• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Reduced Lantern Relations in Mapping Class Groups?

    2014-06-04 06:50:26ChaohuiZHANG

    Chaohui ZHANG

    1 Statement of Results

    LetSbe a hyperbolic Riemann surface of type(p,n)with a finite area,wherepis the genus andnis the number of punctures ofS.Assume throughout that 3p+n>3.Let H denote the hyperbolic plane.By the uniformization theorem(see[8]),there is a holomorphic covering mapfrom which we can obtain a covering groupGwhich acts on H as isometries and is a torsion free,finitely generated Fuchsian group of the first kind.

    Denote bythe surface obtained fromSwith one pointxremoved.Letdenote the subgroup of the mapping class group onthat consists of mapping classes isotopic to the identity asxis filled in.It is well-known(see[3,5])thatis the image ofGunder the socalled “Bers isomorphism”.In the literature,elements ofare called point-pushing mapping classes.

    Letbe the subset ofconsisting of elements with formsorwherea,bare simple closed geodesics onandtcis the positive Dehn twist about a geodesicc.It is clear that ifand botha,bare non-trivial curves onS,then=.Here and hereafter,we use the symbols a andto denote the geodesics onShomotopic toaandb,respectively.In the case where the pair(a,b)fills,that is,a∪bintersects every simple closed geodesic on,then by Thurston’s theorem(see[14]),are pseudo-Anosov.The elementhofGcorresponding tois called an essential hyperbolic element(see[10]for more information).

    The main purpose of this article is to clarify the situation when the product of two parabolic elements ofGcan be identified with an element of(the product always belongs to).To state our results,we need some geometric and topological terms related to the mapping class group.

    Let D be a thrice punctured disk with three puncturesx′,y,z.Denote byDthe boundary of D.Leta,b,c?D be the boundaries of twice punctured disks enclosing{x′,y},{x′,z}and{y,z},respectively,such thata,bandcpairwisely intersect twice(see Figure 1).Then the classical lantern relation(see[6,11])is simplified to the relation

    Usually,ifcontains at least three punctures,D can be embedded intoin such a way thatx′is identified withxand{y,z}can be identified with two other punctures ofS.Thusa,b,candDcan be considered simple closed geodesics on.In this situation we call these geodesicsa,b,candDgeometrically related in Figure 1.

    Figure 1 A reduced lantern relation

    Assume thatSis non-compact.ThenGcontains infinitely many parabolic elements andcontains at least two punctures.For eachh∈G,leth?denote the corresponding element in.By Theorem 2 of[10],h?is the Dehn twist(positive or negative)along a geodesiceonthat is the boundary of a twice punctured disk enclosingxif and only ifhis a primitive parabolic element.In this case,eis a trivial loop onSand is called a preperipheral geodesic.

    We first prove the following result.

    Theorem 1.1Let h1,h2∈G be parabolic elements such thatandAssumethatwhich allows us to writeasorfor some simple closedgeodesics c,D on.Thencontains at least three punctures(so S contains at least two punctures)and a,b,c,D are geometrically related in Figure1.

    During a conference hosted by AMS in 2002,J.D.McCarthy asked a question about how to characterize geometric relations by means of algebraic relations among various Dehn twists.We use the symboli(a,b)to denote the geometric intersection number betweenaandb.To the best knowledge of the author,only the following relations are well-known(see[9]):

    (1)if and only ifj=kanda=b,

    (2)if and only ifi(a,b)=0,and

    (3)anda≠bif and only ifj=k=±1 andi(a,b)=1.

    Some results related to the classical lantern relation and the chain relation were found in Margalit[12]and Hamidi-Tehrani[7].Their results rely on the strong hypothesis that some words generated bytaandtbare multi-twists(defined by finite collections of disjoint simple closed geodesics).

    The proof of Theorem 1.1 leads to the following result,which does not impose any condition on commutativity and disjointness among simple closed geodesics and thereby gives a partial solution to the problem posed by McCarthy.

    Theorem 1.2Let S be a Riemann surface of type(p,n)with a finite hyperbolic area.Assume that3p+n>3and n≥1.Let a,b,c and D be simple closed geodesics on S.Then the relation(1.1)holds if and only if S contains at least three punctures and a,b,c,D are geometrically related in Figure1.

    Here is the outline of this paper.Section 2 is dedicated to preliminaries which include some definitions and well-known facts.In Section 3 we investigate parabolic loops in the fundamental group ofS.In Section 4,we prove several related lemmas.In Section 5,we prove Theorem 1.1 and Theorem 1.2.Section 6 includes a technical lemma that handles the case whereis also represented by a product of two Dehn twists along non-preperipheral geodesics.

    2 Background and Preliminaries

    LetGbe a Fuchsian group of the first kind that acts on H as a group ofisometries so thatElements ofGare either hyperbolic or parabolic,and every hyperbolic elementgkeeps invariant a unique oriented geodesic axis(g)called the axis ofg.

    Letπ1(S,x)denote the fundamental group ofS.Thenπ1(S,x)is isomorphic toG.Letε:G→π1(S,x)be an isomorphism.An elementg∈Gis hyperbolic if and only ifε(g)is represented by a non-trivial closed geodesic;g∈Gis parabolic if and only ifε(g)is represented by a loop around a puncture ofS.More precisely,a hyperbolic elementg∈Gis simple if and only if?(axis(g))is a simple closed geodesic;it is essential hyperbolic if and only if?(axis(g))is a filling closed geodesic(in the sense that every component ofS?(axis(g))is either a polygon or a once punctured polygon);it is non-simple and non-essential if and only if?(axis(g))is a non-simple and non-filling closed geodesic.

    LetT(S)denote the Teichmüller space ofS.That is,T(S)is the space of all conformal structuresμ(S)onSquotient by an equivalent relation,where two conformal structuresμ:S→μ(S)andμ′:S→μ′(S)are equivalent if and only if there is a conformal mapc:μ(S)→μ′(S)such that(μ′)?1cμis isotopic to the identity.The equivalence class ofμis denoted by[μ].It is well-known thatT(S)is a complex manifold of dimension 3p+n?3.

    LetV(S)be the fiber bundle overT(S)so that any fiber ofV(S)over[μ]∈T(S)is the Riemann surface representing[μ].ThenV(S)is also a complex manifold of dimension 3p+n?2,and its universal covering manifoldF(S)is called the Bers fiber space.The fiber over[0]∈T(S)(represented byS)is the central fiber whichis identified with the hyperbolic plane H.Thus the covering groupGnaturally acts onF(S)that preserves each fiber inF(S).A remarkable result of Bers[3]states that there exists an isomorphismφofF(S)ontoT(),which induces(by conjugation)an isomorphismφ?ofGonto.

