• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Φ-Group for n Submodules Systems as a Generalization of the K-Theory?

    2014-06-04 06:50:34DongLIXiaomanCHENShengzhiXU

    Dong LIXiaoman CHENShengzhi XU

    1 Introduction

    The description of systemsS=(H;E1,E2,···,En)ofnsubspacesHi(i=1,···,n),of a Hilbert spaceH,which can be finite or infinite dimensional,up to an isomorphism or the unitary equivalence,is famous as the multi-space theory,and the classification of these systems is a subject which attracts many mathematicians’attention.In a finite dimensional space,the classification of indecomposable systems ofnsubspaces forn=1,2 and 3 is simple.Jordan blocks give indecomposable systems of 4 subspaces.But there exist many other kinds of indecomposable systems of 4 subspaces.Therefore,it was surprising that Gelfand and Ponomarev[1]gave a complete classification of indecomposable systems offour subspaces in a finite dimensional space.

    In this paper,we generalize this theory to the case ofA-modules,whereAis an involutive algebra,and we construct a group,called Φ-group,whichis a generalization of theK-group and gives more information of the algebraAthan theK-theory.This group,which can be regarded as the multi-operator edition of theK-group,has essential relations with the problem of classification of systems ofnsubspaces whenA=.

    2 Preliminaries

    We first recall the basic notations of systems ofnsubspaces.

    LetHbe a Hilbert space andE1,···,Enbensubspaces inH.Then we say thatS=(H;E1,···,En)is a system ofnsubspaces inHor annsubspace system inH.LetT=(K;F1,···,Fn)be another system ofnsubspaces in a Hilbert spaceK.Thenφ:S→Tis a homomorphism ifφ:H→Kis a bounded linear operator satisfying thatφ(Ei)?Fifori=1,···,n.Moreover,φis an isomorphism if it is an invertible linear operator andφ(Ei)=Fifori=1,···,n.We say that systemsSandTare isomorphic if there exists an isomorphismφ:S→T.And ifφis moreover a unitary operator,we say that the two systems are unitarily equivalent.

    There are notations about direct sum and indecomposable systems(see[2]),and the main work on multi-subspace systems is about the classification.Many problems of linear algebra can be reduced to the classification of the systems of subspaces in a finite dimensional vector space.In a finite dimensional space,the classification of indecomposable systems ofnsubspaces forn=1,2 and 3 is simple.Gelfand and Ponomarev[1]gave a complete classification of indecomposable systems offour subspaces in a finite dimensional space.

    Proposition 2.1(see[3])Let H be a Hilbert space and S=(H;E)be a system of onesubspace.Then S=(H;E)is indecomposable if and only if

    Let S=(H;E1,E2)be a system of two subspace in a Hilbert space H.Then S is indecomposable if and only if S is isomorphic to one of the following four commutative systems:

    Gelfand and Ponomarev[1]claimed that there exist only nine finite-dimensional indecomposable systems of three subspaces.But we do not know whether there exists an infinitedimensional transitive system of three subspaces.

    Proposition 2.2(see[1])Let S=(H;E1,E2,E3)be an indecomposable system of three subspaces.If H is finite-dimensional,then S is isomorphic to one of the following nine systems:

    One of the main problems to tackle is the classification of indecomposable systemsS=(H;E1,E2,E3,E4)offour subspaces in a Hilbert spaceH.In the case whenHis finitedimensional,Gelfand and Ponomarev completely classified indecomposable systems and gave a complete list of them in[1].

    Now we generalize the former definition to the term of(right)modules.

    Definition 2.1Given an involutive algebra A,let H be a finitely generated free A-module and E1,···,Enbe n finitely generated projective submodules of H.Then we say that S=(H;E1,···,En)is a system of n-submodules in H.

    Let T=(H′;F1,···,Fn)be another system of n-submodules.Then φ:S→T is called a homomorphism if φ:H→H′is a module map satisfying that φ(Ei)?Fifor i=1,···,n.And φ:S→T is called an isomorphism if φ:H→H′is an isomorphism satisfying that φ(Ei)=Fifor i=1,···,n.We say that system S and T are isomorphic if there exists an isomorphism φ:S→T.

    Let S=(H;E1,···,En)and T=(H′;F1,···,Fn)be two systems of n submodules in the module H.Then their direct sum S⊕T is defined by

    Similar to the typical systems ofnsubspaces,we also have the notation of indecomposability and irreducibility.

    Let us introduce an important kind ofA-module,and thusAn,which denotes the direct sumA⊕A···⊕Aofncopies ofA,Anbecomes a module overAwith the module action defined by

    We are mainly interested in the system ofn-submodules inH,whichis of this type,denoted by(Am;E1,E2,···,En),where eachEkis a finitely generated projectively submodule ofAm.Then eachEkis isomorphic topkAmfor some projectionpkonAm.Then we can write the system ofnsubmodules in the form:(p1,p2,···,pn),where eachpiis a projection,namely

    In this paper,we construct an Abelian group,namely Φ-group,for systems ofnoperators(p1,p2,···,pn)to generalize the classicalK-group.The Φ-group for systems of one operator is just the classicalK-group,and whenn≥2,the Φ-group contains theK-group as a direct summand,and hence we can see that Φ(A)contains more information ofAthan that ofK(A).

