• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-sure Flows Associated with Vector Fields of Low Regularity?

    2014-06-04 06:50:18SiyanXUHuaZHANG

    Siyan XU Hua ZHANG

    1 Introduction

    One of the fundamental problems of the theory of dynamical systems concerns the existence and uniqueness of a global flowUtgenerated by a vector fieldX.To be precise,consider the following integral equation:

    whereXis a measurable vector field on some topological vector space equipped with a positive Radon measureμon its Borelσ-algebras.The problem was first treated by Cruzeiro[3–4]and she established the existence of a flow on the Wiener space associated to a general vector field valued in the Cameron-Martin space,under exponential integrability of the vector field as well as its gradient and divergence.Yun[14–15]refined the almost-sure existence to the quasi-sure existence offlows on the Wiener space associated to weakly differentiable vector fields.It was shown in[14]that ifμis the Wiener measure on an abstract Wiener space andXis a vector field taking values in the Cameron-Martin spaceHofμ,belonging to the Sobolev classoverμand satisfying the exponential integrability condition expLp(μ)for allp>1,whereH?nis then-fold tensor product ofH,then there exists a solution{Ut}for all initial values except in an(r,p)-polar set for allr≥2 andp>1.We call this(r,p)-quasi-sure existence for allr≥2 andp>1.

    Peters[11]obtained the almost-sure existence under some weaker conditions where only onefold differentiability ofXwas required.Therefore,we expect that this situation can be refined to(1,p)-quasi-sure existence for anyp>1.Unfortunately,the method used by Yun[14]is associated with the Ornstein-Uhlenbeck semigroup which acts on the Banach-valued functional.Since only one-fold differentiability is required,we can not use this method associated with the Ornstein-Uhlenbeck semigroup to give the(1,p)-quasi-sure existence for anyp>1 through the procedure(see[14]).In fact,it is well-known that there is no relation between the derivative operator and the Ornstein-Uhlenbeck operator acting on Banach-valued functionals due to the lack of Meyer inequality;moreover,the fractional order Ornstein-Uhlenbeck operator is not easy to deal with.Consequently,we must take another way to construct a solutionUt(x)associated to a vector field on the Wiener space for all initial values except in a(1,p)-polar set for anyp>1.After the establishment of(1,p)-quasi-sure existence for anyp>1,we can also obtain the(1,p)-quasi-sure flow property for anyp>1 and the equivalence of capacities under the transformations of the Wiener space induced by the solution.

    The results in the present paper extend the previous results in[14–15]in the following way.First of all,we will consider the vector whichis the sum of a skew-adjoint operator not necessarily bounded and a non-linear part.This situation is equivalent to considering a nonlinear perturbation of a semigroup of rotations.Secondly,the condition onXonly requires one-fold differentiability.

    This paper is organized as follows.In Section 2,we recall some elements in the Malliavin calculus and deal with the capacity theory of the Sobolev spaceIn the last part of Section 2,we recall some results in[11]for later use.Our main work is in Section 3:We prove the(1,p)-quasi-sure existence of the solutions associated with the integral equations for anyp>1,and get the(1,p)-quasi-sure flow property of the solutions for anyp>1.At the end of Section 3,we also prove the equivalence of capacities under the transformations of the Wiener space induced by the solutions,which refines the property of mutual absolute continuity.

    2 Preliminaries

    2.1 Derivatives and Sobolev spaces

    Now let us recall and fix some notations and notions.Let(B,H,μ)be an abstract Wiener space introduced by Gross[6],where

    (1)

    (2)His a real,separable Hilbert space densely and continuously imbedded inBwith the inner product

    (3)μis the standard Gaussian measure,i.e.,the Borel probability measure onBsuch that

    whereis a natural pairing ofandB.

    We refer to[10](see also[7])for the background in the Malliavin calculus.In the following we fix an orthonormal basis{hi;i≥1}ofHwithhi∈B?for alli≥1.LetGbe a separable Hilbert space.AG-valued functionalFis called a cylindrical if there existsN,M≥1,andsuch that

    We denote by Cylin(W,G)the space ofG-valued cylindrical functions.ForF∈Cylin(W,G),we define

    where

    For anyp>1,we can define the seminorm on Cylin(W,G)as

    Now for anyp>1,we defineas the completion of a Cylin(W,G)with respect to the normIfG=,we simply writeand Cylin(W).Furthermore,a Gaussian divergence operatorδ(X)can be defined as the adjoint inL2(B,G)of the gradient alongH:

    Letbe an increasing sequence of a finite dimensional subspace ofB?,such that the projectionstrongly.We denote byμnthe Gaussian measure onVnassociated to the restriction of the inner producttoVn.Also denote by theσ-algebra consisting of cylindrical sets based onVn.Obviously,is a filtration of subσ-algebras ofwhereis aσ-algebra generated byThe Ornstein-Uhlenbeck semigroupTεonBis defined by the Mehler formula

    This semigroup provides us with smooth approximations of a vector fieldX.

    Definition 2.1For X∈L(B,H),the finite dimensional approximations of Xw.r.t.are defined as

    whereis a sequence of positive numbers converging to zero.

    The following results are due to G.Peters[11].