    By Theorem 2 of[10],g∈Gis a primitive parabolic element if and only ifg?is a simple Dehn twisttaalong the boundaryaof a twice punctured disk enclosingx;g∈Gis essential hyperbolic if and only ifg?is pseudo-Anosov(in the sense of[14]);g∈Gis a simple hyperbolic element if and only ifg?is a spin mapwherekis an integer and{c1,c2}are the boundary components of anx-punctured cylinder on.Finally,g∈Gis non-simple and non-essential if and only ifg?is a pure mapping class that has a unique pseudo-Anosov component onthat contains the puncturex.

    LetQ(G)denote the group of quasiconformal automorphismswof H such thatwGw?1=G.Two such mapsw,w′∈Q(G)are said to be equivalent ifwgw?1=w′g(w′)?1for everyg∈G.It is well-known thatGcan be regarded as a normal subgroup ofQ(G)/~andφ?extends to an isomorphism ofQ(G)/~onto thex-pointed mapping class groupof.Let[w]denote the equivalence class of an elementw∈Q(G)and[w]?denote the image of[w]∈Q(G)/~under the isomorphism

    Leta?be a simple closed geodesic that is non-trivial onSasxis filled in.Letdenote the(non-trivial)simple closed geodesic homotopic toaonS.Thus the positive Dehn twist? defines a special non-trivial reducible mapping class.Let?H be a geodesic so thatDenote bythe components ofThen,? and ?′are invariants under the action of a simple hyperbolic element ofG.The Dehn twist?can be lifted to a mapτa:H→H with respect to?,say,which satisfies the conditions

    (i)

    (ii)

    In addition to(i)and(ii)above,τadefines a collectionof half planes in H in a partial order defined by inclusion.There are infinitely many maximal elements ofall maximal elements(? is one of them)ofare mutually disjoint,and the complement

    is not empty.In fact,it is a convex region bounded by a collection of disjoint geodesicswithIt is clear thatcontains infinitely many maximal elements ofand the mapτaconstructed above keeps each maximal element invariant and has the property that

    The mapτaso obtained depends on the choice of a geodesicwithbut it does not depend on the choice of a boundary component of ?a.Moreover,τadetermines an element[τa]∈Q(G)/~.By Lemma 3.2 of[15],we can properly choose(and ?)so thatis represented by the Dehn twisttaalonga.If we use ?′to acquire a lifting mapτa′of?,we havewherea0together withaforms the boundary of anx-punctured cylinder.See[15,18]for more details.In the rest of this paper we call the triplethe configuration corresponding toa.

    3 Products of Parabolic Elements

    Letx0=x,x1,···,xndenote the punctures of.Letbe the set of preperipheral geodesics enclosingxandxi.Let

    Assume thata,Thenaandbare trivial loops onSas the puncturexis filled in.This is equivalent to thataandbare preperipheral and thus are the boundaries of twice punctured disksD(a)andD(b)that enclosex.

    By Theorem 2 of[10]and Theorem 2 of[13],there exist primitive parabolic elementsTa,Tb∈Gsuch thatandUnder the isomorphismε:G→ π1(S,x),TaandTbcorrespond to parabolic loopseaandebpassing throughx,respectively,such thateagoes aroundx1,andebalso goes around a puncturexi.Note thatea,ebgo around the same puncture if and only ifTaandTbare conjugate to each other inG.

    Letd(a)be the deformation retract ofD(a),that is,d(a)is a path onSconnectingxandx1so thatD(a)can be reconstructed from fatteningd(a).Likewise,letd(b)be the deformation retract ofD(b).Clearly,d(a)andd(b)determine the parabolic loopseaandebonSpassing throughx,respectively.Assume thatd(a)andd(b)intersect in a minimum number of points.We sayd(a)andd(b)are disjoint if they only meet atx.In this case,(d(a),d(b))forms a binary tree with two leavesx1andxi.IfD(a)andD(b)share both punctures,then by our convention,d(a)intersectsd(b).

    Lemma 3.1Let[σ′]∈π1(S,x)correspond to the product TbTa.Then any representative of[σ′]is freely homotopic to a trivial or simple closed geodesic σif and only if d(a)and d(b)are disjoint.

    ProofObviously,ifd(a)andd(b)are disjoint,i.e.,(d(a),d(b))forms a binary tree with two leavesx1andxi,thenea·ebis homotopic to the boundary of a twice punctured disk enclosingx1andxi.The converse can be proved by a geometric argument.Suppose thatd(a)andd(b)intersect at a minimum number of intersection points={ui;1≤i≤k}.Figures 2(a)–(b)show the first two such pointsu1andu2in two different situations.

    Note that eachuicontributes four intersection points betweeneaandebwhich form vertices of a quadrilateralQi.Figure 3 illustrates some details of the curve concatenationea·ebatu1andu2,and atxbased on Figure 2(a).Verticesuij,1≤j≤4,of each quadrilateralQiare labeled counterclockwise.

    Figure 2 Paths d(a)and d(b)and their intersection points

    Figure 3 Fattenings of d(a)and d(b)produce D(a)and D(b)as well as the product ea·eb

    Sinceσis freely homotopic toea·eb,ifσis a simple closed geodesic,then during the deformation,the points inand 1≤j≤4}are canceled in pairs,where at least one pair,according to the so-called bigon principle,constitutes vertices of a bigon.So it suffices to check if there exists a pointuijintogether with its neighboring point that forms vertices of a bigon.This can be done by examining each pointuifor 1≤i≤k.The case wherei=1 andj=4,is slightly different.Ifu14is the vertex of a monogonR,thenu1is not in,which contradicts thatd(a)andd(b)intersect at a minimum number of intersection points.

    In the cases wherei>1,ori=1 andj≠4,each vertexuij,1≤j≤4,of the quadrilateralQiobtained fromuican not be canceled with any other vertex ofQi.Ifui2andu(i+1)1are also vertices of a bigon,thenuiandui+1are vertices of a bigon formed byd(a)andd(b).In this case,uiandui+1can be removed from.This contradicts thatd(a)andd(b)intersect at a minimum number of intersection points.After a finite number of steps,we see that there is no bigon in the complement ofea·eb,that is to say,no points incan be deleted.This leads to a contradiction.The case of Figure 2(b)can be handled in the same way.

    Letza,zbdenote the fixed points ofTaandTb,respectively.Conjugating by a M¨obius transformation if necessary,we may assume without loss of generality thatzaandzbare south and north poles on S1,respectively.LetLandRdenote the left and right components of S1{za,zb},respectively.See Figure 4.

    For each pointz∈R,one checks thatTbTa(z)≠z.Hence there are no fixed points ofTbTaonR.So the fixed point(s)ofTbTamust lie onL.The following lemma shows that there are actually two fixed points ofTbTaonL.

    Lemma 3.2If3p+n>3,then TbTa∈G is hyperbolic.

    ProofBy assumption,a,b∈(x).Ifd(a)andd(b)intersect,then by Lemma 3.1,TbTais not parabolic.Ifd(a)andd(b)are disjoint,then by Lemma 3.1 again,[σ′]is represented by a trivial or simple closed geodesicσ.Note that(p,n)≠(0,3),which impliesis not of type(0,4).Thusσis not trivial,which says thatσis a non-trivial simple geodesic.SoTbTais hyperbolic.

