• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Limit Cycles Bifurcating from a Quadratic Reversible Lotka-Volterra System with a Center and Three Saddles?

    2014-06-04 06:50:12KuilinWUHaihuaLIANG

    Kuilin WU Haihua LIANG

    1 Introduction

    The second part of Hilbert’s 16th problem(see[6])asks about the maximum number and the location of limit cycles of a planar polynomial vector fields of degreen.If the quadratic centers belong to the Hamiltonian class,then the study of the number of limit cycles bifurcating from a period annulus or annuli(i.e.,the weak Hilbert’s 16th problem forn=2)is finished,and the study of the number of limit cycles bifurcating from a singular loop,or from infinity is partially finished(see[3–4,8–9,12,15,17]and the references therein).If the quadratic centers belong to the reversible class(and do not belong to the Hamiltonian class),then the study seems very difficult,and the known results are very limited.

    A weaker version of this problem is proposed by Arnold(see[1])to study the zeros of Abelian integrals,that is the weak Hilbert’s 16th problem or infinitesimal Hilbert’s 16th problem.The problem is related to in the following way.Consider the perturbed system of a Hamiltonian vector fieldXε=XH+εY,where

    A closed connected component of a level curve{H=h}is denoted byγhand called an oval ofH.The Abelian integral is

    Therefore the number ofisolated zeros ofI(h),counted with multiplicities,provides an upper bound for the number of ovals of{H=h}that generates limit cycles ofXεforε≈0(see[5,12]for details).If the unperturbed system is integrable and non-Hamiltonian,then one has to consider pseudo-Abelian integrals(see[1]for details).As far as we know,most of the papers investigate the Hamiltonian centers and few papers study the non-Hamiltonian centers(see[3,8,17]for instance).Recently,Zhao[16]proved that the cyclicity of the period annulus ofQ4is less than or equal to five.

    It is well-known by Iliev[8]that any quadratic polynomial reversible Lotka-Volterra system can be written in the complex form

    or in the real form

    wherebis a real parameter.Arnold[2]declared that the in finitesimal problem for system(1.1)is still open.For the system(1.1)of genus one,Gautier et al.[4]classify this kind of systems into 6 cases(rlv1)–(rlv6).Until now,[7,11]have studied the cases(rlv1)and(rlv2),respectively,and[5,14]have studied the cases(rlv3)and(rlv4),respectively.

    The cyclicity of system(1.1)under quadratic perturbations forb=0,,was studied in[3–4],respectively.In this paper we study the caseb=,that is,the number of limit cycles bifurcates from the period annulus of the following quadratic reversible Lotka-Volterra system:

    System(1.2)has a first integral

    with the integrating factor

    Note that system(1.1)forb=can be reduced to system(1.2)by using a linear transformation.There is a period annulus surrounding the center at(x,y)=(0,0)bounded by three straight lines

    corresponding toThe intersection pointsandof the three straight lines are three saddles of systemTherefore,the period annulus can be expressed bywhere the periodic orbith}.

    The next result is a particular case of Theorem 3 in[8].For convenience,we state it in the present paper.

    Lemma 1.1The exact upper bound for the number of limit cycles produced by the period annulus of system(1.2)under quadratic perturbations is equal to the maximal number of zerosin(counting multiplicities)of the Abelian integral

    where a,b and c are arbitrary constant.

    The main result of this paper is the following theorems.

    Theorem 1.1The cyclicity of the period annulus of system(1.2)under quadratic perturbations is two.

    This paper is organized in the following way.In Section 2 we introduce the definitions and the notations that we shall use.In Section 3 we give the proof of Theorem 1.1 by applying Theorem B in[5].We shall rewrite the Abelian integral(1.3)as a linear combination of{I0(h),I1(h),I2(h)}and prove that(I0(h),I1(h),I2(h))forms an extended complete Chebychev system.Due to Theorem B in[5],we turn the problem of the number of zeros of the Abelian integral into a pure algebraic problem,namely,counting zeros of a polynomial.To solve the latter problem we shall use the notion of a resultant.The interested reader is referred to the appendix in[5]for details.

