閆培光,林榮勇,董瑞娟,張格霖,李會(huì)權(quán),黃詩盛
深圳大學(xué)激光工程重點(diǎn)實(shí)驗(yàn)室,深圳 518060
基于混合玻璃光纖中超連續(xù)譜產(chǎn)生的數(shù)值模擬
閆培光,林榮勇,董瑞娟,張格霖,李會(huì)權(quán),黃詩盛
深圳大學(xué)激光工程重點(diǎn)實(shí)驗(yàn)室,深圳 518060
設(shè)計(jì)一種三硫化二砷混合玻璃光纖 (As2S3-silica hybrid glass fiber,As2S3-silica HGF),通過調(diào)整纖芯直徑大小,在1 000~6 000 nm波長范圍內(nèi)對(duì)其色散特性進(jìn)行仿真分析.結(jié)果表明,當(dāng)纖芯直徑為1.2 μm時(shí),光纖有兩個(gè)零色散波長 (zero dispersion wavelength,ZDW),分別是1 450和2 870 nm,反常色散區(qū)覆蓋1 450~2 870 nm.用2 μm激光器泵浦光纖,通過改變泵浦激光的峰值功率和脈沖半極大寬度(full width at half maximum,F(xiàn)WHM),模擬分析了中紅外超連續(xù)譜 (mid-infrared supercontinuum,mid-IR SC)產(chǎn)生的特性.
光電子與激光技術(shù);中紅外超連續(xù)譜;三硫化二砷混合玻璃光纖;零色散點(diǎn);反常色散區(qū);峰值功率;半極大寬度
中紅外超連續(xù)譜 (mid-infrared supercontinuum,mid-IR SC)在諸多領(lǐng)域有著廣泛和重要應(yīng)用[1-3].由于中紅外光纖的軟化點(diǎn)太低,導(dǎo)致熔接點(diǎn)容易燒毀,不能充分利用泵浦功率,因此,如何實(shí)現(xiàn)高功率化和高相干性的SC輸出成為mid-IR SC研究的一個(gè)難點(diǎn).普通的中紅外光纖和中紅外光子晶體光纖(photonic crystal fiber,PCF),因使用的材質(zhì)是單一的軟玻璃,所以很難實(shí)現(xiàn)高功率化.文獻(xiàn)[4-8]指出,合適的色散設(shè)計(jì)可影響SC的產(chǎn)生,尤其是當(dāng)光纖有兩個(gè)零色散波長 (zero dispersion wavelength,ZDW)時(shí),由于在ZDW附近,滿足相位匹配條件的四波混頻的增益帶寬很大,所以孤子可放大正常色散區(qū)的色散波.總之,具有兩個(gè)或以上ZDW的非線性光纖更利于產(chǎn)生SC.近年來,對(duì)高功率摻銩光纖 (thulium-doped fiber,TDF)激光器的研究得到了快速發(fā)展,其輸出波長位于2 μm附近,非常適合做mid-IR SC的泵浦源.連續(xù)TDF激光器可實(shí)現(xiàn)1 kW的輸出[9].在脈沖TDF激光方面,采用調(diào)Q方式已實(shí)現(xiàn)了重復(fù)頻率為100 kHz,平均功率達(dá)28 W,單脈沖能量為 360 μJ的納秒脈沖輸出[10].采用鎖模方式也已實(shí)現(xiàn)了單脈沖能量為156 μJ,脈寬為780 fs,峰值功率為200 MW,平均功率為 15.6 W 的輸出[11-13].
2010年,Da等[14]將熔融的硫系玻璃注進(jìn)石英PCF的小氣孔中,制備出一種混合玻璃光纖 (hybrid glass fiber,HGF).該方法克服了拉制過程中兩種玻璃材料不兼容的問題,是一種制作纖芯-包層高折射率對(duì)比、高非線性的光波導(dǎo)方法,且能將傳光范圍有效拓展到 mid-IR.2011年,Granzow等[15]研究了在石英PCF包層小孔內(nèi)注入硫系玻璃所產(chǎn)生的光子帶隙光纖特性,并利用空芯熔石英光纖制備HGF[16],將熔融的硫系玻璃注入中間的氣孔中,氣孔直徑為1.6 μm,注入長度超過30 cm,并利用它產(chǎn)生了穩(wěn)定的SC.