    We mainly describe the Φ-group for systems ofnoperators whenn=2,and it only has some of the propositions of the classicalK-theory.We compute the Φ-group for multi-operators when the operators have some relations.In fact,to compute the Φ-group is the process to describe the structure of multi-operators up to unitary equivalence.

    Finally,we remark that the Φ-group has a relationship with the problem of the classification of systems ofnsubspaces.The Φ-group can be regarded as a classification theory for systems ofnsubspaces up to unitary equivalence whenA=.

    We firstly discuss the case when the involutive algebraAis unital.Since every finite size projection onAnis in fact a matrixx∈Mn(A)such thatx2=xandx?=x,then every system of one submodule corresponds to such a fixed matrixx.Therefore,the Grothendiek group of stable isomorphism classes of the systems of one submodule is nothing but theK-groupK0(A).

    In what follows,we will mainly discuss the systems of two submodules,and thus pairs of projections.

    3 Systems of two Submodules and the Group Φ0(A)

    In this section,we define the Φ-group for systems of two submodules,and thus pairs of projections onAn,n≥1,for a given involutive algebraA.We begin the procedure from the unital case.

    Definition 3.1Given a unital involutive algebra A,let X be the set of all the pairs of projections(p1,p2)and~be the smallest equivalence relation on X,such that

    (1)(p1,p2)~(p1⊕0m,p2⊕0n)for any m,n in;

    (2)(p1,p2)~u(p1,p2)u?for any unitary u;

    (3)(p1,p2)~(q1,q2)if there exists a pair(r1,r2)in X and a unitary u such that

    Remark 3.1By(1)of this definition,we can assume that any pair of projections has the same size.The check of(2)is similar to the check of(3),and the former is much easier.Hence,from now on,we assume that any pair of projections has the same size,and we use(3)to check if two pairs of projections are equivalent.

    Let[(p1,p2)]denote the equivalence class of(p1,p2),and we denote the set of the class by

    We define an addition on ?2by

    The addition is well-defined as follows.

    We firstly fix(q1,q2).If,by Remark 3.1,we only check(3)in De finition 3.1.Thus there exist a pair(v1,v2)∈Xand a unitaryusuch that

    Then

    Using the procedure of changing orders,we have two unitaryxandysuch that

    Hence

    and thus

    Next,we fixand supposing thatwith the same procedure,we can prove that

    Next we give an important proposition as follows.

    Proposition 3.1?2is an Abelian semi-group with cancellation.

    ProofSince the propositions of association and commutation are obvious,we only need to check the cancellation.If

    then

    By Remark 3.1,there exists a pair(s1,s2)and a unitaryusuch that

    Hence[(p1,p2)]=[(q1,q2)].

    In the end,we note that this simi-group has zero element.Since(p1,p2)~(p1⊕0n,p2⊕0n),we can see directly that

    for any system(p1,p2)and any natural numbern,and therefore[(0n,0n)]is the zero element for any natural numbern.

    Then it is convenient to give our main definition.

    Definition 3.2Φ(A):=the Grothendieck of?2.

    Remark 3.2We can only consider the commutative systems of two submodules,and using the same procedure we get the Φ-group,denoted by Φc(A)whichis a subgroup of Φ(A).In Section 5,we will compute some examples of Φc(A)for differentA.

    The functor Φ for unital involutive algebrasLetAandBbe unital involutive algebras,and letφ:A→Bbe a?-homomorphism.Associate toφa group homomorphism Φ(φ):Φ(A)→Φ(B)as follows.φextends to a?-homomorphismφ:Mn(A)→Mn(B)for eachn.A unital?-homomorphism maps projections to projections and unitaries to unitaries.Then we can define Φ(φ):Φ(A)→Φ(B)by Φ(φ)[(p1,p2)]=[(φ(p1),φ(p2))].It is easy to check that it is a group homomorphism,and therefore we get the following proposition.

    Proposition 3.2(Functoriality of Φ for Unital Involutive Algebras)

    (i)For each unital involutive algebra A,Φ(idA)=idΦ(A).

    (ii)If A,B and C are unital involutive algebras,and if φ:A→B and ψ:B→C are?-homomorphisms,then

    The non-unital caseIfAis an involutive algebra,unital or non-unital,being its unitalization,then

    is a short exact sequence,and we define

    Remark 3.3In Section 4 of this paper,we will compute Φ()and we will see that it is not trivial.

    Proposition 3.3Φ0is a covariant functor from the category of involutive algebras to the category of Abelian groups.

    ProofThe proofis similar to the case of the usualK-theory.Let:A→Bbe a homomorphism between involutive algebrasAandB,and define:→by

    Then there is a commutative diagram

    We get the diagram

    Thenand by the commutativity of the above diagram,we see thatsince Φ is a covariant functor from the category of involutive algebras to the category of Abelian groups,so is Φ0.