    Figure 4 The product of Taand Tbgives a hyperbolic element

    By Lemma 3.2,g:=TbTa∈Gis hyperbolic,whose axis axis(g)meets1on the left componentLof1{za,zb}.We also know that the orientation of the axis is as shown in Figure 4.Otherwise,suppose that axis(g)takes an opposite orientation to the one shown in Figure 4.Thengandhave the same relative motion direction.By the same proof of Lemma 7.1 of[16],is hyperbolic,which would contradict thatandTais a parabolic element ofG.

    4 Lantern Relation in a Reduced Form

    In this section,we assume thata,b,candDare simple closed geodesics on,such that

    wherea,b∈(x)(in the case wherethe discussion is the same).As usual,we letanddenote the geodesics homotopic toa,b,c,DonS,respectively.

    Lemma 4.1With the above conditions,eitherandare trivial,orandare nontrivial.

    ProofIfis trivial and ecis non-trivial,oris non-trivial and ecis trivial,then it quickly leads to a contradiction by filling in the puncturexin(4.1).

    Lemma 4.2Assume that a,b∈(x)and satisfy(4.1).Then eitheroris non-trivial.

    ProofSuppose that bothandare trivial.Thena,b,c,D∈(x)satisfy(4.1).We claim that this does not occur,and the contradiction will complete the proof of the lemma.

    Indeed,there are primitive parabolic elementsTa,Tb,Tc,TD∈Gsuch thatandDenoteThese loops are parabolic inπ1(S,x).

    By Lemma 3.2,TbTa∈Gis a hyperbolic element.Thus the curve concatenation

    is homotopic to a non-trivial closed geodesicσ.As discussed in the proof of Lemma 3.1,during the homotopy fromea·ebtoσ,intersection points can be canceled only in pairs.Note that every interior intersection point betweend(a)andd(b)contributes four intersection points betweenaandb;nearx,aandbintersect twice.In addition,ifd(a)andd(b)intersect at the other endpointy,thenaandbintersect twice neary.We conclude thataandbintersect in an even number of points.Soσhas an even number of self-intersection points.

    On the other hand,sincec,D∈(x),we havei(c,D)>0.Thus from the above argument,c=?D(c)andD=?D(D)have an even number of intersection points,but the curve concatenationhas an additional self-intersection point atx.So the number of self-intersection points ofis odd.During the homotopy fromto the geodesicσ,the self-intersection points could cancel only in pairs.We conclude that the number of selfintersection points ofσis odd.It follows thatThus via the Bers isomorphism,Similarly,we can prove

    From Lemmas 4.1–4.2,we conclude that bothandare non-trivial.As a matter offact,more is true.

    Lemma 4.3With the same conditions as in Lemma4.2,c and D are disjoint,and hence c and D are the boundary components of an x-punctured cylinder on.

    ProofBy Lemma 6.1,we assert thati(c,D)=0.So eitherc=DorcandDare disjoint.Ifc=D,then from(4.1),tbtais trivial.But this is impossible sincea,b∈(x)and thusaandbintersect.We assume thatcandDare disjoint.By filling the puncturex,from(4.1),we see thatprojects to the trivial mapping class onS.But we know thatandare non-trivial geodesics.So=.It follows thatcandDare boundary components of anx-punctured cylinder on.

    Lemma 4.4Under the same notations and conditions as above,D is disjoint from a and b,or equivalently,D is disjoint from d(a)∪d(b).

    ProofLet?denote the component of Haxis(TbTa)that does not includezaandzb(as shown in Figure 4).Note thatWith the help of? one can construct a mapwhichis a lift of the Dehn twistwhere in factFrom Lemma 3.2 of[15],(see Section 2 for more details).

    Letbe the configuration obtained from.By construction,?∈.Note thatTbTakeeps the set of maximal elements ofinvariant.If there is a maximal elementthat coverszabut notzb,thenand thuswhich says that ?0is not a maximal element of.If?0covers bothzaandzb,then either(i)is disjoint fromzbor(ii)coverszb.When(i)occurs,is disjoint from;when(ii)occurs,we haveTbTa(?0)??0.All these would imply thatTb(Ta(?0))is not a maximal element of.This contradiction tells us thatzacan not belong to any maximal element of.

    Now by considering the inverseofTbTa,one can show thatzbcan not belong to any maximal element of.Hence bothzaandzb∈?∩S1.It follows that bothTaandTbcommute withτ.If[τ]?=tc,thentccommutes withtaandtb,and sotccommutes withtbta.But we havetctbta=tD,which implies thatcintersectsa∪b.This is absurd.We conclude thatThus bothtaandtbcommute withtD(buttaandtbdo not commute with each other).That is,Ddoes not intersecta∪b.

    We now proceed to study the properties of conjugate parabolic elements and their products.Assume thata,b∈(x,x1),whichis equivalent to thatTaandTbare conjugate inG.

    Lemma 4.5If Tbis conjugate to Tain G,then TbTa∈G is hyperbolic but not a simple hyperbolic element unless a=b.

    ProofFrom Lemma 3.2,TbTais hyperbolic.Ifa≠bandTbTais simple hyperbolic,thenTbTacorresponds to a simple closed geodesicγinπ1(S,x).

    By assumption,there is an elementh∈Gsuch thatTb=hTah?1.ThusTbTa=hTah?1Ta.Note thatd(b)=h?(d(a))determines a parabolic loopeb,butebis also defined byhTah?1.We see thathTah?1Tadetermines a loopea·eb∈π1(S,x).Sinced(b)=h?(d(a)),d(a)andd(b)share both endpoints{x,x1}.This implies that the curve concatenationea·ebis homotopic to a geodesic with at least two self-intersection points(two of which are near the puncturex1).In other words,the axis ofhTah?1Taprojects to a non-simple closed geodesic.It follows from the definition thatTbTais not a simple hyperbolic element.

    A mapping classMis called a multi-twist ifMis represented by a finite product of Dehn twists about disjoint simple closed geodesics.

    Lemma 4.6If Tbis conjugate to Tain G,then(TbTa)?is not a multi-twist unless a=b,in which case Tb=Taand(TbTa)?is a power of a Dehn twist.

    ProofAssume thatb≠aand(TbTa)?=Mis a multi-twist.SinceTbTa∈G,by Theorem 2 of[10],ifTbTais an essential hyperbolic element,or a non-simple non-essential hyperbolic element,then(TbTa)?can never be multi-twist.It follows that(TbTa)?is either parabolic or simple hyperbolic.By Lemma 3.2,(TbTa)?is not parabolic.So(TbTa)?must be simple hyperbolic.But this again contradicts Lemma 4.5.Ifa=b,thenTa=Tb.Soand hence

    5 Proof of Theorems

    Proof of Theorem 1.1We only handle the case where(TbTa)?is of the form(4.1).Suppose thatcontains only two puncturesxandx1.Thena,b∈(x,x1),and thusTa,Tbare conjugate inG.Sincea≠b,by Lemma 4.6,(TbTa)?is not a multi-twist,which implies thatcandDare not disjoint.On the other hand,since(TbTa)?∈0is of the form of(4.1),by Lemmas 4.1–4.2 and Lemma 6.1 in Appendix,we conclude thatcandDdo not intersect.This contradiction proves thatcontains at least three punctures.