本研究采用三硫化二砷 (As2S3)作為纖芯材料,以熔石英玻璃作包層材料設(shè)計(jì)HGF,通過調(diào)整HGF的纖芯直徑值優(yōu)化色散特性.實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),當(dāng)纖芯直徑為1.2 μm時(shí),2 μm波長位于光纖兩個(gè)ZDW的中間.通過改變2 μm激光器的峰值功率和脈沖半極大寬度 (full width at half maximum,F(xiàn)WHM),模擬 HGF纖芯直徑為1.2 μm時(shí),不同泵浦條件下SC的特性.
利用塞爾邁耶爾 (Sellmeier)公式可得到As2S3-silica HGF的有效折射率,若擬合系數(shù)為l,Ai和由文獻(xiàn)[17]得到,即
其中,λ為波長;n為對(duì)應(yīng)λ處的有效折射率.
色散參量 D[18]為
其中,c為真空中光速;λ為波長;neff為基模有效折射率,由全矢量有限元方法計(jì)算得到.
光纖中脈沖傳輸過程一般用廣義非線性薛定諤方 程 (generalized nonlinear Schr?dinger equation,GNLSE)來描述,其表達(dá)式如式(3).該方程可用分步傅立葉法和4階龍格庫塔法求解[19].
其中,z為傳輸距離;ω0為角頻率;t為延時(shí)系中的時(shí)間;t'<t;A(z,t)為慢變振幅;α為光纖的傳播損耗;βn為各階色散;γ為光纖的非線性系數(shù),且
其中,Aeff為基模有效面積;n2為非線性有效折射率.本研究 As2S3的 n2為 2.92 ×10-18m2/W[20-21].介質(zhì)的非線性響應(yīng)函數(shù)為
其中,等號(hào)右邊第1項(xiàng)和第2項(xiàng)分別表示瞬時(shí)的電子貢獻(xiàn)和延遲的拉曼貢獻(xiàn);fR為拉曼貢獻(xiàn),對(duì)于As2S3波導(dǎo),fR=0.11[21];δ(t)為 δ函數(shù);hR(t)為拉曼響應(yīng)函數(shù).
拉曼響應(yīng)函數(shù)的一個(gè)有用形式是
其中,拉曼周期τ1和τ2是調(diào)節(jié)參量,實(shí)際的拉曼增益譜可通過調(diào)節(jié)這兩個(gè)參量得到較好的擬合.對(duì)于 As2S3波導(dǎo),τ1=15.5 fs,τ2=230.5 fs[22].
本研究設(shè)計(jì)的As2S3-silica HGF包層Silica的折射率為1.45,纖芯是As2S3,包層直徑為125 μm,其折射率可由Sellmeier方程求得.As2S3和Silica的非線性有效折射率分別為2.92×10-18和2×10-20m2/W,較大的折射率差有利于將光限制在纖芯內(nèi).
通過數(shù)值模擬分析纖芯直徑大小對(duì)光纖色散的影響.圖1(a)顯示纖芯直徑從10.0 μm降到2.4 μm時(shí),色散曲線的變化.當(dāng)纖芯直徑逐漸減小時(shí),色散曲線逐漸向短波方向移動(dòng),色散曲線尾部逐漸上升.圖1(b)顯示纖芯直徑由 2.4 μm 降到 1.2 μm時(shí)色散曲線的變化.由圖1可見,當(dāng)纖芯直徑減小時(shí),色散曲線左移,整體上升,且反常色散區(qū)覆蓋的波長范圍漸減.當(dāng)d=1.2 μm時(shí),反常色散區(qū)覆蓋1 450~2 870 nm,其色散曲線頂點(diǎn)接近2 000 nm,非常適合激光波長為2 μm的TDF激光器泵浦[1].
下面通過模擬,探討用2 μm激光器,泵浦纖芯直徑為1.2 μm的光纖時(shí),不同泵浦峰值功率和FWHM對(duì)光纖mid-IR SC產(chǎn)生的影響.由計(jì)算得到,光纖的非線性系數(shù)為12 541 W-1/km.光纖的βn值 (計(jì)算到10階)見表1.