    Proposition 2.1Let1

    2.2 Capacity theory on Wiener spaces

    We fixp>1.Given an open setOinB,its(1,p)-capacity is defined by

    and for any subsetA?B,its(1,p)-capacity is defined by

    IfC1,p(A)=0,thenAis called a(1,p)-polar set.If some properties hold except on a(1,p)-polar set,then we say that it holds(1,p)-quasi-everywhere.A subsetAwill be called 1-slim ifC1,p(A)=0 for anyp>1.We also say that it holds 1-quasi-everywhere if some properties hold except on a 1-slim set.

    For anyH-valued Wiener functionalf:B→H,iffor anyε>0,there exists an open setOwithC1,p(O)<εsuch thatf:BO→His continuous,then we call thisH-valued Wiener functional(1,p)-quasi-continuous.AnH-valued Wiener functionalfis said to possess a(1,p)-quasi-continuous modificationif among the equivalence classes ofμ-measurable functions off,we can choose a(1,p)-quasi-continuous functionAnH-valued Wiener functionalfis said to be 1-quasi-continuous if it is(1,p)-quasi-continuous for allp>1.

    We note that the following property holds for Sobolev spaces on an abstract Wiener space:

    By Meyer inequality,we can get the equivalence between Sobolev spacesWp1(B,H)andFp1(B,H),whichis defined through the Ornstein-Uhlenbeck operator.Then it has been proved by Shigekawa[13](see also Denis[5])that anyfadmits a(1,p)-quasi-continuous modification and this is denoted byef,and the following Chebyshev type inequality holds:

    Moreover,we can get a capacity version of Kolmogorov’s criterion for path continuity.We refer the readers to Shigekawa[13]for a proof.

    Theorem 2.1Let X={X(t),t∈D}be an H-valued process on a domain D ofdandp>1.Suppose that X(t)∈Further,suppose that there exist constants α>0andc>0such that for all(s,t)∈D×D,

    Then X(t)admits a(1,p)-quasi-continuous modification(t)for each t∈D,and for(1,p)-quasi-every x∈B,the sample paths of(t)are continuous.

    2.3 Anticipating flows on the Wiener space

    Now we turn to the integral equation on the Wiener space and recall some results related to this article.We denote by(H,H)the Banach space of a linear continuous operatorL:H→Hequipped with the norm

    We also define a nice strongly continuous semigroup onHas follows.

    Definition 2.2A strongly continuous semigroup Qtof linear operators on H is said to benice if there exists a measurable normand a constant CTsuch that

    Proposition 2.2 summarizes the results of Peters in[11].

    Proposition 2.2Letbe a vector field on B,Qtbe a nice stronglycontinuous semigroup of a unitary operator on H,and:B→B denote the measurablelinear extension of Qtto B.Suppose that the vector field X satisfies the following conditions:

    Then there exists a solution Ut(x)of the integral equation

    for all t∈.

    Also,the image of Gaussian measureμunder Uthas the Radon-Nikodym density

    and for T>0,there existandsuch that

    The solution Utenjoys the crude flow property,i.e.,for every s∈there exists a set Es?B such thatμ(Es)=1and

    Remark 2.1The measurable linear extensionalways exists and preserves the Gaussian measureμ(see[8]).As in[11,Section 4],under the condition thatQtis nice,can be considered as a(possibly unbounded)linear operator onBwith a domain inoffull measure,wheredoes not depend ont.Sinceis a linear operator and isH-differentiable,we obtainx∈B,for eacht∈.

    The strategy for proving this proposition is to find a solution to approximate integral equations

    whereare approximations ofXwhich are defined as in Definition 2.1,and then to show that the limitexistsμ-a.e.inx∈Band prove the theorem.More details of the proof can be found in[11].

    We give the following result from[11]which will be used later.

    Proposition 2.3For T>0,we can choose pT>1and constants C(pT,T),that areindependent of n,such that the finite dimensional flowis a Radon-Nikodym derivative thatsatisfies

    Also,for each s∈there exists a set Essuch thatμ(Es)=1and

    3 1-Quasi-sure Analysis of Integral Equations on the Wiener Space

    We now give the main result concerning the 1-quasi-sure flows associated with a vector field of low regularity.

    Theorem 3.1Letbe a vector field on B,Qtbe a nice strongly continuoussemigroup of a unitary operators on H,anddenote the measurable linear extensionof Qtto B.Further,let the vector field X fulfill the following conditions:

    Then we can choose a1-quasi-continuous modificationof X(x)defined everywhere on B,and we can construct Ut(x),t∈Rand x∈B,satisfying the following integral equation:

    for all t∈.

    Moreover,the solution Uthas the1-quasi-sure flow property,i.e.,for all s∈,

    for all t∈.

    Finally,the mapping x→Ut(x)preserves the class of1-slims set for all t∈.

    Remark 3.1Thanks to the following lemma which shows that bounded continuous operators fromBtoHare of the Hilbert-Schmidt class when restricted toH,our results also hold under exponential integrability assumptions expfor allp>1.Hence our results refine the almost-sure existence in[11]to 1-quasi-sure existence.