    4 Propositions of the Group Φ0(A)

    The standard picture of the group Φ0(A)IfAis an involutive algebra,unital or non-unital,eAbeing its unitalization,then

    is a short exact sequence.Then

    [π(p1,p2)]=[π(q1,q2)]implies that there exists a pair of projections(x,y)and a unitaryusuch that

    Sinceu,xandyare scalar matrices,we have

    As[(p1⊕x,p2⊕y)]?[(q1⊕x,q2⊕y)]=[(p1,p2)]?[(q1,q2)],we replacep1withp1⊕x,p2withp2⊕y,q1withq1⊕xandq2withq2⊕y,then we have

    As[u?(p1,p2)u]=[(p1,p2)],we replacep1withu?p1uandp2withu?p2u,and then we have

    Conversely,given[(p1,p2)]?[(q1,q2)]∈Φ(eA)such thatπ(p1,p2)=π(q1,q2),and then obviously we getπ?([(p1,p2)]?[(q1,q2)])=0,and hence

    Then we get the standard picture of Φ0(A):

    By the standard picture of Φ0(A),we can demonstrate thatfor the unital involutive algebraA.This is an important fact since it ensures that we can denote by Φ0(A)whetherAis unital or not.

    Proposition 4.1(Direct Sums)For every pair of involutive algebras A and B,we have

    ProofLetιA:A→A⊕BandιB:B→A⊕Bbe the canonical inclusion maps,and they induce a homomorphism

    which maps(g,h)in Φ0(A)⊕Φ0(B)to Φ0(ιA)(g)+ Φ0(ιB)(h).We have the commutative diagram

    By 5-lemma,we only have to show the case whenAandBare both unital.This is obvious,since every element in the matrixMn(A⊕B)is of the form(a,b)fora∈Aandb∈B,and the product and addition of matrices happen on each component independently.

    In theK-theory,the Morita invarianceis a well-known result.The key point of the proofis to show the unital case,and thuswhenAis a unital involutive algebra,and the general case is got by 5-lemma(see[4]).Unfortunately in the case of Φ0-group,since the functor Φ0does not preserve the split exact sequence,we can not use 5-lemma.But we can still show the unital case in a direct way.

    Proposition 4.2(Morita Invariance)Let A be a unital involutive algebra and let n be a natural number.ThenΦ(A)is isomorphic toΦ(Mn(A)).

    ProofWe will show that the?-homomorphism

    induces an isomorphismwithwherep1,p2are the sizes ofmand(λA)mis the?-homomorphisminduced byλA.

    We should check that this definition is well given.If[(q1,q2)]=[(p1,p2)],then by Remark 3.2,there exists a pair(r1,r2)and a unitaryusuch thatWithout lost of generalization,we assume thatpi,qi,ri(i=1,2)are all of sizem.

    Let{e1,e2,···,e2mn}be the standard basis for2mn,and letvbe a permutation unitary inM2mn(C)that fulfills

    Then

    and

    Since

    then

    Therefore,

    For each natural numberk,letγk:Mk(Mn(A))→Mkn(A)be the?-isomorphism given by viewing each element ofMk(Mn(A))as one big matrix inMkn(A).Defineβ:Φ(Mn(A))→Φ(A)byβ[(p1,p2)]=[γk(p1,p2)]forp1,p2∈Mk(Mn(A)).

    We should show that this definition is well given.In fact,given a pair(q1,q2)such that(q1,q2)~(p1,p2),by Remark 3.1,there exists a pair(x,y)and a unitaryusuch thatu?(p1⊕x,p2⊕y)u=(q1⊕x,q2⊕y).Suppose thatpi,qiare inMk(Mn(A))andx,yare inMl(Mn(A)),souis inMk+l(Mn(A)).Then

    Sinceγk+luis also a unitary element,we have

    and thus

    We claim thatβis the inverse toα.To prove this claim it suffices to show that

    where(λA)mis the?-homomorphisminduced byλA.We prove the second claim,and the proof of the first claim is similar.

    Let{e1,e2,···,ekn}be the standard basis forkn,and letube a permutation unitary inMkn()that fulfills

    Then

    Therefore

    The direct system and the direct limit

    Recall that the direct limit(A,φi)of the direct system of involutive algebras

    is characterized by

    Theorem 4.1 Suppose that(A,φi)is the direct limit of the direct system of involutivealgebrasand thenis a direct systemof Abelian groups with a direct limit

    ProofWe have a diagram

    Since the direct limit preserves exactness,by 5-lemma,we may assume that allAiandAare unital and thatφiandφjipreserve units.It suffices to show thatWe prove it by two steps.

    (1)

    For any projectionsp,q∈Mn(A),there arei,j∈Jandpi∈Mn(Ai),qj∈Mn(Aj)such thatThusfor somek≥i,and thenφkiis a projection inMn(Ak).Similarly,there is somel≥jsuch thatφlj(qj)is a projection inMn(Al).Lett≥k,l.Thenφti(pi)andφtj(qj)are projections inMn(At)such that

    (2)

    LettingThen by Remark 3.1 there are some unitaryuinMn(A)and some projectionsx,y∈Mn(A)such that

    There exists ajsuch thatu=φj(uj),x=φj(xj),y=φj(yj),whereujis a unitary,and thus

    Letk≥i,j,and then

    Enlargekif necessary,and we can get

    Therefore,

    and thus

    The relationship between Φ-groups and K-groupsWe firstly study the unital case.Suppose thatAis a unital involutive algebra,andXis the corresponding set in Definition 3.1.If we only consider the subset ofXconsisting of pairs with the form(p,0),we get a direct summand of Φ(A)and thus{[(p,0)]?[(q,0)]:(p,0),(q,0)∈X},which obviously is isomorphic to the typicalK(A).Similarly,we have another direct summand{[(0,p)]?[(0,q)]:(0,p),(0,q)∈X}whichis also isomorphic toK(A).Hence,we get that

    and Φ(A)/(K(A)⊕K(A))is an Abelian group.