    2 The Definitions of Chebyshev Systems

    In order to prove the main results,some definitions and lemmas are needed.

    Definition 2.1Let f0(x),f1(x),···,fn?1(x)be analytic functions on an open interval L ofR.Then we have the following:

    (a)(f0(x),f1(x),···,fn?1(x))is a Chebyshev system(in short,T-system)on L if any nontrivial linear combination

    has at most n?1isolated zeros on L.

    (b)(f0(x),f1(x),···,fn?1(x))is a complete Chebyshev system(in short,CT-system)on L if(f0(x),f1(x),···,fk?1(x))is a T-system for all k=1,2,···,n.

    (c)(f0(x),f1(x),···,fn?1(x))is an extended complete Chebyshev system(in short,ECT-system)on L if,for all k=1,2,···,n,any nontrivial linear combination

    has at most k?1isolated zeros on L counted with multiplicities.

    It is clear that if(f0(x),f1(x),···,fn?1(x))is an ECT-system onL,then(f0(x),f1(x),···,fn?1(x))is a CT-system onL.However,the reverse implication is not true.Moreover,if(f0(x),f1(x),···,fn?1(x))is a T-system onL,andf(x)is an analytic function and has a constant sign onL,then(f(x)f0(x),f(x)f1(x),···,f(x)fn?1(x))is a T-system onL.

    Remark 2.1If(f0(x),f1(x),···,fn?1(x))is an ECT-system onL,then,for eachk=0,1,2,···,n?1,there exists a linear combination with exactlyksimple zeros onL(see[10,13]for instance).

    Definition 2.2Let f0(x),f1(x),···,fn?1(x)be analytic functions on an open interval L of.The Wronskian of(f0(x),f1(x),···,fn?1(x))at x∈L is given by

    The following result is well-known(see[10,13]for instance).

    Lemma 2.1The system(f0(x),f1(x),···,fn?1(x))is an ECT-system on L if and only if,for each k=1,2,···,n,

    3 Proof of Main Results

    Recall thatH(x,y)=A(x)+B(x)y2with

    It is clear thatH(x,y)has a local minimum at(x,y)=(0,0),B(x)>0 andA(x)have a local minimum atx=0.Denote the period ann(ulus ass)ociated to the center origin byand the projection ofon thex-axis byThen there exists a unique analytic involution functionσ(x),such thatfor allThe next result is a particular case of Theorem B in[5].For convenience,we state it in the present paper.

    Theorem 3.1(see[5])Let us consider the Abelian integrals

    where,for each h∈(0,h0),γhis the oval surrounding the origin inside the level curve{A(x)+B(x)y2=h}.Let σ be the involution associated to A(x)and we define

    Then(I0,I1,···,In?1)is an ECT-system on(0,h0)if s>n?2and(l0,l1,···,ln?1)is a CT-system on(0,xr).

    Recall that a mappingσis an involution ifσ?σ=Id andσ≠Id.An involutionσis a diffeomorphism with a unique fixed point.Noting thatli(x)=?li(σ(x)),we have that(l0,l1,···,ln?1)is a CT-system on(0,xr)if and only if(l0,l1,···,ln?1)is a CT-system on(xl,0).

    We rewrite the Abelian integral(1.3)asI(h)=aI0(h)+bI1(h)+cI2(h),where

    The following lemma,proved in[5],establishes a formula to change the integrand of an Abelian integral into other Abelian integrals that we want.

