| 99热国产这里只有精品6| 在线观看免费视频网站a站| 在线观看免费高清a一片| av网站免费在线观看视频| 久久人人97超碰香蕉20202| 欧美中文综合在线视频| 国产成人精品在线电影| 一边摸一边做爽爽视频免费| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一二三| 夜夜骑夜夜射夜夜干| 亚洲色图 男人天堂 中文字幕| 天天影视国产精品| 国产av国产精品国产| 久久久久久久久久久久大奶| 成人国产一区最新在线观看| 搡老乐熟女国产| 中文字幕另类日韩欧美亚洲嫩草| 久久婷婷成人综合色麻豆| 高清av免费在线| 国产免费现黄频在线看| 日韩一区二区三区影片| 国产成人欧美在线观看 | bbb黄色大片| 国产精品久久久人人做人人爽| 黑人操中国人逼视频| 最新的欧美精品一区二区| 午夜福利视频在线观看免费| 看免费av毛片| a级毛片在线看网站| 午夜免费成人在线视频| 青青草视频在线视频观看| 国产成人精品久久二区二区91| 亚洲全国av大片| 久久午夜综合久久蜜桃| 51午夜福利影视在线观看| 三上悠亚av全集在线观看| 黄色丝袜av网址大全| 欧美激情高清一区二区三区| 999久久久精品免费观看国产| 精品久久蜜臀av无| 亚洲熟妇熟女久久| 久久国产精品影院| 久久精品国产99精品国产亚洲性色 | 国产精品偷伦视频观看了| 国产真人三级小视频在线观看| 少妇猛男粗大的猛烈进出视频| 一级,二级,三级黄色视频| 丁香六月天网| 99精品在免费线老司机午夜| 1024视频免费在线观看| 无遮挡黄片免费观看| 国产精品电影一区二区三区 | 久久国产精品人妻蜜桃| 国产福利在线免费观看视频| av线在线观看网站| 黄片播放在线免费| 亚洲av欧美aⅴ国产| 极品少妇高潮喷水抽搐| 久久99热这里只频精品6学生| 亚洲精华国产精华精| 久久久精品区二区三区| 久久香蕉激情| 乱人伦中国视频| 欧美一级毛片孕妇| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 久久av网站| 精品少妇久久久久久888优播| 午夜福利在线免费观看网站| 日韩免费高清中文字幕av|