    For the general involutive algebraA,unital or not unital,by the standard picture of Φ0(A)andK0(A),we also have that

    5 The Computation of Φ-Groups

    The computation of Φ-groups is in fact the description of the structure theory of pairs up to unitary equivalence,and it is a subproblem to study the pairs of self-adjoint operators.Even for a pair of projections acting on Hilbert spaces,the problem of describing,up to unitary equivalence,irreducible(undecomposible)pairs without any relation is very difficult.For example,letp,qbe projections acting on2.To simplify the problem,we fixpasandqas any projection on.By the equationswe see thatqhas the forms oforwhere 0≤ λ ≤1,0≤θ<2π.Consider the unitary matrixuwhichis commutative withp,and thusuis of the formwhere 0≤α,β<2π.Acting on(p,q)by this kind ofu,we get

    where 0≤λ≤1,0≤θ,α,β<2πandqis of the nontrivial kind.Then for differentλ1andλ2in[0,1],

    and

    can not be unitarily isomorphic.Therefore,the unitarily isomorphism classes for the kind of pairs(p,q),where

    is of the card?.So we only consider the pairs of projections that satisfy an algebraic relation.

    Next,we give the general theory of self-adjiont operators by[5].

    LetHbe a separable complex(finite or infinite-dimensional)Hilbert space.We consider the pairsAandBof self-adjiont operators which are solutions of the equation

    whereα,β1,β2,γ,δ,ε,χ∈C.Suppose that

    So we can write this equation as

    whereα,β,η,γ,δ,ε,χ∈R,[A,B]=AB?BAis the commutator,and{A,B}=AB+BAis the anticommutator.We also have that

    By using an affine change of variables,(5.1)can be divided into four groups:

    (a)Wild relations:0=0 orA2=I.

    (b)Binormal relations:A2+B2=IorA2=B2orA2?B2=I.

    (c)Lie algebras and their non-linear transformations:[A,B]=0 oror

    (d)Quantum relations:

    In what follows,we study each of these groups of the relations for projectionsAandB.

    (a)Wild relations.The relation 0=0 means thatAandBdo not satisfy any relation.For projectionA,A2=ImeansA=I,and thereforeAB=BA.

    (b)Binormal relations.For projectionsAandB,the relationA2+B2=Iimplies thatA=I?B,and henceAB=BA.For the relationA2=B2,A=Bfor projectionsAandB,and thereforeAB=BA.The third relationA2?B2=Iholds only whenA=IandB=0,which also implies thatAB=BA.

    (c)Lie algebras and their non-linear transformation.In this group of relations,the first six relations are partial cases of the relation

    whereP2(A)is a real quadratic polynomial.Even for bounded self-adjoint pairs,(5.2)implies that[A,B]=0 by Proposition 1.19 in[5].For the last relationwe can transform it into[A,(A2+B)]=i(A2+B),and then it is converted to the form in(5.2),so we get[A,(A2+B2)]=0,and thus[A,B]=0.

    (d)Quantum relations.By Proposition 1.13 in[5],the pair of bounded self-adjoint operatorsA,Bsatisfiesand thenA=B=0,soAB=BA.For the second relationwe can transform it into the relation[A,A+B]=iq(A+B)+iIfor a pair of projectionsAandB,and then it becomes the form of(5.2)in case(c),so we have[A,B]=0.For the next two relations,[A,B]=0 also holds for bounded self-adjoint operatorsAandB.

    In summary,given a pair of projections which satisfy the relation(5.1),they either have no relation,or satisfy

    We consider the case where the pairs of projections have commutative relations.Thus we consider the commutative systems and give some examples of the computations of Φc(A).It is not hard to see that Φc(A),as a subgroup of Φ(A),inherits all the propositions of Φ(A).

    Example 5.1Φc(A)forA=,Mn(),C(S1).

    For commutative projectionsp1,p2inMn(),they can be simultaneously diagonalized,and thus there is a unitaryuinMn()such thatandare diagonal matrices and the elements in the diagonal are 0 or 1 since bothandare projections.Then we get a couple(diag(i1,i2,···,in),diag(j1,j2,···,jn))withisandjtbeing 0 or 1 for 1≤s,t≤n.Therefore,each couple of(is,js)is an element of the set{(1,0),(0,1),(1,1)}.Although the relative position of the couples(is,js)may change for different unitary matrices,the number of times each element in the set{(1,0),(0,1),(1,1)}appears will be unchanged,and thus if(1,0),(0,1)and(1,1)appearn1,n2,n3times respectively in the set{(i1,j1),(i2,j2),···(in,jn)},thenn1,n2,n3are constant for different unitary transformations.

    In fact,if there are two unitary matricesu1andu2such thatcorrespond to(n1,n2,n3)and(m1,m2,m3)respectively,and that(n1,n2,n3)≠(m1,m2,m3),thenandwill have different ranks,soandhave different ranks,whichis impossible since unitary transformation dose not change a matix’s rank.Then we can give a definition of the rank for commutative pairs of projections,whichis a generalization of the rank of one matrix.