    Lemma 3.1(see[5])Let γhbe an oval inside the level curve{A(x)+B(x)y2=h},and consider a function F(x)such thatis analytic at x=0.Then,for any k∈N,

    where

    In what follows,we shall apply Theorem 3.1 to prove that(I0(h),I1(h),I2(h))is an ECT-system.By Lemma 3.1,it yields that

    However,we discover thatn=3 ands=1 in the integrand of(I0(h),I1(h),I2(h)),so that the conditions>n?2 is not fulfilled.Therefore we must takes=3 and apply Lemma 3.1 to overcome the shortcomings.Applying Lemma 3.1,we have that

    where

    Exactly in the same way we obtain

    where

    It is clear that(I0(h),I1(h),I2(h))is an ECT-system in the intervalif and only ifis an ECT-system in the interval

    Setting

    then

    Denote byσthe involution associated toA(x),i.e.,A(x)=A(σ(x)).In order to compute Wronskians,we setz=σ(x)and

    Thenli(x)=Li(x,z).We only need to prove that system(L0(x,z),L1(x,z),L0(x,z))is an ECT-system onOn account of

    it turns out thatz=σ(x)is defined by

    and

    We shall depend on Wolfram Mathematica to compute three Wronskians and the resultant between two polynomials to show the nonexistence of zeros of a polynomial on the interval.In the following,we show the following lemma.

    Lemma 3.2Systemis an ECT-system on the intervali.e.,systemis an ECT-system on the intervalwhere z is defined by(3.2).

    ProofBy Lemma 2.1,we split the proof into three cases to show that the three Wronskians have no zeros on

    First,note thatW[L0(x,z)]=L0(x,z).By the common denominator and the factorization,we have

    whereα0(x,z)is a polynomial of degree 15 in(x,z)with a very long expression.It follows from direct computations that the resultant with respect tozbetweenα0(x,z)andq(x,z)is(i.e.,eliminatingzfromα0(x,z)=0 andq(x,z)=0),where

    Note that=36,andhas a local minimum 35.0652 atx≈0.486258 on the interval.Therefore,α0(x,z)=0 andq(x,z)=0 have no common roots for any,which implies thatW[L0(x,z)]≠0 for anyorz∈(?1,0).

    Secondly,by the definition ofW[L0(x,z),L1(x,z)],it follows that

    whereα1(x,z)is a polynomial of degree 20 in(x,z)with a very long expression.It follows from direct computations that the resultant with respect tozbetweenα1(x,z)andq(x,z)is 131072(1+x)22(?1+2x)10ζ1(z),where

    By calculating,we have thatζ1(0)=2799360,=6561,andζ1(x)has a local minimum 6128.2996 atx≈0.487723 on the intervalTherefore,α1(x,z)=0 andq(x,z)=0 have no common roots on the interval,andW[L0(x,z),L1(x,z)]≠0 for any

    Finally,let us compute the third Wronskian and we have that

    whereα2(x,z)is a polynomial of degree 50 in(x,z)with a very long expression.The resultant with respect tozbetweenα2(x,z)andq(x,z)is 618475290624(1+x)37(?1+2x)19ζ2(x),where

    ζ2(0)=314424115200,=76527504,andhas a local minimum 7.07214×107atx≈0.490262 on the intervalHence,we can assert thatW[L0,L1,L2]≠0 for anyBy Lemma 2.1,the proof of the result is completed.

    Proof of Theorem 1.1By Lemma 1.1,Lemma 3.2 and Theorem 3.1,we obtain Theorem 1.1.

    Remark 3.1The proof depends on the symbolic computations by Wolfram mathematica and some very long expressions are omitted for the sake of briefness,while the derivative process can be done precisely.

    [1]Arnold,V.I.,Some unsolved problems in the theory of differential equations and mathematical physics,Russian Math.Surveys,44,1989,157–171.

    [2]Arnold,V.I.,Arnold’s Problems,Springer-Verlag,Berlin,2005.

    [3]Chicone,C.and Jacobs,M.,Bifurcation of limit cycles from quadratic isochronous,J.Differential Equations,91,1991,268–326.

    [4]Gautier,S.,Gavrilov,L.and Iliev,I.D.,Perturbations of quadratic centers of genus one,Discrete Contin.Dyn.Syst.,25,2009,511–535.