圖1 光纖包層直徑為125 μm時(shí),不同的纖芯直徑對(duì)應(yīng)的色散參量曲線變化Fig.1 The variety of dispersion curve with different core diameter at the fiber cladding diameter of 125 μm
表1 不同階數(shù)的色散Table 1 The different orders of dispersion
設(shè)置泵浦峰值功率為600 W,脈沖半極大寬度TFWHM=50 fs,泵浦波長為2 μm,并取傳播長度為1 cm.模擬所得SC的頻域演化圖和時(shí)域演化圖如圖2.由圖2(a)可見,光譜展寬覆蓋約3 500 nm.在光譜展寬初期 (<0.04 cm),其譜型呈明顯對(duì)稱性,而自傳播0.04 cm起,光譜驟然展寬.考慮到初始脈沖寬度,我們認(rèn)為初始展寬原因是自相位調(diào)制,因而初始光譜展寬具有對(duì)稱性.因泵浦處在反常色散區(qū)內(nèi),孤子產(chǎn)生分裂行為,這點(diǎn)可從圖2(b)中傳輸長度0.04 cm處得到驗(yàn)證.分裂后的孤子發(fā)生拉曼自頻移,同時(shí)在長波和短波區(qū)域孤子發(fā)射色散波,產(chǎn)生非孤子輻射.此光纖的兩個(gè)ZDW分別為1 450和2 870 nm,當(dāng)孤子靠近ZDW時(shí),由于非孤子輻射的頻譜反沖,孤子頻移停止,所以,光譜在兩個(gè)ZDW附近光強(qiáng)會(huì)迅速下降.泵浦波長離ZDW越遠(yuǎn),四波混頻效應(yīng)越弱,ZDW附近的光譜帶隙就越明顯.ZDW兩邊的脈沖群速度不同,造成ZDW附近存在光譜帶隙的原因[23].
圖2 超連續(xù)譜的演化圖Fig.2 The evolution diagram of SC
圖3展示了當(dāng)TFWHM=50 fs時(shí),不同泵浦峰值功率對(duì)光纖SC產(chǎn)生的影響.光纖長度為1 cm,泵浦波長為2 μm.當(dāng)泵浦峰值功率為200 W時(shí),由于自相位調(diào)制和孤子自頻移,在泵浦波長附近有一個(gè)較寬的頻譜展寬,在短波和長波區(qū)域都出現(xiàn)了切連科夫輻射的光譜,分別位于1 100和4 000 nm附近.當(dāng)泵浦功率為400 W時(shí),在兩個(gè)正常色散區(qū)域的色散波與中間的光譜被連接起來,SC的寬度接近4 000 nm.繼續(xù)增大泵浦峰值功率,光譜的展寬并不明顯,在ZDW附近的光譜帶隙出現(xiàn)更多光譜成分.
圖3 TFWHM=50 fs,頻域隨泵浦峰值功率變化的演化圖Fig.3 The diagram of the frequency domain evolution as the pump peak power changes at TFWHM=50 fs
圖4 泵浦峰值功率為300 W時(shí),頻域隨TFWHM變化的演化圖Fig.4 The diagram of the frequency domain evolution as TFWHMchanges at the pump peak power of 300 W
圖4展示了泵浦峰值功率為300 W時(shí),不同TFWHM對(duì)光纖SC產(chǎn)生的影響.當(dāng)TFWHM=50 fs時(shí),SC覆蓋范圍從1 500 nm展寬到4 500 nm.由于TFWHM增大時(shí),脈沖所對(duì)應(yīng)的孤子階數(shù)和總能量都提高,在高階色散作用下,脈沖發(fā)生分裂,分裂出更多的基態(tài)光孤子,進(jìn)而產(chǎn)生更強(qiáng)的切連科夫輻射,分別在短波和長波區(qū)域產(chǎn)生明顯的展寬.