    Assume thata∈(x,x1)andb∈(x).By Lemmas 4.1–4.2,bothandare non-trivial.Lemma 4.4 then asserts thatcis disjoint fromDand{c,D}actually bounds anx-punctured cylinder onS.This implies thatis a multi-twist.By Theorem 2 of[10]and Theorem 2 of[13],there exists a simple hyperbolic elementh∈Gsuch thatButIt follows thath=TbTa,which tells us thatTbTais a simple hyperbolic element ofG.Hence by Lemma 4.5,Tais not conjugate(inG)toTb.As it turns out,b∈(x,xi)for somexi≠x1.Moreover,by Lemma 3.1,d(a)andd(b)are disjoint,which says that(d(a),d(b))forms a binary tree with two leavesx1andxi.

    By Lemma 4.4,Dis disjoint fromd(a)∪d(b).This means thatDis disjoint froma∪b.Finally,to see thatDbounds a thrice punctured disk onS,we observe that the curve concatenationea·ebis homotopic to.But since(d(a),d(b))forms a binary tree with leaves{x1,xi},it is obvious thatea·ebbounds a twice punctured disk onSwhich encloses{x1,xi}.From the above argument,Dis disjoint froma∪b.IfDdoes not bound a thrice punctured disk,thenis not the boundary of any twice punctured disk,which leads to a contradiction.

    We conclude thatDbounds a thrice punctured disk.Since{c,D}bounds anx-punctured cylinder onS,cbounds a twice punctured disk enclosing{x1,xi}.Thus Figure 1 has been reconstructed.This proves thata,b,candDare geometrically related by Figure 1.

    To prove Theorem 1.2,we need some preliminary results.

    Lemma 5.1Let a,b,c?be simple closed geodesics.We have the following claims:

    (1)If tatbis trivial,then both a and b are trivial.

    (2)Ifis trivial,then either a and b are trivial,or a=b.

    (3)If tatb=tc,then either a,b and c are trivial,or a is trivial and b=c,or b is trivial anda=c.

    (4)Ifthen either a,b and c are trivial,or a and b are non-trivial and c is trivial,or b is trivial and a=c,and

    (5)Ifthen a,b and c are trivial.

    Proof(1)Ifaandbare non-trivial,thenIfais trivial andbis non-trivial,orais non-trivial andbis trivial,thentatbis a simple Dehn twist that is also non-trivial.

    (2)Ifis trivial,thenta=tb,which implies thata=bor bothaandbare trivial.

    (3)Suppose that not alla,bandcare trivial.Ifais trivial,thentb=tcand thusb=c;otherwiseais non-trivial.Ifbis non-trivial,thentatbcan not be a single Dehn twist.It follows thatbis trivial.Thusta=tcand soa=c.

    (4)Suppose that not alla,bandcare trivial.Ifbis trivial,thenta=tc,which saysa=c.Otherwise,bis non-trivial.Ifais also non-trivial,the only possibility is thatcis trivial anda=b.Ifais trivial,thenwhichis impossible.

    (5)If only one ofa,bandcis trivial,thenIf any two ofa,bandcare trivial,the other one must also be trivial.If alla,bandcare non-trivial andaandbare disjoint,thentatbis multi-twist whileis a single Dehn twist.SoIfaandbintersect,thentatbcan not be a single Dehn twist either.

    Proof of Theorem 1.2We first assume thatandare non-trivial(this is automatically true whenn=1;that is,Scontains only one puncture).Iforis trivial,then from(4.1),Lemma 5.1(3)and(5),we assert thatoror both are trivial.This is contradiction.Ifandare non-trivial,there are four subcases to consider:(i)i(c,D)=0,i(a,b)=0,(ii)i(c,D)>0,i(a,b)>0,(iii)i(c,D)=0,i(a,b)>0,and(iv)i(c,D)>0,i(a,b)=0.

    Ifi(c,D)=0,thentbtais either the square of a positive Dehn twist or a multi-twist with two positive components.Clearly,(i)does not hold(sinceis either trivial or a multi-twist with one positive and one negative components).(iv)says thatcandDintersect.From Thurston’s theorem[14],we see that on the surface supported bycandD,is pseudo-Anosov.So(iv)can not happen either.

    Figure 5 ?a∩?b=?

    Figure 6 ?c∩?D=?

    To handle the other two cases,we letbe the configurations corresponding toa,b,candD,respectively.

    Suppose(ii)occurs with ?a∩?b≠?.Note thatτbτahas no fixed points on S1,whilehas two or infinitely many fixed points on S1.We see thaton S1.Now assume that ?a∩?b=?.There are maximal elementsandsuch thatWe refer to Figure 5 whereandlikewise,and(here and hereafter we denote by(AB)the minor arc on S1connecting two non-antipodal pointsAandBon1).

    By examining the action ofτbτaon S1,we see that the fixed points forτbτa(if exist)must lie on the arc(D′C).LetQbe the fixed point ofτbτathat is closest toC.ThenQis also a fixed point ofIfthere are maximal elementsandsuch thatWe haveSee Figure 6.

    For anyz∈1,letdenote the Euclidean length of the arc ofdetermined by the motion direction ofτbτaatz.Thenzis a fixed point ofτbτaif and only iffor an integerk.Similarly,we useto denote the Euclidean length of the arc ofdetermined by the motion direction ofatz.Since the motion directions ofandτDare opposite,zis a fixed point ofif and only ifNow we choose a sequencewithz0=C,andzn→Qfrom right.

    Notice that 0L(whereLis the arc length ofWe conclude thatandIt follows thaton S1.

    Similarly,we can handle the case where ?c∩?D≠?.

    Suppose that(iii)occurs with ?a∩?b≠?.In this case,?c∩?D≠?.It is clear thatτbτahas no fixed points on S1,while there are infinitely many fixed points forThis is a contradiction.If ?a∩?b=?,a contradiction can also be derived by the similar argument as above(in this case,zis a fixed point ofif and only if

    Note that for a surface with one puncture, ?,are automatically non-trivial.We conclude that there is no relation(4.1)onwhenn=1.

    It remains to consider the case whereScontains two or more punctures andoror both are trivial.Suppose thata∈(x,x1).Our first claim is thatc/∈(x,x1).For otherwise,tcis conjugate totainand from(4.1),we obtain

    Hence

    Sincea∈(x,x1),we havetb(a)∈(x,x1).This implies thatcandtb(a)intersect.So ifi(b,D)=0,then the right side of(5.1)is a multi-twist or the identity,while the left side of(5.1)is neither the identity nor a multi-twist.This leads to a contradiction.We conclude thati(b,D)>0.But sincec,tb(a)∈(x),by Lemma 5.1,eitherandare trivial,or bothandare non-trivial and=.The former would contradict Lemma 4.2,and the latter would contradict Lemma 6.1.