    [5]Grau,M.,Ma?osas,F.and Villadelprat,J.,A Chebyshev criterion for Abelian integrals,Trans.Amer.Math.Soc.,363,2011,109–129.

    [6]Hilbert,D.,Mathematische Problem(Lecture),Second Internat.Congress Math.Paris 1900,Nachr.Ges.Wiss.G¨ottingen Math.-Phys.Kl.,1900,253–297.

    [7]Iliev,I.D.,The cyclicity of the period annulus of the quadratic Hamiltonian triangle,J.Differential Equations,128,1996,309–326.

    [8]Iliev,I.D.,Perturbations of quadratic centers,Bull.Sci.Math.,122,1998,107–161.

    [9]Ilyashenko,Y.,Centennial history of Hilbert’s 16th problem,Bull.Amer.Math.Soc.,39,2002,301–354.

    [10]Karlin,S.and Studden,W.,TchebycheffSystems:With Applications in Analysis and Statistics,Interscience Publishers,New York,1966.

    [11]Li,C.and Llibre,J.,The cyclicity of period annulus of a quadratic reversible Lotka-Volterra system,Nonlinearity,22,2009,2971–2979.

    [12]Li,J.,Hilbert’s 16th problem and bifurcations of planar polynomial vector fields,Internat.J.Bifur.Chaos Appl.Sci.Engrg.,13,2003,47–106.

    [13]Marde?i?,P.,Chebyshev Systems and the Versal Unfolding of the Cusp of Ordern,Travaux en Cours,57,Hermann,Paris,1998.

    [14]Shao,Y.and Zhao,Y.,The cyclicity and period function of a class of quadratic reversible Lotka-Volterra system of genus one,J.Math.Anal.Appl.,377,2011,817–827.

    [15]Zhao,Y.and Zhang,Z.,Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians,J.Differential Equations,155,1999,73–88.

    [16]Zhao,Y.,On the number of limit cycles in quadratic perturbations of quadratic codimension-four centres,Nonlinearity,24,2011,2505–2522.

    [17]Zoladek,H.,Quadratic systems with centers and their perturbations,J.Differential Equations,109,1994,223–273.