    Lemma 3.1(see[2,Theorem 3.5.10])Let(B,H,μ)be an abstract Wiener space,and then one can find an orthonormal basis{en}in H such that

    We also need the following lemma(see[1]),and for the convenience of the readers,we include the proof.

    Lemma 3.2Let DX(x)∈(H,H)be a linear continuous operator,and then we have

    with C depending only on B andμ.

    ProofBy the above lemma,we can find a complete orthonormal systemofHsuch that

    The rest of this article is devoted to proving Theorem 3.1.For convenience,we fixedT>0.If we obtain the desired results,then sinceT>0 is arbitrary,the results can also be extended to the case whent∈.

    3.1 Existence

    We divide the proof of existence into four steps.As before,we defineXnasXn=PVn?whereis a sequence of positive numbers converging to zero.

    Step 1First we note that ifVt(x)solves the integral equation:

    thensolves the original equation(3.1).By the results in[11],we can deduce thatVt(x)∈H.Therefore,we can use the theory of the Malliavin calculus and the capacity version of Kolmogorov’s criterion to investigate the 1-quasi-sure property.

    Step 2We introduce the following process parameterized by[0,1]×[0,T]:

    wheresolves the following approximating integral equation:

    We have the following proposition.

    Proposition 3.1Z(s,t)has a1-quasi-continuous modificationfor each(s,t)∈[0,1]×[0,T].Moreover,the sample paths ofare continuous for1-quasi-every x∈B.

    To prove this proposition,we need some lemmas.The following lemma can be found in[11].

    Lemma 3.3For all p>1,we have

    We also need the following simple lemma.

    Lemma 3.4For all p>1,we have

    ProofSince

    we have

    Therefore,

    By Gronwall’s lemma,

    Thus using Proposition 2.3,we have

    wherepTis as in Proposition 2.3 andBy the assumptions of Theorem 3.1 we can conclude that

    The following two lemmas will play a crucial role.

    Lemma 3.5For all p>1,we have

    ProofSince

    and

    we put

    We have

    For fixedt,0≤t≤T,we have

    Then by Gronwall’s lemma,

    By Jensen’s inequality

    Thus

    Note that by the assumptions of Theorem 3.1,we have

    whereis as in Proposition 2.2 and=1,and

    Thus it remains to show that

    Since

    for the second term in(3.3)we have

    whereis as in Proposition 2.2 andThe first term in(3.3)is handled as follows.First by[11,Section 7],taking a subsequence if necessary we obtain that there exists a subsetA∈Bsuch thatμ(A)=1,andx∈A.Thus from the smoothness ofDXn,we know that

    Using Egoroff’s theorem,for everyε>0,there exists a measurable subsetKεsuch thatconverges touniformly onKε.Thus we have

    Sinceconverges touniformly onKε,the first part in(3.4)converges to zero asntends to infinity.The second part is dealt with as follows:

    wherepTis as in Proposition 2.3 and=1,andis as in Proposition 2.2 and=1.Thus we have

    Lemma 3.6For any t,s∈[0,T]and all p>1,we have

    ProofSince

    then from the assumptions of Theorem 3.1,Proposition 2.3 and Lemma 3.4,we deduce that

    Proof of Proposition 3.1First by Lemma 3.3,we have

    Therefore,extracting a subsequence still denoted by{n},we have

    On the other hand,together with the assumptions of Theorem 3.1 and Proposition 2.3,we have

    wherepTis as in Proposition 2.3 andThen from inequalities(3.5)–(3.6),taking further subsequence if necessary,for allp>1,we have

    Hence we can takeplarge enough such that

    for someε>0 and(s1,s2)∈[0,1]×[0,1],(t1,t2)∈[0,T]×[0,T].

    It remains to show that for somep,we have

    for someε>0 and(s1,s2)∈[0,1]×[0,1],(t1,t2)∈[0,T]×[0,T].

    By Lemmas 3.5–3.6,taking further subsequence if necessary,we obtain

    Then by the same procedure we can get that

    for someε>0 and(s1,s2)∈[0,1]×[0,1],(t1,t2)∈[0,T]×[0,T].

    Therefore,the conclusion follows from Proposition 2.1.

    We deduce from this proposition immediately the following proposition.

    Proposition 3.2For each t∈[0,T],andhave a1-quasi-continuous modifica-tionand,respectively.

    Proposition 3.3There exists a1-slim set A such thatfor alland all t∈[0,T].

    Step 3Sincewe can take a 1-quasi-continuous modificationofXby

    Then for fixeds,there exists a subsequence still denoted by{n}such thatconverges to1-quasi-everyx∈Band the limit is 1-quasi-continuous.Repeating the same argument as in Lemma 3.3 and Lemma 3.5,we can deduce the following lemma.

    Lemma 3.7For all p>1,

    We denote

    and

    By Lemma 3.7,for fixedtwe have

    Then we can deduce thatis a Cauchy sequence inand therefore,we can take a subsequencesuch that for anyε>0,there exists a closed setAwithconverges toFt(x)uniformly inx∈A.Thus we can deduce thatis 1-quasi-continuous.Therefore for fixedt∈[0,T],we have

    and the limit is 1-quasi-continuous.