    Definition 5.1(Rank for Commutative Pairs of Projections)Given two projections p,q∈Mn(),suppose that u(p,q)u?is the simultaneously diagonalized form.Let r1,r2,r3be the times(1,0),(0,1),(1,1)appearing in the diagonalized form respectively,and then we call the triple(r1,r2,r3)the rank of the pair(p,q).

    In what follows,we claim that the rank(r1,r2,r3)is invariant under the equivalent relation~.

    Proposition 5.1Suppose that(r1,r2,r3)is the rank of a pair of projections p1,p2∈Mn(),and then(r1,r2,r3)is invariant under the equivalence relation~.

    ProofWe show the case(3)in Definition 3.1.

    Give another pair of projectionsq1,q2∈Mn(C)for which there exists a unitaryuand a pair of projections(x,y)such that

    Hence the pair(p1⊕x,p2⊕y)and the pair(q1⊕x,q2⊕y)have the same rank(k1,k2,k3).Suppose that(p1,p2),(q1,q2),(x,y)can be diagonalized by unitary matricesu1,u2,u3respectively,and then(p1⊕x,p2⊕y)can be diagonalized by the unitary(u1⊕u3)and(q1⊕x,q2⊕y)can be diagonalized by the unitary(u2⊕u3).If the rank of(q1,q2)is(s1,s2,s3)and the rank of(x,y)is(l1,l2,l3),then we have

    Since the addition is the canonical one for vectors,we have that

    By Proposition 5.1,we have

    and hence

    By Proposition 4.2 for the commutative case,we have

    Since two commutative matrices inMn(C(S1))can also be diagonalized to the constant matrices simultaneously,we have

    Remark 5.1By the same procedure,we can also construct the Φ-theory fornsubmodules,denoted by Φn(A),and we can also compute the Φ-group for the commutative systems for Hilbert subspaces,which in general,is

    The relationship between the Φ-group and the problem of classification of systems of n-subspaces

    In the computation of Φ-groups,we see that it is the process to describe the unitary equivalence class for multi-operator,and we should find the irreducible form of the operators as a base for the Φ-group.WhenA=,it is the problem of classification of systems ofn-subspaces in a finite dimensional Hilbert space which we have introduced in the second section of this paper.In fact Φ()describes the stable unitary equivalence class for the systems ofnsubspaces in a finite dimensional Hilbert space,but in the case offinite dimensions,the stable unitary equivalence class is almost the unitary equivalence class.

    Whenn=1,there is only one direct summand that corresponds to the nontrivial indecomposable systems of one subspaces up to unitary equivalence,namely

    Whenn=2,there are three direct summands that correspond to the non-trivial indecomposable commutative systems of two subspaces up to unitary equivalence,namely

    Whenthere are seven direct summands that correspond to the non-trivial indecomposable commutative systems of three subspaces up to unitary equivalence,namely

    AcknowledgementsThe authors would like to thank all the members of the functional analysis seminar for the inspiring discussions,and they would also like to sincerely thank the referees for the suggestions on improving the paper.

    [1]Gelfand,I.M.and Ponomarev,V.A.,Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space,Coll.Math.Spc.Bolyai,5,1970,163–237.

    [2]Moskaleva,Y.P.and Samo??lenko,Y.S.,Systems ofnsubspaces and representation of?-algebras generated by projections,Methods of Functional Analysis and Topology,12(1),2006,57–73.

    [3]Enomoto,M.and Watatani,Y.,Relative position offour subspaces in a Hilbert space,Advances in Mathematics,201(2),2006,263–317.

    [4]R?rdam,M.,Larsen,F.and Laustsen,N.,An Introduction toK-Theory forC?-Algebras,London Mathematical Society Student,49,Cambridge University Press,London,2000.

    [5]Ostrovsky??,Vasyl L.and Samo??lenko,Y.S.,On pairs of self-adjoint operators,Seminar Sophus Lie,3,1993,185–218.