    男男h啪啪无遮挡| 欧美成人午夜免费资源| 国产又色又爽无遮挡免| 在线观看av片永久免费下载| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品99久久久久久久久| 天天躁夜夜躁狠狠久久av| 一本—道久久a久久精品蜜桃钙片| 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区国产| a级一级毛片免费在线观看| 夜夜看夜夜爽夜夜摸| 亚洲伊人久久精品综合| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 国产黄频视频在线观看| 天美传媒精品一区二区| 国产精品伦人一区二区| 国产在线免费精品| 日本wwww免费看| 一二三四中文在线观看免费高清| 亚洲图色成人| 中文字幕人妻丝袜制服| 国产欧美另类精品又又久久亚洲欧美| 亚洲婷婷狠狠爱综合网| 日本91视频免费播放| av天堂中文字幕网| 桃花免费在线播放| 在现免费观看毛片| 日本91视频免费播放| 欧美日韩综合久久久久久| 日本wwww免费看| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 精品人妻偷拍中文字幕| 午夜日本视频在线| 如日韩欧美国产精品一区二区三区 | 国产一区有黄有色的免费视频| 国产高清不卡午夜福利| 男女啪啪激烈高潮av片| 成人毛片60女人毛片免费| 夫妻性生交免费视频一级片| 黄色日韩在线| 丰满人妻一区二区三区视频av| 丰满少妇做爰视频| 老女人水多毛片| 中文字幕人妻丝袜制服| av又黄又爽大尺度在线免费看| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 久久精品夜色国产| 欧美+日韩+精品| 国产黄频视频在线观看| 免费大片18禁| 九九爱精品视频在线观看| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 亚洲第一av免费看| av在线观看视频网站免费| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 亚洲精品一二三| 亚洲真实伦在线观看| 丰满迷人的少妇在线观看| 欧美3d第一页| h日本视频在线播放| 亚洲av成人精品一二三区| 午夜福利视频精品| 久久久久久久亚洲中文字幕| 一级,二级,三级黄色视频| 激情五月婷婷亚洲| 一级av片app| 伊人久久精品亚洲午夜| www.色视频.com| 午夜老司机福利剧场| 久久久国产欧美日韩av| 男人舔奶头视频| 亚洲av电影在线观看一区二区三区| 性色av一级| 十八禁网站网址无遮挡 | 中文字幕人妻熟人妻熟丝袜美| 精品国产露脸久久av麻豆| 一本—道久久a久久精品蜜桃钙片| 日本欧美国产在线视频| 赤兔流量卡办理| 最新的欧美精品一区二区| av天堂久久9| 欧美3d第一页| 色网站视频免费| 国产男人的电影天堂91| 乱系列少妇在线播放| 国产av一区二区精品久久| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区三区| 少妇熟女欧美另类| 黄色一级大片看看| 黑人高潮一二区| 中文乱码字字幕精品一区二区三区| 久久狼人影院| 少妇人妻一区二区三区视频| 一级毛片我不卡| 国产精品麻豆人妻色哟哟久久| 国产免费一级a男人的天堂| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 晚上一个人看的免费电影| 国产精品久久久久久精品电影小说| 在线亚洲精品国产二区图片欧美 | 久久精品久久精品一区二区三区| 亚洲精品日本国产第一区| 色视频www国产| 国产精品不卡视频一区二区| 亚洲真实伦在线观看| 国产亚洲最大av| 亚洲欧洲精品一区二区精品久久久 | 菩萨蛮人人尽说江南好唐韦庄| 3wmmmm亚洲av在线观看| 一级毛片电影观看| 国产片特级美女逼逼视频| 伊人久久国产一区二区| 内射极品少妇av片p| 日韩人妻高清精品专区| 一本色道久久久久久精品综合| 亚洲精品国产av成人精品| 国产色爽女视频免费观看| 全区人妻精品视频| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 国产成人精品久久久久久| 亚洲av.av天堂| 精品国产国语对白av| 中文字幕人妻熟人妻熟丝袜美| 日韩熟女老妇一区二区性免费视频| 亚洲av国产av综合av卡| 久久久久久久久大av| 亚洲精品色激情综合| 亚洲精品乱久久久久久| 国产免费一区二区三区四区乱码| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图 | 老司机亚洲免费影院| 在线观看一区二区三区激情| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 国产男女内射视频| 