    However,this is not our purpose because for differents∈[0,T]we have different 1-slim sets.Thus we still need to show that there exists a common setAwithC1,p(A)=0 for anyp>1,such that for allFor this purpose,we need the following lemma.

    Lemma 3.8For any s,t∈[0,T]and all p>1,taking further subsequence if necessary,we have

    ProofThe proof of the first formula can be seen in[11].The proof of the other formulas is just a repetition of Lemma 3.5 and Lemma 3.6.

    Hence using the same skills,we have the following proposition.

    Proposition 3.4For each t∈[0,T],Ft(x)has a1-quasi-continuous modification

    Proposition 3.5There exist a1-slim set A such thatfor alland t∈[0,T].

    Though we obtainasntends to infinity for 1-quasi-everyx∈B,we don’t know the expression ofeFt(x).For this,we proceed as follows.By(3.7),we know that for eacht∈[0,T],there exists a 1-slim setAtsuch that for allHowever,bothandhave continuous sample paths,and hence there exists a common 1-slim setAsuch that for alldsfor allt∈.

    Therefore,we conclude that there exists a subsequence still denoted by{n}and a 1-slim setA,such that

    for allx∈Acand allt∈[0,T].

    Step 4We first note that by Peters[11]there exists a solutionVn(x)satisfying the following integral equation:

    whereμ(A0)=1.Thus by Proposition 3.2,there exists a 1-quasi-continuous modificationand

    SinceQt:H→Hleaves the subspaceVninvariant,from(3.9),we knowThe fact that in finite dimensions the embeddingforp>ngenerates the implication:IfthenAis empty.This implies thatis a continuous modification of

    For anyy∈B,there exists a sequenceconverging toy.Sinceis continuous,converges toashconverges to infinity.By Proposition 2.1,we know thatareC∞cylindrical functionals based on the subspaceVn.Then together with the factifx∈A0,we have

    Therefore we have

    and this implies thatexists for allx∈Band satisfies

    As in Step 3,we see that there is a subsetA1withC1,p(A1)=0 for anyp>1,such that for all

    Proposition 3.3 implies that there exists a subsetA2withC1,p(A2)=0 for anyp>1,such that for alland allThus combining this with(3.10),for allwithfor anyp>1,we have

    Hence(x)satisfies the integral equation(3.2)for 1-quasi-everyx∈Band for allt∈.Thensatisfies the following integral equation:

    and for allt∈,and the 1-quasi-sure existence is established.

    3.2 Quasi-sure flow property

    Now we show that the solutionhas the 1-quasi-sure flow property,i.e.,for eachs∈it satisfies

    for 1-quasi-everyx∈Band for allt∈.

    First we need the following lemma.

    Lemma 3.9For every s∈R,we have that for all p>1,

    ProofSincewe have

    Also we have

    Thus by Lemma 3.5 we have

    wherepTis as in Proposition 2.3 andand the lemma established.

    Proposition 3.6The solutionconstructed in Subsection3.1enjoys the1-quasi-sureflow properties,i.e.,for every s∈,it satisfies

    and for all t∈.

    ProofWe denote byUt(x)the solution constructed by Peters[11].First note that by Proposition 3.2is 1-quasi-continuous.Then,is also 1-quasi-continuous andUt(x)=for almost-everyx∈B.By the almost-everywhere flow property ofUt(x),we havefor almost-everyx∈B.Butis 1-quasi-continuous and hence,if we can show thatis 1-quasi-continuous,we havefor 1-quasi-everyx∈B.

    By Lemma 3.9,is a Cauchy sequence inand therefore,we can take a subsequencesuch that for anyε>0,there exists a closed setAwithandconverges touniformly inx∈A.Hence from the smoothness of the solutionand 1-quasi-continuous ofwe can deduce thatis 1-quasicontinuous.

    3.3 Equivalence of capacities

    Letbe the solution constructed in Subsection 3.1.

    Lemma 3.10For any1

    for all

    ProofCombining Proposition 2.3 with Lemma 3.4,we obtain

    wherepTis as in Proposition 2.3,Thus we have

    for some constantC.Therefore,the proofis completed if we prove thatconverges to

    Since

    we can prove that

    by the same method as in the proof of Lemma 3.5.

    To show the equivalence,we need another lemma which has been proved by Yun[15].

    Lemma 3.11There exists an increasing sequenceof compact sets such that forall p>1,

    andthe restriction ofto Fn,is a homeomorphism.

    With the above preparations,now we can show the equivalence of capacities between a setAinBandUt(A).

    Proposition 3.7For10and C2>0such that

    ProofBy Lemma 3.11,there exists an increasing sequenceof compact sets such thatis a homeomorphism.LetObe an open set inB.ThenO∩Fnis open inFnandis open inThus there exists an open setO′inBsuch that

    We can show that

    andis an open set.Then we have

    By Lemma 3.10,we have

    Therefore,for an open setOinB,for some constantC1.Then for an arbitrary setA?B,it is easy to show

    We note that for an arbitrary setA,

    Thus we can easily get the first inequality of(3.11).

    Corollary 3.1The flowconstructed in Theorem3.1preserves the class of1-slimsets,that is,if A?B is a1-slim set,thenis also a1-slim set for every t∈.