    夜夜爽天天搞| 精品99又大又爽又粗少妇毛片| 国产 一区 欧美 日韩| 熟妇人妻久久中文字幕3abv| 身体一侧抽搐| 日韩欧美三级三区| 一级毛片我不卡| 蜜桃亚洲精品一区二区三区| 国产精品不卡视频一区二区| 又粗又爽又猛毛片免费看| 亚洲综合色惰| 久久久久国内视频| 日本三级黄在线观看| 欧美+日韩+精品| 久久热精品热| 国产黄a三级三级三级人| 亚洲va在线va天堂va国产| 人妻久久中文字幕网| 国产午夜精品论理片| 男女啪啪激烈高潮av片| 欧美一区二区国产精品久久精品| 少妇熟女欧美另类| 亚洲无线观看免费| 成人三级黄色视频| 一级毛片久久久久久久久女| 麻豆av噜噜一区二区三区| 国产在线男女| 久久精品人妻少妇| 我要看日韩黄色一级片| 久久久国产成人精品二区| 看黄色毛片网站| 免费看光身美女| 亚洲真实伦在线观看| 一级毛片电影观看 | 色吧在线观看| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 亚洲中文字幕日韩| 97超视频在线观看视频| 国产欧美日韩一区二区精品| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 欧美一级a爱片免费观看看| 成人特级黄色片久久久久久久| 久久99热这里只有精品18| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 尾随美女入室| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 不卡一级毛片| 免费高清视频大片| 最近的中文字幕免费完整| a级一级毛片免费在线观看| 久久热精品热| 日本爱情动作片www.在线观看 | 免费av毛片视频| 性插视频无遮挡在线免费观看| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| eeuss影院久久| 欧美激情在线99| 如何舔出高潮| 变态另类成人亚洲欧美熟女| 日韩三级伦理在线观看| 最近在线观看免费完整版| 成人美女网站在线观看视频| 中文字幕av成人在线电影| 国产精品三级大全| 99热这里只有是精品在线观看| 国产精品人妻久久久久久| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 99热6这里只有精品| 人人妻人人看人人澡| 国产三级中文精品| 一个人免费在线观看电影| 女人被狂操c到高潮| 亚洲欧美日韩东京热| 国产一区二区三区av在线 | 中文字幕免费在线视频6| 日韩精品中文字幕看吧| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 国产在线精品亚洲第一网站| 精品人妻偷拍中文字幕| 午夜亚洲福利在线播放| 久久久久精品国产欧美久久久| 亚洲专区国产一区二区| 床上黄色一级片| 国产黄色视频一区二区在线观看 | 99热这里只有是精品50| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| a级毛色黄片| 中国美白少妇内射xxxbb| 亚洲精品日韩av片在线观看| 六月丁香七月| 可以在线观看毛片的网站| 22中文网久久字幕| 欧美性感艳星| 亚洲美女搞黄在线观看 | 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 欧美日韩在线观看h| 嫩草影院新地址| 欧美高清性xxxxhd video| 变态另类成人亚洲欧美熟女| 丰满乱子伦码专区| 成熟少妇高潮喷水视频| 久久久久免费精品人妻一区二区| 欧美不卡视频在线免费观看| 午夜福利在线观看吧| 性插视频无遮挡在线免费观看| 男女边吃奶边做爰视频| 91在线精品国自产拍蜜月| 午夜免费激情av| 禁无遮挡网站| 亚洲欧美中文字幕日韩二区| 亚洲成人久久爱视频| 精品久久久久久成人av| 欧美国产日韩亚洲一区| 成人综合一区亚洲| 国产精品亚洲美女久久久| 国产伦在线观看视频一区| 小说图片视频综合网站| 欧美+亚洲+日韩+国产| 精品国产三级普通话版| 男人的好看免费观看在线视频| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 欧美激情在线99| 久久久a久久爽久久v久久| 国产女主播在线喷水免费视频网站 | 香蕉av资源在线| 国产亚洲av嫩草精品影院| 日韩大尺度精品在线看网址| 深夜a级毛片| 免费搜索国产男女视频| 国产大屁股一区二区在线视频| 国产精品一区二区性色av| 乱人视频在线观看| 又爽又黄a免费视频| 国产精品综合久久久久久久免费| 男女之事视频高清在线观看| 午夜精品一区二区三区免费看| 日日啪夜夜撸| 欧美zozozo另类| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 最后的刺客免费高清国语| 日韩一区二区视频免费看| 日本与韩国留学比较| 毛片一级片免费看久久久久| 看片在线看免费视频| 无遮挡黄片免费观看| 97热精品久久久久久| 欧美一级a爱片免费观看看| 最好的美女福利视频网| 午夜免费激情av| 中文字幕av在线有码专区| 18禁黄网站禁片免费观看直播| 欧美xxxx黑人xx丫x性爽| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 又黄又爽又免费观看的视频| a级毛片免费高清观看在线播放| 成年女人毛片免费观看观看9| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 国产日本99.