国产片特级美女逼逼视频| 国产淫语在线视频| 欧美区成人在线视频| 国内揄拍国产精品人妻在线| 国产精品女同一区二区软件| 久久人人爽人人片av| 日韩欧美一区视频在线观看 | 人人妻人人添人人爽欧美一区卜| 国产成人aa在线观看| 国产伦精品一区二区三区四那| 蜜臀久久99精品久久宅男| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 一边亲一边摸免费视频| 18禁在线无遮挡免费观看视频| 久久久久国产精品人妻一区二区| 国产成人精品一,二区| 插逼视频在线观看| 美女主播在线视频| 一级二级三级毛片免费看| 简卡轻食公司| 国产色爽女视频免费观看| 国产白丝娇喘喷水9色精品| 国产一区二区三区av在线| √禁漫天堂资源中文www| 国产免费一区二区三区四区乱码| 亚洲精品国产av蜜桃| 国产成人freesex在线| av在线观看视频网站免费| 噜噜噜噜噜久久久久久91| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区四那| 在线观看av片永久免费下载| 插阴视频在线观看视频| 亚洲在久久综合| 18禁裸乳无遮挡动漫免费视频| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 我要看日韩黄色一级片| 久久久久久久久久久丰满| 一级,二级,三级黄色视频| 美女福利国产在线| 伦精品一区二区三区| 国产精品国产三级国产av玫瑰| 免费黄色在线免费观看| 欧美三级亚洲精品| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院 | 波野结衣二区三区在线| 亚洲国产精品一区三区| 国产色婷婷99| 少妇人妻久久综合中文| 欧美3d第一页| 亚洲精品自拍成人| 久久国内精品自在自线图片| 久久久国产精品麻豆| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 国产黄色免费在线视频| 色婷婷久久久亚洲欧美| 国产精品一区二区在线观看99| 久久久精品94久久精品| 久久久久久久亚洲中文字幕| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 成人亚洲欧美一区二区av| 成人特级av手机在线观看| 99热这里只有精品一区| 国产真实伦视频高清在线观看| 在现免费观看毛片| 人体艺术视频欧美日本| 久久 成人 亚洲| 少妇的逼水好多| 女人精品久久久久毛片| 中文字幕制服av| 欧美xxⅹ黑人| 热re99久久国产66热| 少妇的逼水好多| 七月丁香在线播放| 在线亚洲精品国产二区图片欧美 | 国产亚洲91精品色在线| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 少妇人妻精品综合一区二区| 国产女主播在线喷水免费视频网站| 卡戴珊不雅视频在线播放| 国产精品国产av在线观看| 七月丁香在线播放| 亚洲精品乱码久久久v下载方式| 日日啪夜夜撸| 国产成人aa在线观看| 亚洲成人av在线免费| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 国产成人免费观看mmmm| 久久精品国产亚洲av天美| 亚洲真实伦在线观看| 男人和女人高潮做爰伦理| 国产精品.久久久| 国产高清国产精品国产三级| 婷婷色综合大香蕉| 秋霞在线观看毛片| 大陆偷拍与自拍| 观看美女的网站| 久久狼人影院| 大码成人一级视频| 丝袜喷水一区| 桃花免费在线播放| 亚洲国产精品国产精品| 最黄视频免费看| 少妇人妻精品综合一区二区| 亚洲av欧美aⅴ国产| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 嫩草影院新地址| 精品视频人人做人人爽| 777米奇影视久久| 亚洲精品乱码久久久v下载方式| 国产精品成人在线| 精品人妻熟女av久视频| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 美女内射精品一级片tv| 黄色一级大片看看| av在线播放精品| 午夜免费男女啪啪视频观看| 欧美另类一区| 成人综合一区亚洲| 国产精品人妻久久久影院| 亚洲不卡免费看| 亚洲精品日韩av片在线观看| 国产亚洲一区二区精品| 只有这里有精品99| 久久人人爽人人片av| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 精品少妇黑人巨大在线播放| 国产综合精华液| 99久久精品一区二区三区| 黑人高潮一二区| 国产在线一区二区三区精| 观看av在线不卡| 国产乱来视频区| 国产永久视频网站| 国产美女午夜福利| 欧美精品一区二区大全| 国产 精品1| 中文字幕人妻丝袜制服| 99久久精品国产国产毛片| 亚洲av二区三区四区| 久久精品久久精品一区二区三区| 伊人久久精品亚洲午夜| 