    AcknowledgementThe authors would like to thank the referees for their careful reading of this manuscript.

    [1]Ambrosio,L.and Figalli,A.,On flows associated to Sobolev vector fields in Wiener space:an approachà la Di Perna-Lions,J.Funct.Anal.,256(1),2009,179–214.

    [2]Bogachev,V.I.,Gaussian Measures,Mathematical Suverys and Monographs,62,American Mathematical Society,Providence,RI,1998.

    [3]Cruzeiro,A.B.,équations différentielles sur l’espace de Wiener et formules de Cameron-Martin nonlinéaires,J.Funct.Anal.,54,1983,206–227.

    [4]Cruzeiro,A.B.,Unicité de solutions d’équations différentielles sur l’espace de Wiener,J.Funct.Anal.,58,1984,335–347.

    [5]Denis,L.,Quasi-sure analysis related to sub-Markovian semi-group,Potential Anal.,6,1997,289–311.

    [6]Gross,L.,Abstract Wiener spaces,in“Proc.Fifth Berkeley Sympos.Math.Statist.and Prob.”,University of California Press,Berkeley,CA,1(1),1965,31–42.

    [7]Huang,Z.Y.and Yan,J.A.,Introduction to Infinite Dimensional Stochastic Analysis,Monographs in Pure and Appl.Mathematics,Chinese Academic Press,Beijing,37,1997(in Chinese).

    [8]Kusuoka,S.,Analysis on Wiener space.I.Nonlinear maps,J.Funct.Anal.,98,1998,122–168.

    [9]Malliavin,P.and Nualart,D.,Quasi-sure analysis and Stratonovich anticipative stochastic differential equations,Probab.Theory Relat.Fields,78,1993,45–55.

    [10]Malliavin,P.,Stochastic Analysis,Grund.Math.Wissen.,313,Springer-Verlag,Berlin,1997.

    [11]Peters,G.,Anticipating flows on the Wiener space generated by vector fields of low regularity,J.Funct.Anal.,142,1996,129–192.

    [12]Ren,J.G.,Analyse quasi-s?ure deséquations différentielles stochastiques,Bull.Sci.Math.II.Sér.,114,1990,187–213.

    [13]Shigekawa,I.,Sobolev spaces of Banach valued functions associated with a Markov processes,Probab.Theory Relat.Fields,99,1994,425–441.

    [14]Yun,Y.S.,The quasi-sure existence of solutions for differential equations on Wiener space,J.Kyoto.Univ.,34(4),1994,767–796.

    [15]Yun,Y.S.,A quasi-sure flow property and the equivalence of capacities for differential equations on the Wiener space,J.Funct.Anal.,137,1996,381–393.