免费观看| 欧美不卡视频在线免费观看| 亚洲最大成人av| 欧美另类亚洲清纯唯美| 久久热精品热| 国产成人影院久久av| 看片在线看免费视频| 色噜噜av男人的天堂激情| 免费观看的影片在线观看| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 变态另类成人亚洲欧美熟女| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 禁无遮挡网站| 亚洲av五月六月丁香网| 中国国产av一级| 直男gayav资源| 91午夜精品亚洲一区二区三区| а√天堂www在线а√下载| 一本精品99久久精品77| 亚洲精品日韩av片在线观看| 给我免费播放毛片高清在线观看| 看免费成人av毛片| a级毛片免费高清观看在线播放| 精品99又大又爽又粗少妇毛片| 国产高清视频在线播放一区| 亚洲五月天丁香| 国产精品野战在线观看| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 国产黄片美女视频| 十八禁网站免费在线| 性欧美人与动物交配| 高清午夜精品一区二区三区 | 欧美中文日本在线观看视频| 一进一出抽搐gif免费好疼| 最近中文字幕高清免费大全6| av在线老鸭窝| 热99在线观看视频| 欧美丝袜亚洲另类| 国产女主播在线喷水免费视频网站 | a级一级毛片免费在线观看| 一区福利在线观看| 99热这里只有是精品在线观看| 国产熟女欧美一区二区| а√天堂www在线а√下载| 成人综合一区亚洲| 在线观看一区二区三区| 最近2019中文字幕mv第一页| av福利片在线观看| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 一进一出好大好爽视频| 最新在线观看一区二区三区| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 联通29元200g的流量卡| 丰满人妻一区二区三区视频av| 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 91狼人影院| 亚州av有码| 久久精品国产99精品国产亚洲性色| 亚洲电影在线观看av| 日韩欧美免费精品| 成人美女网站在线观看视频| 午夜a级毛片| 最近2019中文字幕mv第一页| 麻豆久久精品国产亚洲av| 亚洲av熟女| 18+在线观看网站| 我的女老师完整版在线观看| 日本在线视频免费播放| 久久国产乱子免费精品| 韩国av在线不卡| 插逼视频在线观看| 一夜夜www| 麻豆一二三区av精品| 丰满的人妻完整版| 人妻久久中文字幕网| 国产三级中文精品| 可以在线观看的亚洲视频| .国产精品久久| 日韩欧美免费精品| 亚洲中文日韩欧美视频| 国产男人的电影天堂91| 国产日本99.免费观看| 人人妻人人看人人澡| av中文乱码字幕在线| 97人妻精品一区二区三区麻豆| 亚洲自偷自拍三级| 中国美女看黄片| 99久久成人亚洲精品观看| 成人亚洲欧美一区二区av| 无遮挡黄片免费观看| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 精品一区二区三区人妻视频| 嫩草影院入口| 国语自产精品视频在线第100页| 舔av片在线| 欧美一级a爱片免费观看看| 草草在线视频免费看| 国产视频内射| 日韩一本色道免费dvd| 久久久久国内视频| 三级男女做爰猛烈吃奶摸视频| 日韩欧美免费精品| 麻豆一二三区av精品| 日韩三级伦理在线观看| 观看免费一级毛片| av国产免费在线观看| 99在线人妻在线中文字幕| 精品久久久久久久久久免费视频| 中文字幕久久专区| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 人妻久久中文字幕网| 日本熟妇午夜| 久久欧美精品欧美久久欧美| www日本黄色视频网| 国产欧美日韩精品亚洲av| 国产精品嫩草影院av在线观看| 女的被弄到高潮叫床怎么办| 久久久a久久爽久久v久久| 欧美激情国产日韩精品一区| 最好的美女福利视频网| av在线天堂中文字幕| 精品欧美国产一区二区三| 中文字幕人妻熟人妻熟丝袜美| 欧美三级亚洲精品| av在线天堂中文字幕| 看片在线看免费视频| 国产亚洲91精品色在线| 亚洲人成网站高清观看| 亚洲18禁久久av| 直男gayav资源| 看非洲黑人一级黄片| 日本撒尿小便嘘嘘汇集6| 国产乱人视频| 国产中年淑女户外野战色| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 欧美区成人在线视频| 天天躁日日操中文字幕| 黄色日韩在线| 欧美激情在线99| 国产探花极品一区二区| 一区二区三区四区激情视频 | 亚洲中文字幕日韩| 国产成人影院久久av| 婷婷精品国产亚洲av| 男女之事视频高清在线观看| 久久鲁丝午夜福利片| 日本免费a在线| 日日摸夜夜添夜夜添av毛片| 中国国产av一级| 久久久欧美国产精品| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 国产欧美日韩精品亚洲av| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 成年av动漫网址| 91av网一区二区| 久久久国产成人精品二区| 亚洲精品一区av在线观看| 可以在线观看的亚洲视频| 国产高潮美女av| 毛片女人毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲va在线va天堂va国产| 日本成人三级电影网站| 一级毛片我不卡| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 亚洲欧美日韩东京热| 校园人妻丝袜中文字幕| 日本熟妇午夜| 国产成人a∨麻豆精品| 亚洲色图av天堂| 毛片一级片免费看久久久久| 一个人看的www免费观看视频| 亚洲av熟女| 又黄又爽又免费观看的视频| 亚洲婷婷狠狠爱综合网| 亚洲中文字幕日韩| 久久久国产成人免费| 国产女主播在线喷水免费视频网站 | 黄色一级大片看看| 色播亚洲综合网| 黄色一级大片看看| 中国美女看黄片| 精品不卡国产一区二区三区| 插阴视频在线观看视频| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月| 美女被艹到高潮喷水动态| 国产成人aa在线观看| 又爽又黄a免费视频| 国内精品美女久久久久久| 男女做爰动态图高潮gif福利片| 日本免费a在线| 国产欧美日韩精品一区二区| 国产精品无大码| 成人无遮挡网站| 99精品在免费线老司机午夜| 色在线成人网| 嫩草影院入口| 18+在线观看网站| 精品国产三级普通话版| 一本一本综合久久| 中文字幕av在线有码专区| 精品一区二区免费观看| 51国产日韩欧美| 免费看光身美女| 变态另类丝袜制服| 日本三级黄在线观看| 亚洲av中文av极速乱| 麻豆成人午夜福利视频| 精品一区二区三区视频在线| 国产又黄又爽又无遮挡在线| av在线观看视频网站免费| 99久国产av精品国产电影| 欧美不卡视频在线免费观看| 亚洲一级一片aⅴ在线观看| 国产精品三级大全| 黄色欧美视频在线观看| 香蕉av资源在线| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| 