91在线精品国自产拍蜜月| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 国产成人午夜福利电影在线观看| xxx大片免费视频| av黄色大香蕉| 日日撸夜夜添| 又爽又黄a免费视频| 人人妻人人澡人人看| 国产精品一区www在线观看| 亚洲性久久影院| 观看av在线不卡| 六月丁香七月| 97在线人人人人妻| 欧美精品一区二区大全| 国产综合精华液| 老女人水多毛片| 亚洲av中文av极速乱| 高清不卡的av网站| 欧美精品高潮呻吟av久久| 亚洲av中文av极速乱| 男男h啪啪无遮挡| 久久婷婷青草| 成人黄色视频免费在线看| 欧美日韩国产mv在线观看视频| av专区在线播放| 欧美bdsm另类| 国内精品宾馆在线| 尾随美女入室| 久久久久久久久大av| 麻豆乱淫一区二区| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品电影小说| 国产成人精品久久久久久| 春色校园在线视频观看| 日本黄大片高清| 美女cb高潮喷水在线观看| 亚洲成人av在线免费| 六月丁香七月| 亚洲av二区三区四区| 91精品伊人久久大香线蕉| 免费看光身美女| 校园人妻丝袜中文字幕| 欧美激情极品国产一区二区三区 | 免费av中文字幕在线| 日韩电影二区| 91久久精品国产一区二区三区| 成人午夜精彩视频在线观看| av天堂久久9| 日韩在线高清观看一区二区三区| 免费大片18禁| 人妻制服诱惑在线中文字幕| 毛片一级片免费看久久久久| 人体艺术视频欧美日本| av不卡在线播放| 久久人妻熟女aⅴ| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 热99国产精品久久久久久7| 欧美xxⅹ黑人| 水蜜桃什么品种好| 国产黄色免费在线视频| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线 | 精品一品国产午夜福利视频| 欧美另类一区| 人人妻人人看人人澡| 在线观看国产h片| a级片在线免费高清观看视频| 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| 丰满迷人的少妇在线观看| 国产毛片在线视频| 久久青草综合色| 一个人看视频在线观看www免费| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 六月丁香七月| 午夜福利在线观看免费完整高清在| 热99国产精品久久久久久7| 在线看a的网站| 欧美日韩av久久| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| 亚洲精品日韩在线中文字幕| 免费看日本二区| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 日本av免费视频播放| 欧美日韩亚洲高清精品| 极品人妻少妇av视频| 乱码一卡2卡4卡精品| 亚州av有码| 青春草视频在线免费观看| 欧美国产精品一级二级三级 | 精品国产国语对白av| 插逼视频在线观看| 久久久久精品性色| 亚洲真实伦在线观看| 免费看av在线观看网站| 搡女人真爽免费视频火全软件| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 国产伦理片在线播放av一区| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 国产在视频线精品| 国内少妇人妻偷人精品xxx网站| 亚洲精品第二区| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 五月玫瑰六月丁香| 久久久欧美国产精品| 欧美日韩视频高清一区二区三区二| 99国产精品免费福利视频| 高清不卡的av网站| 肉色欧美久久久久久久蜜桃| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品专区久久| 内地一区二区视频在线| 亚洲精品乱久久久久久| 在线观看免费视频网站a站| 亚洲精品国产色婷婷电影| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 日本免费在线观看一区| 亚洲欧美中文字幕日韩二区| 国产黄频视频在线观看| 亚洲不卡免费看| 亚洲自偷自拍三级| 国产精品人妻久久久久久| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 一本大道久久a久久精品| 欧美精品人与动牲交sv欧美| 成人二区视频| 桃花免费在线播放| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 在线观看www视频免费| 久久久久精品久久久久真实原创| 亚洲av成人精品一区久久| 欧美国产精品一级二级三级 | 久久国产亚洲av麻豆专区| 