    男女床上黄色一级片免费看| 国产区一区二久久| av有码第一页| 在线永久观看黄色视频| 丝瓜视频免费看黄片| 曰老女人黄片| 国产在视频线精品| xxxhd国产人妻xxx| 亚洲精品国产一区二区精华液| 国产欧美日韩综合在线一区二区| 国产黄色免费在线视频| 满18在线观看网站| 久久中文字幕一级| 他把我摸到了高潮在线观看 | 日韩三级视频一区二区三区| 男女无遮挡免费网站观看| 18禁观看日本| 欧美日韩黄片免| 国产精品一区二区精品视频观看| 欧美人与性动交α欧美软件| 国产成人av激情在线播放| 亚洲欧洲精品一区二区精品久久久| 首页视频小说图片口味搜索| 国产精品秋霞免费鲁丝片| 亚洲七黄色美女视频| 在线天堂中文资源库| 国产精品二区激情视频| 1024香蕉在线观看| avwww免费| 精品视频人人做人人爽| 久久久国产欧美日韩av| 老熟女久久久| 日韩中文字幕欧美一区二区| 国产精品久久久久成人av| 99精品在免费线老司机午夜| 免费在线观看日本一区| 大型黄色视频在线免费观看| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一出视频| 欧美乱码精品一区二区三区| 一级毛片女人18水好多| 天堂8中文在线网| 91老司机精品| 一级毛片女人18水好多| 人人澡人人妻人| 国产一区二区 视频在线| 777米奇影视久久| 国产单亲对白刺激| 9色porny在线观看| av国产精品久久久久影院| 青青草视频在线视频观看| 欧美久久黑人一区二区| 午夜免费鲁丝| 日日夜夜操网爽| 国产成人精品久久二区二区免费| 啦啦啦视频在线资源免费观看| 亚洲欧美日韩高清在线视频 | 午夜福利欧美成人| 涩涩av久久男人的天堂| 国产日韩欧美亚洲二区| 精品亚洲成a人片在线观看| 波多野结衣av一区二区av| 日韩精品免费视频一区二区三区| 欧美av亚洲av综合av国产av| 亚洲美女黄片视频| 国产成人系列免费观看| 国产又爽黄色视频| 午夜福利欧美成人| 一区二区日韩欧美中文字幕| 日韩精品免费视频一区二区三区| 国产免费av片在线观看野外av| 欧美午夜高清在线| 欧美午夜高清在线| 美女高潮到喷水免费观看| 捣出白浆h1v1| 免费在线观看完整版高清| 欧美黄色片欧美黄色片| 啦啦啦 在线观看视频| 亚洲熟妇熟女久久| 成人亚洲精品一区在线观看| 亚洲性夜色夜夜综合| 午夜福利在线免费观看网站| 91av网站免费观看| 狠狠狠狠99中文字幕| 亚洲国产欧美一区二区综合| 久久久久久久久久久久大奶| 麻豆av在线久日| 大香蕉久久成人网| 亚洲色图 男人天堂 中文字幕| 欧美日韩视频精品一区| 美女主播在线视频| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 精品国产一区二区久久| 成人黄色视频免费在线看| 99热国产这里只有精品6| 99久久国产精品久久久| 两人在一起打扑克的视频| 日韩大片免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 成人黄色视频免费在线看| 制服诱惑二区| 亚洲天堂av无毛| 在线av久久热| 精品午夜福利视频在线观看一区 | 精品高清国产在线一区| av电影中文网址| 日日爽夜夜爽网站| 免费久久久久久久精品成人欧美视频| 亚洲avbb在线观看| 国产成人免费观看mmmm| 免费人妻精品一区二区三区视频| 亚洲中文av在线| 老汉色av国产亚洲站长工具| 亚洲久久久国产精品| 国产一区二区三区在线臀色熟女 | 国产成人精品久久二区二区免费| 一本综合久久免费| 欧美精品啪啪一区二区三区| 国产精品98久久久久久宅男小说| 女同久久另类99精品国产91| 亚洲国产欧美日韩在线播放| 亚洲全国av大片| 日本欧美视频一区| 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 99国产精品免费福利视频| 国产欧美亚洲国产| 日本a在线网址| 免费看十八禁软件| 最黄视频免费看| 久久久久视频综合| 91大片在线观看| 99香蕉大伊视频| 一级片免费观看大全| 超色免费av| 日韩大片免费观看网站| 久久久久国产一级毛片高清牌| av一本久久久久| 久久青草综合色| 亚洲自偷自拍图片 自拍| 欧美日韩av久久| 亚洲国产成人一精品久久久| 涩涩av久久男人的天堂| 在线永久观看黄色视频| 国产三级黄色录像| 国产成人精品久久二区二区91| 国产精品成人在线| 国产区一区二久久| 搡老乐熟女国产| 亚洲精品av麻豆狂野| 欧美性长视频在线观看| 亚洲五月色婷婷综合| av天堂在线播放| 亚洲视频免费观看视频| 国产成人精品在线电影| 国产黄色免费在线视频| 日本一区二区免费在线视频| 一级片'在线观看视频| 精品一区二区三区av网在线观看 | 超碰97精品在线观看| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 深夜精品福利| 国产精品自产拍在线观看55亚洲 | 久久中文字幕一级| 一区二区三区精品91| aaaaa片日本免费| 国产片内射在线| 午夜日韩欧美国产| 午夜激情av网站| 精品国产亚洲在线| 99re在线观看精品视频| 久热这里只有精品99| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 高清黄色对白视频在线免费看| 国产黄频视频在线观看| 亚洲国产av新网站| 欧美中文综合在线视频| 国产成人av激情在线播放| 大片免费播放器 马上看| 老司机亚洲免费影院| 另类精品久久| 少妇粗大呻吟视频| 精品人妻1区二区| 巨乳人妻的诱惑在线观看| 国产91精品成人一区二区三区 | 夫妻午夜视频| 9191精品国产免费久久| 一级黄色大片毛片| 老熟女久久久| 人妻一区二区av| 肉色欧美久久久久久久蜜桃| 免费人妻精品一区二区三区视频| 热99re8久久精品国产| 午夜久久久在线观看| 成人精品一区二区免费| 一级a爱视频在线免费观看| 老熟女久久久| 宅男免费午夜| 国产精品自产拍在线观看55亚洲 | 在线观看免费视频网站a站| 亚洲成av片中文字幕在线观看| 亚洲精品中文字幕一二三四区 | 在线观看免费视频日本深夜| 纯流量卡能插随身wifi吗| 久久久久久人人人人人| 日本av手机在线免费观看| a级毛片在线看网站| 日韩免费高清中文字幕av| 性高湖久久久久久久久免费观看| www.