    Our next claim isb∈(x).Indeed,by assumption,a∈(x,x1).There are four cases to be considered.

    Case 1andare both non-trivial.By filling the puncturex,from(4.1)we obtainBy Lemma 5.1,=andis trivial.That is,b∈(x).

    Case 2is trivial andis non-trivial.By filling the puncturex,from(4.1)we obtainThis means that=id.By Lemma 5.1,this is impossible unless=is trivial.It follows thatb∈(x).

    Case 3is non-trivial andis trivial.Again by filling in the puncturex,we see thatThus=.Letanddenote the geodesics on∪{x1}homotopic toa,b,candDon∪{x1},respectively.By filling in the puncturex1,from(4.1)anda∈(x,x1),we obtain

    Ifis trivial,then=andc∈(x,x1).This contradicts the fact thatc∈/(x,x1).

    Assume thatis non-trivial.Then by Lemma 5.1 and(5.2),=and thusis trivial.This saysb∈(x1,x2)(b/∈(x,x1)sinceby assumption is non-trivial).Sincea∈(x,x1),we havea,b∈(x1).By switching the roles ofxandx1and by Lemma 6.1,we conclude that

    Case 4BotheDand ecare trivial.In this case,by filling the puncturexonce again,from(4.1)we deduce thattebis trivial.Thusb∈(x).We are done.

    We now use the same argument of Theorem 1.1 to complete the proof of Theorem 1.2.

    6 Appendix

    This section is devoted to the proof of a lemma which plays a key role in the proof of Theorem 1.1.With the same notations and terminology as in Section 4,we have the following Lemma.

    Lemma 6.1Let a,b,c,D?be simple closed geodesics.Assume that a,b∈(x),and,are non-trivial on S as x is filled in.Thenand

    ProofWe only prove thatSupposeBy assumption,a,b∈(x).Hence by filling the puncturex,we deduce thatis the identity.Sinceandare non-trivial,by Lemma 5.1(2),we have=.Nowandare well-defined non-trivial mapping classes onS.Letandbe the configurations corresponding tocandD,respectively(see Section 2 for an exposition).

    Since=,all boundary geodesics of elements ofandare disjoint.Hence by Theorem 1.2 of[19],there exist maximal elementsandsuch thatandDenoteBy Theorem 1.2 of[19],is a hyperbolic element ofGwhose axis axisseparatesfrom(see Figure 7).

    Figure 7 Both zaand zbare outside of?D

    Figure 8 Only zais outside of?D

    By assumption,the equality(4.1)holds.This particularly implies that axisaxis(whichis also denoted by).Since??cand??Dproject(underρ)to the simple closed geodesic=,is disjoint fromBy hypothesis,We conclude that axis=axis=geodesicconnectingAandB.

    By combining Figure 4 and the remark thereafter,we deduce thatzaandzbmust lie on the right componentRof S1{A,B}and furthermore,zbis closer toAthanzais.In what follows,we denote by(P,Q)the minor on S1connecting two non-antipodal labeling pointsPandQonThere are several cases to be considered.

    Case 1Bothzaandzblie in the arc(UW)(see Figure 8).In this case,ifTa(?D)coverszb,thenis not disjoint fromBut we know thatis disjoint fromThis is a contradiction.IfthenAgain this contradicts thatis disjoint fromIfthen one easily sees thatorboth of which would imply thatis not disjoint from

    Case 2zb∈(AU)andza∈(UW)(see Figure 8).ThenHenceThis implies thatis not disjoint fromIfzb∈(UW)andza∈(BW),by considering the inverseofTbTaand by the same argument as above,we see that this case does not occur.

    Case 3za,zb∈(AU)(see Figure 9).Noting thatbis preperipheral,sobbounds a twice punctured diskcontainingx.This implies thatis not of type(0,3).We can choose a non-trivial simple closed geodesicγonwhich can also be viewed as a geodesic onthat satisfies the conditions:(i)γis not preperipheral,(ii)γis disjoint fromb,and(iii)γintersectsDanda.Letbe the configuration corresponding toγ.By Lemma 2.2 of[19],and there exists a maximal element?∈so that?? crossesIt could be the case that?coversza,as shown in Figure 9.But it could also be the case that?does not coverza.Sincethere exists a maximal element,and call it?too,such that.In any case,zbis not contained inand?is disjoint from

    Now we haveand thusButWe conclude that

    So

    Case 4and(see Figure 10).Assume without loss of generality that botha∪bandc∪Dfill.Since=,there existsh∈GsendingHencehis hyperbolic and its axis axis(h)separateszafromzb.By assumption,c∪DfillsFrom Lemma 2.2 of[21],axis(h)intersects at least one geodesicbetweenandUW.In general,we letbe the geodesics betweenand,wherek≥1.We redraw Figure 10 as Figure 11 and Figure 12.

    Letdenote the collection of components ofThen there exists a bijectionχbetweenand the set of geodesicsc0?with

    Letbe contained in the region bounded byand be disjoint fromFor 1≤j≤k,we letbe contained in the region bounded byFinally,denote bythe component contained in the region bounded byand

    It is clear thatA∈(U0U1)andB∈(WkW).From Figure 4,we haveza∈(BW)andIf(see Figure 11),we consider the component?1ofcontainingThenWriteIfwe are done.So we assume that

    Figure 9 Both za,zbare inside of?c∩?D

    Figure 10 za,zb∈?care separated by

    Figure 11 zb∈(AU1)and za∈(BW)

    Figure 12 zb∈(U1U)and za∈(BW)

    By constructionandcovers the repelling fixed pointB(otherwise,we immediately see thatis shown as a shaded region in Figure 11.Letbe the configuration defined by

    Letdenote the simple closed geodesic corresponding toBy Lemma 2.1 of[20],is disjoint fromc.Sinceby Lemma 2.2 of[19],intersectsa.Sinceby construction we know thatc′intersectstb(a),i.e.,intersectsa.It follows thatintersectsa.This tells us thatcontains a maximal element?which coversza(Lemma 2.2 of[19]).But sincezais disjoint from ??,? is disjoint from ??.

    We claim that? does not cross axis(h).Otherwise,we note thatThis implies thatwould not be the last geodesic inthat lies in betweenandand crosses axis(h).Therefore,?is disjoint from both??and axis(h).?is shown in Figure 11 too.Sinceit is disjoint from(U0W0).But we know thatWe conclude thatis disjoint fromIt follows thatwhich in turn implies that

    Ifzb∈(U1U)(see Figure 12),again,we let?1be the component of that contains(as shown in Figure 12).LetWe may also assume thatLet? be shown as in Figure 12.Then by the same argument as above,we conclude thatwhich implies that

    This completes the proof of Lemma 6.1.