精品免费久久久久久久清纯| 日本三级黄在线观看| 国产精品综合久久久久久久免费| 国产淫片久久久久久久久| 人人妻人人澡人人爽人人夜夜 | 91在线精品国自产拍蜜月| 成年版毛片免费区| 国模一区二区三区四区视频| 国产女主播在线喷水免费视频网站 | 欧美日韩综合久久久久久| 禁无遮挡网站| 亚洲av中文av极速乱| 女人被狂操c到高潮| 午夜a级毛片| 天堂影院成人在线观看| 欧美精品国产亚洲| 亚洲国产日韩欧美精品在线观看| 欧美激情在线99| 国产视频一区二区在线看| 久久久色成人| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 久久久成人免费电影| 国产又黄又爽又无遮挡在线| 国产精品日韩av在线免费观看| 国产亚洲精品av在线| 99九九线精品视频在线观看视频| 久久久久久久久久久丰满| 精品熟女少妇av免费看| 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 精品人妻一区二区三区麻豆 | 亚洲精品在线观看二区| 最近手机中文字幕大全| 亚洲一区二区三区色噜噜| 成人午夜高清在线视频| 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 观看美女的网站| 免费观看精品视频网站| 少妇被粗大猛烈的视频| 在线看三级毛片| 熟女电影av网| 最后的刺客免费高清国语| 国产黄片美女视频| 亚洲七黄色美女视频| 看片在线看免费视频| 亚洲综合色惰| 亚洲经典国产精华液单| 精品午夜福利在线看| 国产精品久久电影中文字幕| 成人三级黄色视频| 欧美色欧美亚洲另类二区| 99久久久亚洲精品蜜臀av| 亚洲精品国产av成人精品 | 欧美zozozo另类| 日韩国内少妇激情av| 国产精品女同一区二区软件| 久久久欧美国产精品| 国产精品日韩av在线免费观看| 亚洲丝袜综合中文字幕| 国产av不卡久久| 亚洲在线观看片| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 日韩欧美三级三区| 岛国在线免费视频观看| 晚上一个人看的免费电影| 成人av一区二区三区在线看| 午夜福利在线观看吧| 国产白丝娇喘喷水9色精品| 国产精品精品国产色婷婷| 真人做人爱边吃奶动态| 波多野结衣高清作品| 又爽又黄a免费视频| 日韩制服骚丝袜av| 欧美另类亚洲清纯唯美| av国产免费在线观看| 免费看日本二区| 久久国产乱子免费精品| 极品教师在线视频| 精华霜和精华液先用哪个| 精品午夜福利视频在线观看一区| 深夜a级毛片| 成人亚洲精品av一区二区| 国产高清激情床上av| 老女人水多毛片| 亚洲精品粉嫩美女一区| 国产精品人妻久久久久久| 偷拍熟女少妇极品色| 又黄又爽又免费观看的视频| 性插视频无遮挡在线免费观看| 91在线观看av| 国产精品一区二区性色av| 亚洲国产色片| 2021天堂中文幕一二区在线观| 女人被狂操c到高潮| 国产一区二区在线观看日韩| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 午夜精品国产一区二区电影 | 精品久久久久久成人av| 99久久中文字幕三级久久日本| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 联通29元200g的流量卡| 嫩草影院精品99| 又黄又爽又免费观看的视频| 99riav亚洲国产免费| 1000部很黄的大片| 日韩亚洲欧美综合| 全区人妻精品视频| 最近在线观看免费完整版| 蜜臀久久99精品久久宅男| 人妻久久中文字幕网| 久久精品夜夜夜夜夜久久蜜豆| 成人二区视频| 精品人妻偷拍中文字幕| 成人二区视频| 草草在线视频免费看| av黄色大香蕉| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片| 欧美激情在线99| 日本-黄色视频高清免费观看| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕 | 好男人在线观看高清免费视频| 小说图片视频综合网站| 中国美女看黄片| 久久精品91蜜桃| 日韩亚洲欧美综合| 日本免费一区二区三区高清不卡| 久久久国产成人免费| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 久久草成人影院| 亚洲精品亚洲一区二区| 好男人在线观看高清免费视频| 全区人妻精品视频| 69人妻影院| 尾随美女入室| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 色吧在线观看| av在线老鸭窝| 91麻豆精品激情在线观看国产| 高清毛片免费看| 搡女人真爽免费视频火全软件 | 成人欧美大片| 国产亚洲91精品色在线| 欧美最黄视频在线播放免费| 国产黄a三级三级三级人| 国产成人a区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 九色成人免费人妻av| 久久亚洲国产成人精品v| 六月丁香七月| 身体一侧抽搐| 成年女人毛片免费观看观看9| 在线免费观看的www视频| 欧美日本视频| 亚洲婷婷狠狠爱综合网| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 最近在线观看免费完整版| 国产av在哪里看| 尤物成人国产欧美一区二区三区| 床上黄色一级片| 熟妇人妻久久中文字幕3abv| 久久久久九九精品影院| 日本与韩国留学比较| 中文字幕人妻熟人妻熟丝袜美| 久久久久久大精品| 日本熟妇午夜| 亚洲精品国产av成人精品 | 欧美3d第一页| 免费电影在线观看免费观看| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 国产精品久久久久久久久免| 男女那种视频在线观看| av福利片在线观看| 可以在线观看的亚洲视频| 两个人的视频大全免费| 国产淫片久久久久久久久| 男人舔奶头视频| 成年免费大片在线观看| 亚洲美女黄片视频| 成人二区视频| www日本黄色视频网| 99久久成人亚洲精品观看| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 五月玫瑰六月丁香| 国产在视频线在精品| 久久精品国产清高在天天线| 国产高清三级在线| 国产午夜精品论理片|