精华液| 美女扒开内裤让男人捅视频| 天堂8中文在线网| 成年人午夜在线观看视频| 超碰97精品在线观看| 国产精品久久久av美女十八| 99re6热这里在线精品视频| 18禁美女被吸乳视频| 99精品久久久久人妻精品| 久久久精品94久久精品| 不卡av一区二区三区| 超碰97精品在线观看| 成年动漫av网址| 亚洲人成77777在线视频| 中亚洲国语对白在线视频| 在线观看免费午夜福利视频| 正在播放国产对白刺激| 搡老熟女国产l中国老女人| 悠悠久久av| 热99久久久久精品小说推荐| 狠狠婷婷综合久久久久久88av| 在线观看免费午夜福利视频| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| 三上悠亚av全集在线观看| h视频一区二区三区| 午夜福利,免费看| 99精品欧美一区二区三区四区| 在线看a的网站| 午夜老司机福利片| 精品国产乱子伦一区二区三区| 曰老女人黄片| 在线观看人妻少妇| 一二三四社区在线视频社区8| 电影成人av| 国产亚洲欧美精品永久| 色综合婷婷激情| 蜜桃国产av成人99| 国产av一区二区精品久久| 性色av乱码一区二区三区2| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡人人爽人人夜夜| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 精品第一国产精品| 麻豆成人av在线观看| 18禁观看日本| av视频免费观看在线观看| 叶爱在线成人免费视频播放| 成人黄色视频免费在线看| 欧美成人免费av一区二区三区 | 老鸭窝网址在线观看| 国内毛片毛片毛片毛片毛片| cao死你这个sao货| 一进一出抽搐动态| 怎么达到女性高潮| 变态另类成人亚洲欧美熟女 | 乱人伦中国视频| 国产高清激情床上av| 久久中文字幕人妻熟女| 三级毛片av免费| xxxhd国产人妻xxx| 另类精品久久| 国产又爽黄色视频| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久av网站| 最新的欧美精品一区二区| av片东京热男人的天堂| xxxhd国产人妻xxx| 777久久人妻少妇嫩草av网站| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 亚洲精品自拍成人| 国产成人欧美在线观看 | 亚洲欧洲日产国产| 久久青草综合色| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网| 精品少妇黑人巨大在线播放| a在线观看视频网站| 亚洲国产中文字幕在线视频| 免费日韩欧美在线观看| 午夜免费成人在线视频| 久久精品人人爽人人爽视色| tocl精华| 人人妻人人添人人爽欧美一区卜| 建设人人有责人人尽责人人享有的| 国产精品免费一区二区三区在线 | 欧美黑人精品巨大| 夜夜爽天天搞| 色尼玛亚洲综合影院| 欧美 亚洲 国产 日韩一| 老熟女久久久| 国产av精品麻豆| bbb黄色大片| 男男h啪啪无遮挡| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 久久久国产成人免费| 真人做人爱边吃奶动态| 国产欧美日韩一区二区三区在线| 岛国毛片在线播放| 欧美日韩视频精品一区| 一级毛片女人18水好多| 国产高清视频在线播放一区| 国产精品九九99| 国产av又大| 一级毛片女人18水好多| 成人av一区二区三区在线看| 国产在线视频一区二区| 99riav亚洲国产免费| av国产精品久久久久影院| 少妇粗大呻吟视频| 亚洲精品国产精品久久久不卡| 视频区图区小说| 日韩免费高清中文字幕av| 美女视频免费永久观看网站| 国产一卡二卡三卡精品| 国产精品偷伦视频观看了| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 免费不卡黄色视频| 美女国产高潮福利片在线看| 国产精品国产av在线观看| 久久天躁狠狠躁夜夜2o2o| 日本一区二区免费在线视频| 精品高清国产在线一区| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 亚洲欧洲日产国产| 亚洲熟女毛片儿| 99国产精品免费福利视频| 国产欧美日韩一区二区精品| 精品国产国语对白av| 国产日韩欧美亚洲二区| 91av网站免费观看| 午夜激情久久久久久久| 国产精品98久久久久久宅男小说| 国产一卡二卡三卡精品| 青草久久国产| 亚洲精品av麻豆狂野| 午夜精品国产一区二区电影| 国产三级黄色录像| 美女主播在线视频| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 日韩欧美免费精品| 午夜激情久久久久久久| 久热爱精品视频在线9| 99re6热这里在线精品视频| 国产成人av教育| 亚洲午夜理论影院| 午夜福利欧美成人| 两性夫妻黄色片| 日日爽夜夜爽网站| 嫩草影视91久久| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| 精品一区二区三区视频在线观看免费 | 国产野战对白在线观看| 免费女性裸体啪啪无遮挡网站| 欧美另类亚洲清纯唯美| 少妇 在线观看| 亚洲av美国av| 三级毛片av免费| a级毛片黄视频| 欧美激情 高清一区二区三区| 别揉我奶头~嗯~啊~动态视频| 精品高清国产在线一区| 精品国产一区二区三区四区第35| av超薄肉色丝袜交足视频| 青青草视频在线视频观看| 久久久精品区二区三区| 成人免费观看视频高清| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 国产在线视频一区二区| 成人国产av品久久久| 国产欧美日韩一区二区三区在线| 俄罗斯特黄特色一大片| 国产精品欧美亚洲77777| 18禁观看日本| 亚洲欧美一区二区三区黑人| 国产高清国产精品国产三级| 日韩欧美国产一区二区入口| 一夜夜www| 欧美精品av麻豆av| 18禁观看日本| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 999久久久国产精品视频| 免费人妻精品一区二区三区视频| 黄色怎么调成土黄色| 女人被躁到高潮嗷嗷叫费观| 99精国产麻豆久久婷婷| av网站在线播放免费| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久| 日韩免费av在线播放| 精品免费久久久久久久清纯 | 成人18禁在线播放| 久久精品亚洲熟妇少妇任你| 高清视频免费观看一区二区| 两人在一起打扑克的视频| 亚洲精品成人av观看孕妇| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 