    AcknowledgmentThe author is grateful to the referees for their careful reviews which helped to improve the paper in several aspects.

    [1]Ahlfors,L.V.and Bers,L.,Riemann’s mapping theorem for variable metrics,Ann.Math.,72,1960,385–404.

    [2]Beardon,A.,The Geometry of Discrete Groups,Springer-Verlag,New York,Heidelberg,Berlin,1983.

    [3]Bers,L.,Fiber spaces over Teichmüller spaces,Acta Math.,130,1973,89–126.

    [4]Bers,L.,An extremal problem for quasiconformal mappings and a theorem by Thurston,Acta Math.,141,1978,73–98.

    [5]Birman,J.S.,Braids,Links and mapping class groups,Ann.Math.Studies,82,Princeton University Press,Princeton,1974.

    [6]Dehn,M.,Papers on Group Theory and Topology,Springer-Verlag,New York,1987.

    [7]Hamidi-Tehrani,H.,Groups generated by positive multi-twists and the fake lantern problem,Algebr.Geom.Topo.,2,2002,1155–1178.

    [8]Farkas,H.M.and Kra,I.,Riemann Surfaces,Springer-Verlag,New York,Berlin,1980.

    [9]Ivanov,N.V.and McCarthy J.D.,On injective homomorphisms between Teichmuller modular groups,I.Invent.Math.,135,1999,425–486.

    [10]Kra,I.,On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces,Acta Math.,146,1981,231–270.

    [11]Johnson,D.,Homeomorphisms of a surface which act trivially on homology,Proc.Amer.Math.Soc.,75,1979,119–125.

    [12]Margalit,D.,A lantern lemma,Algebr.Geom.Topo.,2,2002,1179–1195.

    [13]Nag,S.,Non-geodesic discs embedded in Teichmüller spaces,Amer.J.Math.,104,1982,339–408.

    [14]Thurston,W.P.,On the geometry and dynamics of diffeomorphisms of surfaces,Bull.Amer.Math.Soc.,19,1988,417–431.

    [15]Zhang,C.,Pseudo-Anosov maps and fixed points of boundary homeomorphisms compatible with a Fuchsian group,Osaka J.Math.,46,2009,783–798.

    [16]Zhang,C.,On products of pseudo-Anosov maps and Dehn twists of Riemann surfaces with punctures,J.Aust.Math.Soc.,88,2010,413–428.

    [17]Zhang,C.,Pseudo-Anosov mapping classes and their representations by products of two Dehn twists,Chin.Ann.Math.Ser.B,30(3),2009,281–292.

    [18]Zhang,C.,Invariant Teichmüller disks under hyperbolic mapping classes,Hiroshima Math.J.,42,2012,169–187.

    [19]Zhang,C.,Pseudo-Anosov maps and pairs offilling simple closed geodesics on Riemann surfaces II,Tokyo J.Math.,36,2013.

    [20]Zhang,C.,On the minimum of asymptotic translation lengths of point pushing pseudo-Anosov maps on one punctured Riemann Surfaces,preprint,2013.

    [21]Zhang,C.,Point-pushing pseudo-Anosov mapping classes and their actions on the curve complex,preprint,2013.