精品国产乱码久久久久久小说| 香蕉精品网在线| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 国产综合精华液| 人人妻人人澡人人爽人人夜夜| 99久国产av精品国产电影| 亚洲精品自拍成人| 久久久久久久国产电影| 777米奇影视久久| kizo精华| 亚洲成人手机| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 国产精品秋霞免费鲁丝片| 夜夜爽夜夜爽视频| 综合色丁香网| 一级毛片黄色毛片免费观看视频| 国产精品99久久99久久久不卡 | 一区二区三区四区激情视频| 精品国产露脸久久av麻豆| 水蜜桃什么品种好| 久久精品国产自在天天线| 涩涩av久久男人的天堂| 激情五月婷婷亚洲| 日韩熟女老妇一区二区性免费视频| 国内精品宾馆在线| 亚洲欧美精品专区久久| 中文在线观看免费www的网站| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 亚洲四区av| 只有这里有精品99| 精品人妻一区二区三区麻豆| a级毛片免费高清观看在线播放| 人妻制服诱惑在线中文字幕| 日本欧美国产在线视频| 91aial.com中文字幕在线观看| 伊人久久国产一区二区| 丰满乱子伦码专区| 亚洲经典国产精华液单| 99久国产av精品国产电影| 国产亚洲5aaaaa淫片| 久久精品国产a三级三级三级| 免费久久久久久久精品成人欧美视频 | 亚洲精品久久午夜乱码| 午夜福利在线观看免费完整高清在| 日韩一区二区三区影片| 美女国产视频在线观看| 蜜桃在线观看..| 国产成人免费无遮挡视频| 亚洲欧美精品自产自拍| 天堂俺去俺来也www色官网| 少妇人妻久久综合中文| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 国内少妇人妻偷人精品xxx网站| 少妇 在线观看| 男人舔奶头视频| 99热6这里只有精品| 久久热精品热| 亚洲欧美中文字幕日韩二区| 你懂的网址亚洲精品在线观看| 一本大道久久a久久精品| 国产极品天堂在线| 老熟女久久久| 日韩强制内射视频| 夫妻性生交免费视频一级片| 一级黄片播放器| www.色视频.com| 国产精品国产av在线观看| av卡一久久| 日韩一本色道免费dvd| 亚洲美女搞黄在线观看| 男女国产视频网站| 大陆偷拍与自拍| 日韩一区二区三区影片| 成人国产av品久久久| 亚洲第一区二区三区不卡| 国产亚洲一区二区精品| 久久久久视频综合| 不卡视频在线观看欧美| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 日日摸夜夜添夜夜爱| 国产女主播在线喷水免费视频网站| 晚上一个人看的免费电影| 久久人人爽人人爽人人片va| www.av在线官网国产| 国产精品久久久久久精品电影小说| 3wmmmm亚洲av在线观看| 一级毛片aaaaaa免费看小| 国产成人免费无遮挡视频| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| av天堂久久9| 高清午夜精品一区二区三区| 妹子高潮喷水视频| 又粗又硬又长又爽又黄的视频| 免费大片黄手机在线观看| 中文乱码字字幕精品一区二区三区| 最黄视频免费看| 久热这里只有精品99| 大片免费播放器 马上看| 婷婷色麻豆天堂久久| 97在线人人人人妻| 免费大片18禁| 三级国产精品欧美在线观看| 午夜精品国产一区二区电影| 欧美另类一区| 插逼视频在线观看| 国产一级毛片在线| 免费久久久久久久精品成人欧美视频 | 大香蕉97超碰在线| 欧美日韩精品成人综合77777| 亚洲丝袜综合中文字幕| 校园人妻丝袜中文字幕| 少妇高潮的动态图| 观看av在线不卡| 欧美日韩国产mv在线观看视频| www.av在线官网国产| 色视频在线一区二区三区| 另类亚洲欧美激情| 久久久久久久精品精品| 国产成人freesex在线| 亚洲高清免费不卡视频| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 男的添女的下面高潮视频| 国产中年淑女户外野战色| 欧美精品一区二区免费开放| 免费黄网站久久成人精品| 色吧在线观看| h视频一区二区三区| 噜噜噜噜噜久久久久久91| 成年人免费黄色播放视频 | 久久精品国产亚洲网站| 少妇被粗大猛烈的视频| 亚洲图色成人| 久久久国产一区二区| 久久av网站| 91精品伊人久久大香线蕉| 免费观看av网站的网址| 少妇人妻精品综合一区二区| 69精品国产乱码久久久| 中文字幕人妻熟人妻熟丝袜美| 日韩av免费高清视频| 欧美激情国产日韩精品一区| av国产久精品久网站免费入址| 交换朋友夫妻互换小说| 妹子高潮喷水视频| 久久久久久久久大av| 赤兔流量卡办理| 日日爽夜夜爽网站| 久久久亚洲精品成人影院| av在线老鸭窝| 毛片一级片免费看久久久久| 国产精品福利在线免费观看| 亚洲丝袜综合中文字幕|