91字幕亚洲| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 日本av免费视频播放| av电影中文网址| 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 国产在线免费精品| 国产激情久久老熟女| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 日日夜夜操网爽| 美女午夜性视频免费| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品一区二区www | 日韩欧美一区二区三区在线观看 | 国产一区二区三区综合在线观看| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费 | 十八禁网站免费在线| 一本色道久久久久久精品综合| 美女福利国产在线| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 亚洲国产av新网站| 国产精品熟女久久久久浪| 成人18禁高潮啪啪吃奶动态图| 丰满人妻熟妇乱又伦精品不卡| 女人高潮潮喷娇喘18禁视频| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 国产精品一区二区在线观看99| 91大片在线观看| 国产真人三级小视频在线观看| 中文字幕人妻熟女乱码| 亚洲一区中文字幕在线| 日韩视频一区二区在线观看| 国产在线精品亚洲第一网站| 国产日韩欧美在线精品| 人人妻人人澡人人看| 亚洲三区欧美一区| 日韩欧美免费精品| 亚洲 欧美一区二区三区| avwww免费| e午夜精品久久久久久久| 欧美日韩亚洲高清精品| 久久精品成人免费网站| 无限看片的www在线观看| 亚洲熟妇熟女久久| 国产精品一区二区在线不卡| videos熟女内射| 别揉我奶头~嗯~啊~动态视频| 一级黄色大片毛片| 午夜精品国产一区二区电影| 亚洲黑人精品在线| 精品久久久精品久久久| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 国产精品影院久久| 青草久久国产| 一二三四在线观看免费中文在| 51午夜福利影视在线观看| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| 免费av中文字幕在线| 天天影视国产精品| av片东京热男人的天堂| 18禁观看日本| 两性夫妻黄色片| 精品少妇一区二区三区视频日本电影| 狠狠婷婷综合久久久久久88av| 中文字幕高清在线视频| 99re6热这里在线精品视频| svipshipincom国产片| 极品少妇高潮喷水抽搐| 久久久国产成人免费| 中文亚洲av片在线观看爽 | 午夜福利在线免费观看网站| 久久影院123| 人妻 亚洲 视频| 大码成人一级视频| 国产在线一区二区三区精| 香蕉国产在线看| 一边摸一边做爽爽视频免费| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 19禁男女啪啪无遮挡网站| 国产精品 欧美亚洲| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 999久久久精品免费观看国产| 一边摸一边抽搐一进一小说 | 曰老女人黄片| 久久人妻熟女aⅴ| 国产成+人综合+亚洲专区| 女人久久www免费人成看片| 国产一区二区 视频在线| 热99久久久久精品小说推荐| 国产精品久久电影中文字幕 | 他把我摸到了高潮在线观看 | 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| 久热爱精品视频在线9| 亚洲国产精品一区二区三区在线| 一本综合久久免费| 亚洲av电影在线进入| 在线观看免费高清a一片| 啦啦啦 在线观看视频| 淫妇啪啪啪对白视频| 午夜福利,免费看| 午夜成年电影在线免费观看| 精品视频人人做人人爽| 日韩中文字幕视频在线看片| 国产在线一区二区三区精| 18禁黄网站禁片午夜丰满| 老司机靠b影院| 欧美日韩视频精品一区| 日本黄色视频三级网站网址 | 久久亚洲真实| 曰老女人黄片| 久久久久久久久久久久大奶| 色婷婷久久久亚洲欧美| 欧美日韩亚洲综合一区二区三区_| 精品国产国语对白av| 女人久久www免费人成看片| 免费在线观看日本一区| 99国产精品免费福利视频| 50天的宝宝边吃奶边哭怎么回事| 欧美黄色片欧美黄色片| 国产精品一区二区免费欧美| 一本一本久久a久久精品综合妖精| 欧美精品av麻豆av| 国产精品国产av在线观看| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 一级毛片电影观看| 国产主播在线观看一区二区| www.精华液| 国产精品久久久人人做人人爽| 婷婷丁香在线五月| av在线播放免费不卡| 成人三级做爰电影| 精品一品国产午夜福利视频| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 成人18禁在线播放| 蜜桃在线观看..| 黄色a级毛片大全视频| 亚洲男人天堂网一区| 天堂8中文在线网| 国产在线免费精品| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 亚洲专区字幕在线| 最近最新中文字幕大全免费视频| 老熟妇乱子伦视频在线观看| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品成人在线| 国产高清视频在线播放一区| 日本wwww免费看| 无遮挡黄片免费观看| av网站在线播放免费| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 91精品三级在线观看| 成人精品一区二区免费| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 电影成人av| 午夜激情av网站| 黄片大片在线免费观看| 亚洲国产成人一精品久久久| 操美女的视频在线观看| 精品一区二区三卡| 国产高清videossex| 99国产精品免费福利视频| 热re99久久国产66热| 中文字幕人妻丝袜制服| 精品福利观看| 久久九九热精品免费| 亚洲全国av大片| 一本—道久久a久久精品蜜桃钙片| 成年动漫av网址| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 日韩中文字幕欧美一区二区| 国产精品美女特级片免费视频播放器 |