    成人亚洲精品av一区二区| 国产色婷婷99| 国产精品久久电影中文字幕| 成人无遮挡网站| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产av玫瑰| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩无卡精品| 欧美又色又爽又黄视频| 国产精品伦人一区二区| 乱系列少妇在线播放| 成人av在线播放网站| 欧美xxxx性猛交bbbb| 男女视频在线观看网站免费| 日日干狠狠操夜夜爽| 欧美成人a在线观看| 最后的刺客免费高清国语| 免费搜索国产男女视频| 综合色丁香网| 日韩成人av中文字幕在线观看| 综合色丁香网| 男女边吃奶边做爰视频| 少妇的逼好多水| 成人特级av手机在线观看| 又粗又硬又长又爽又黄的视频 | 亚洲中文字幕一区二区三区有码在线看| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区在线观看日韩| av在线观看视频网站免费| 亚洲激情五月婷婷啪啪| 在线观看av片永久免费下载| av在线蜜桃| 身体一侧抽搐| ponron亚洲| 2022亚洲国产成人精品| 亚洲真实伦在线观看| 国产三级在线视频| 欧美+亚洲+日韩+国产| 亚洲av中文av极速乱| 国产精品无大码| 深夜a级毛片| 村上凉子中文字幕在线| 少妇人妻一区二区三区视频| 村上凉子中文字幕在线| 日韩欧美精品v在线| 久久欧美精品欧美久久欧美| 男女啪啪激烈高潮av片| 91午夜精品亚洲一区二区三区| av天堂在线播放| 黄片无遮挡物在线观看| 国产极品天堂在线| av国产免费在线观看| avwww免费| 免费电影在线观看免费观看| 日韩国内少妇激情av| 亚洲精品自拍成人| 中文欧美无线码| 国产亚洲5aaaaa淫片| 哪里可以看免费的av片| 黄片wwwwww| 欧美bdsm另类| 男女下面进入的视频免费午夜| 丰满的人妻完整版| 国产精品三级大全| 免费看美女性在线毛片视频| 亚洲av熟女| 男女视频在线观看网站免费| 插阴视频在线观看视频| 国产美女午夜福利| 日韩 亚洲 欧美在线| 国产69精品久久久久777片| 亚洲不卡免费看| 大又大粗又爽又黄少妇毛片口| 波多野结衣巨乳人妻| 欧美+日韩+精品| 国产精品国产高清国产av| 成年女人看的毛片在线观看| 欧美精品一区二区大全| 国产精品久久久久久亚洲av鲁大| 只有这里有精品99| 亚洲真实伦在线观看| 少妇丰满av| 亚洲国产欧洲综合997久久,| 噜噜噜噜噜久久久久久91| 亚洲高清免费不卡视频| 99热全是精品| 国内精品久久久久精免费| 岛国毛片在线播放| 大型黄色视频在线免费观看| 国产不卡一卡二| 99热网站在线观看| 国产精品一区二区三区四区久久| 久久久久久国产a免费观看| 青青草视频在线视频观看| 亚洲aⅴ乱码一区二区在线播放| 乱系列少妇在线播放| 99久久人妻综合| 免费观看精品视频网站| 国产成人freesex在线| 中文亚洲av片在线观看爽| av在线观看视频网站免费| 久久99热这里只有精品18| 国产精品日韩av在线免费观看| 免费观看人在逋| 日韩高清综合在线| 欧美日韩精品成人综合77777| 国产成人91sexporn| 淫秽高清视频在线观看| 99久久无色码亚洲精品果冻| 99久国产av精品国产电影| 日韩一区二区三区影片| 晚上一个人看的免费电影| 国产在视频线在精品| 国产午夜精品一二区理论片| 国产毛片a区久久久久| 欧美一区二区精品小视频在线| 精品久久久久久久久亚洲| 国产精品免费一区二区三区在线| 嫩草影院精品99| 天天躁日日操中文字幕| 在线免费十八禁| 午夜精品国产一区二区电影 | 国产成人a∨麻豆精品| 最近手机中文字幕大全| 少妇人妻精品综合一区二区 | 欧美+日韩+精品| 国语自产精品视频在线第100页| 精品人妻偷拍中文字幕| av免费观看日本| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕 | 久久午夜亚洲精品久久| 国产亚洲av嫩草精品影院| 日韩一区二区三区影片| 国产av一区在线观看免费| 99热精品在线国产| 国产精品乱码一区二三区的特点| 成年女人看的毛片在线观看| 国产一区二区在线观看日韩| 男女边吃奶边做爰视频| 91久久精品国产一区二区成人| 亚洲av免费高清在线观看| 久久人人爽人人片av| 精品99又大又爽又粗少妇毛片| 中文在线观看免费www的网站| 欧美人与善性xxx| 精品一区二区三区人妻视频| 黄片wwwwww| 狂野欧美激情性xxxx在线观看| 能在线免费看毛片的网站| 国产一级毛片在线| 99热精品在线国产| 国产毛片a区久久久久| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄 | 亚洲精品粉嫩美女一区| 日韩强制内射视频| 插阴视频在线观看视频| 晚上一个人看的免费电影| 成人一区二区视频在线观看| 99热6这里只有精品| 亚洲久久久久久中文字幕| 欧美潮喷喷水| 少妇高潮的动态图| 国内精品美女久久久久久| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 六月丁香七月| 中文字幕精品亚洲无线码一区| 十八禁国产超污无遮挡网站| 国产精品不卡视频一区二区| 国内精品美女久久久久久| 草草在线视频免费看| 色哟哟·www| 老司机影院成人| 国产精品久久久久久久久免| 看片在线看免费视频| 免费观看在线日韩| 久久精品久久久久久噜噜老黄 | 乱人视频在线观看| 男人和女人高潮做爰伦理| 桃色一区二区三区在线观看| 成人欧美大片| 免费观看在线日韩| 亚洲欧美日韩无卡精品| 国产成人福利小说| 久久久久九九精品影院| 久久久久久久久久久丰满| 真实男女啪啪啪动态图| 天天一区二区日本电影三级| 亚洲精品久久久久久婷婷小说 | 蜜臀久久99精品久久宅男| 波多野结衣高清作品| 亚洲国产精品成人综合色| 成年免费大片在线观看| 国产在线精品亚洲第一网站| 亚洲国产精品合色在线| 亚洲自拍偷在线| 深爱激情五月婷婷| 51国产日韩欧美| 日韩在线高清观看一区二区三区| 两个人的视频大全免费| 午夜a级毛片| 超碰av人人做人人爽久久| 人妻少妇偷人精品九色| 一边摸一边抽搐一进一小说| 啦啦啦啦在线视频资源| 麻豆成人av视频| 亚洲真实伦在线观看| 色综合站精品国产| 国产精品久久久久久精品电影小说 | 日韩成人伦理影院| 我的老师免费观看完整版| 亚洲av成人av| 亚洲最大成人手机在线| 国产 一区 欧美 日韩| 小说图片视频综合网站| 久久精品国产自在天天线| 两个人视频免费观看高清| 美女高潮的动态| 国产亚洲精品av在线| 此物有八面人人有两片| 国产精品国产三级国产av玫瑰| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 午夜免费男女啪啪视频观看| 悠悠久久av| 美女国产视频在线观看| 国产精品久久久久久av不卡| 嘟嘟电影网在线观看| 尾随美女入室| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久| 男人的好看免费观看在线视频| 成年av动漫网址| 岛国毛片在线播放| avwww免费| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色| av在线亚洲专区| 自拍偷自拍亚洲精品老妇| 我要搜黄色片| 免费看av在线观看网站| 亚洲,欧美,日韩| 日本五十路高清| 青春草亚洲视频在线观看| 国产麻豆成人av免费视频| 天堂网av新在线| 永久网站在线| 中文精品一卡2卡3卡4更新| 午夜精品在线福利| 久久人妻av系列| 你懂的网址亚洲精品在线观看 | 91aial.com中文字幕在线观看| 一级毛片久久久久久久久女| 麻豆乱淫一区二区| kizo精华| 人人妻人人澡欧美一区二区| av在线天堂中文字幕| 国产日本99.免费观看| 赤兔流量卡办理| 村上凉子中文字幕在线| 一级二级三级毛片免费看| 欧美3d第一页| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 一级毛片电影观看 | 乱人视频在线观看| 夜夜夜夜夜久久久久| 久久精品国产亚洲av涩爱 | 男人狂女人下面高潮的视频| 免费看光身美女| 亚洲精品成人久久久久久| а√天堂www在线а√下载| 特大巨黑吊av在线直播| 网址你懂的国产日韩在线| www.色视频.com| 美女cb高潮喷水在线观看| 国产色婷婷99| av在线蜜桃| 99在线人妻在线中文字幕| 亚洲欧美中文字幕日韩二区| av专区在线播放| 国产高潮美女av| 欧美一区二区国产精品久久精品| 国产日本99.免费观看| 国产成人freesex在线| avwww免费| 欧美xxxx黑人xx丫x性爽| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 成年女人永久免费观看视频| 最近的中文字幕免费完整| 97超碰精品成人国产| 91午夜精品亚洲一区二区三区| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看| 日本与韩国留学比较| 两个人视频免费观看高清| 国产久久久一区二区三区| 日本黄大片高清| 久久人人爽人人爽人人片va| 六月丁香七月| 亚洲三级黄色毛片| 久久欧美精品欧美久久欧美| 18禁在线播放成人免费| 九九爱精品视频在线观看| 国产精品久久久久久久电影| 久久久久久久久大av| 能在线免费观看的黄片| kizo精华| 少妇人妻一区二区三区视频| 欧美xxxx黑人xx丫x性爽| 国产色婷婷99| 91aial.com中文字幕在线观看| 男女视频在线观看网站免费| 老女人水多毛片| 亚洲人成网站在线播放欧美日韩| 亚洲自偷自拍三级| 午夜爱爱视频在线播放| 赤兔流量卡办理| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 国产一区亚洲一区在线观看| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 国产亚洲5aaaaa淫片| 狠狠狠狠99中文字幕| 99久久人妻综合| 成人特级黄色片久久久久久久| 精品免费久久久久久久清纯| 校园春色视频在线观看| av天堂中文字幕网| 长腿黑丝高跟| 亚洲av免费高清在线观看| 看黄色毛片网站| 国产亚洲5aaaaa淫片| 两个人视频免费观看高清| av黄色大香蕉| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 女同久久另类99精品国产91| 欧美一区二区国产精品久久精品| 亚洲av不卡在线观看| 在线天堂最新版资源| 国产一区二区亚洲精品在线观看| 久久人人爽人人片av| 尾随美女入室| 午夜a级毛片| 毛片女人毛片| 国产亚洲精品av在线| 欧美bdsm另类| 美女cb高潮喷水在线观看| 在线国产一区二区在线| 看非洲黑人一级黄片| 最后的刺客免费高清国语| 小蜜桃在线观看免费完整版高清| eeuss影院久久| 国产精华一区二区三区| 成人欧美大片| www日本黄色视频网| 日本欧美国产在线视频| 免费av观看视频| 欧美日韩精品成人综合77777| 欧美成人一区二区免费高清观看| 精品久久久久久久人妻蜜臀av| 3wmmmm亚洲av在线观看| 毛片女人毛片| 久久久久久久久久成人| 久久久久久久久大av| 最近2019中文字幕mv第一页| 特级一级黄色大片| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 国产成人freesex在线| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 大香蕉久久网| 亚洲熟妇中文字幕五十中出| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久九九精品二区国产| 中国国产av一级| av黄色大香蕉| 欧美日本亚洲视频在线播放| 能在线免费看毛片的网站| 欧美变态另类bdsm刘玥| 精品国产三级普通话版| 国产麻豆成人av免费视频| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 国产亚洲av片在线观看秒播厂 | 欧美xxxx黑人xx丫x性爽| 亚洲丝袜综合中文字幕| 热99在线观看视频| 在线免费观看不下载黄p国产| 变态另类成人亚洲欧美熟女| 91久久精品国产一区二区三区| 又爽又黄a免费视频| 欧美日韩在线观看h| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看| АⅤ资源中文在线天堂| 国产精品蜜桃在线观看 | АⅤ资源中文在线天堂| 国产69精品久久久久777片| 亚洲成人av在线免费| 偷拍熟女少妇极品色| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 午夜激情欧美在线| 99视频精品全部免费 在线| 一夜夜www| 国产欧美日韩精品一区二区| 午夜a级毛片| 久久精品国产亚洲网站| 全区人妻精品视频| av视频在线观看入口| 国产成人午夜福利电影在线观看| 色综合亚洲欧美另类图片| 晚上一个人看的免费电影| 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 亚洲无线在线观看| 又黄又爽又刺激的免费视频.| 国产不卡一卡二| 99热全是精品| 亚洲中文字幕一区二区三区有码在线看| 日日摸夜夜添夜夜爱| 亚洲精华国产精华液的使用体验 | 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 老司机影院成人| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 精品人妻一区二区三区麻豆| 神马国产精品三级电影在线观看| 久久久色成人| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 国产精品av视频在线免费观看| 欧美色欧美亚洲另类二区| 精品一区二区三区人妻视频| 一级毛片aaaaaa免费看小| 久久久精品大字幕| av免费观看日本| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在 | 一区福利在线观看| 夜夜夜夜夜久久久久| 91午夜精品亚洲一区二区三区| 午夜免费激情av| 大香蕉久久网| 搡老妇女老女人老熟妇| 看片在线看免费视频| 天堂√8在线中文| 中文在线观看免费www的网站| 欧美bdsm另类| 成年免费大片在线观看| 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 熟女电影av网| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 精品久久久久久久久av| 男女那种视频在线观看| 一区福利在线观看| 欧美成人精品欧美一级黄| 蜜臀久久99精品久久宅男| 日韩亚洲欧美综合| 99视频精品全部免费 在线| 欧美成人a在线观看| 久久鲁丝午夜福利片| 美女xxoo啪啪120秒动态图| 99精品在免费线老司机午夜| 亚洲18禁久久av| 丝袜喷水一区| 国产精品,欧美在线| 亚洲久久久久久中文字幕| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 国产亚洲5aaaaa淫片| 秋霞在线观看毛片| 日本免费一区二区三区高清不卡| 久久国内精品自在自线图片| 黄色日韩在线| 日日干狠狠操夜夜爽| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 在线播放无遮挡| 丰满乱子伦码专区| 欧美最黄视频在线播放免费| 波多野结衣高清作品| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 精品99又大又爽又粗少妇毛片| 国产三级在线视频| 日韩一区二区三区影片| 久久欧美精品欧美久久欧美| 亚洲欧美日韩高清专用| 精品熟女少妇av免费看| 午夜免费激情av| 在线天堂最新版资源| 国产成人影院久久av| 亚洲成人av在线免费| 午夜福利在线观看吧| 亚洲av二区三区四区| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 搞女人的毛片| 免费看美女性在线毛片视频| 麻豆成人av视频| 超碰av人人做人人爽久久| 亚洲,欧美,日韩| 一个人免费在线观看电影| 亚洲性久久影院| 少妇裸体淫交视频免费看高清| 欧美+日韩+精品| 欧美日韩乱码在线| 国内精品一区二区在线观看| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 老熟妇乱子伦视频在线观看| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 久久6这里有精品| 国产精品.久久久| 日日摸夜夜添夜夜爱| 国产黄片美女视频| 欧美一区二区亚洲| 久久久久久久久久成人| 狠狠狠狠99中文字幕| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 国产老妇女一区| 男插女下体视频免费在线播放| 插逼视频在线观看| 午夜精品在线福利| ponron亚洲| 热99re8久久精品国产| 日日啪夜夜撸| 欧美丝袜亚洲另类| 国产精品综合久久久久久久免费| 久99久视频精品免费| 欧美+亚洲+日韩+国产| 99热全是精品| 日韩欧美精品v在线| 午夜精品国产一区二区电影 | 日日啪夜夜撸| 色视频www国产| av国产免费在线观看| 啦啦啦啦在线视频资源| 中文欧美无线码| 中文字幕免费在线视频6| www.色视频.com| 精品久久久久久久久久免费视频| 国产精品人妻久久久影院| 成人综合一区亚洲| 麻豆国产97在线/欧美| 久久久久免费精品人妻一区二区| 一级毛片久久久久久久久女| 亚洲最大成人中文| 六月丁香七月| 高清午夜精品一区二区三区 | 亚洲一区二区三区色噜噜| 成人av在线播放网站| 免费看a级黄色片| 国产v大片淫在线免费观看| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 国产亚洲91精品色在线| 亚洲丝袜综合中文字幕| 久久久久久大精品| 天天一区二区日本电影三级| 天天躁日日操中文字幕| 永久网站在线| 亚洲欧美中文字幕日韩二区| 欧美又色又爽又黄视频| 免费看av在线观看网站| 国产一区二区在线观看日韩| 日本三级黄在线观看| 国产精品一及| 国产欧美日韩精品一区二区| 欧美一区二区亚洲| 伦理电影大哥的女人| 亚洲欧美清纯卡通| 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 久久精品影院6| 91精品一卡2卡3卡4卡| 久久6这里有精品| 国产亚洲精品久久久久久毛片| 精品一区二区三区视频在线| av天堂在线播放| 色视频www国产| 久久这里只有精品中国| 国产色爽女视频免费观看| 97在线视频观看| 熟妇人妻久久中文字幕3abv| 久久韩国三级中文字幕| 午夜福利在线观看免费完整高清在 |