本研究設(shè)計(jì)了一種As2S3-Silica HGF,通過調(diào)整纖芯直徑大小,對(duì)該光纖色散特性進(jìn)行模擬分析.通過改變2 μm泵浦源的峰值功率和FWHM,模擬并分析此泵浦源泵浦直徑為1.2 μm的纖芯時(shí),SC產(chǎn)生的特性.由于泵浦波長位于此光纖的反常色散區(qū),且在光纖兩個(gè)ZDW的中間,且離兩個(gè)ZDW都比較遠(yuǎn),因而二階色散很大,模擬得到了寬帶的SC.此光纖有望與摻銩光纖激光器結(jié)合起來,以期產(chǎn)生中紅外超連續(xù)譜.
/References:
[1]Price J H V,Monro T M,Ebendorff-Heidepriem H,et al.Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J].IEEE Journal of Selected Topics in Quantum Electronics,2007,13(3):738-749.
[2]Rolfe P.In vivo near-infrared spectroscopy[J].Annual Review of Biomedical Engineering,2000,2(1):715-754.
[3]Monnier J D.Optical interferometry in astronomy[J].Reports on Progress in Physics,2003,66(5):789-857.
[4]Genty G,Lehtonen M,Ludvigsen H,et al.Enhanced bandwidth of supercontinuum generated in microstructured fibers[J].Optics Express,2004,12(15):3471-3480.
[5]Hilligs?e K M,Andersen T V,Paulsen H N,et al.Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths [J].Optics Express,2004,12(6):1045-1054.
[6]Frosz M,F(xiàn)alk P,Bang O.The role of the second zerodispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength [J].Optics Express,2005,13(16):6181-6192.
[7]Ruan Shuangchen,Yan Peiguang,Guo Chunyu,et a1.Photonic crystal fiber supercontinuum source[J].Journal of Shenzhen University Science and Engineering,2011,28(4):295-301.(in Chinese)
阮雙琛,閆培光,郭春雨,等.光子晶體光纖超連續(xù)譜光源[J].深圳大學(xué)學(xué)報(bào)理工版,2011,28(4):295-301.
[8] Guo Chunyu,Lin Huaiqin,Ruan Shuangchen,et al.High-power all-fiber CW-Pumped supercontinuum source[J].Journal of Shenzhen University Science and Engineering,2013,30(4):423-427.(in Chinese)
郭春雨,林懷欽,阮雙琛,等.連續(xù)波泵浦的高功率全光纖化超連續(xù)譜光源 [J].深圳大學(xué)學(xué)報(bào)理工版,2013,30(4):423-427.
[9]Shah L,Sims R A,Kadwani P,et al.Integrated Tm:fiber MOPA with polarized output and narrow linewidth with 100 W average power[J].Optics Express,2012,20(18):20558-20563.
[10]Willis C C C,Shah L,Baudelet M,et al.High-energy Q-switched Tm3+-doped polarization maintaining silica fiber laser[C]//Proceeding on SPIE 7580,F(xiàn)iber Lasers VII:Technology,Systems,and Applications.San Francisco(USA):SPIE,2010,7580,758003-1-758003-6.
[11]Yang L M,Wan P,Protopopov V,et al.2 μm femtosecond fiber laser at low repetition rate and high pulse energy[J].Optics Express,2012,20(5):5683-5688.
[12]Wan P,Yang L M,Liu J.High pulse energy 2 μm femtosecond fiber laser[J].Optics Express,2013,21(2):1798-1803.
[13]Wan P,Yang L M,Liu J.156 micro-J ultrafast Thuliumdoped fiber laser[C]//Proceeding on SPIE 8601,F(xiàn)iber Lasers VII:Technology, Systems, and Applications.Francisco(USA):SPIE, 2013, 8601:860138-1-860138-7.
[14]Da N,Wondraczek L,Schmidt M A,et al.High indexcontrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices[J].Journal of Non-CrystallineSolids, 2010, 356(35/36):1829-1836.
[15]Granzow N,Uebel P,Schmidt M A,et al.Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers[J].Optics Letters,2011,36(13):2432-2434.
[16]Granzow N,Stark S P,Schmidt M A,et al.Supercontinuum generation in chalcogenide-silica step-index fibers[J].Optics Express,2011,19(21):21003-21010.
[17]Chaudhari C,Suzuki T,Ohishi Y.Design of zero chromatic dispersion chalcogenide As2S3glass nanofibers[J].Journal of Lightwave Technology,2009,27(12):2095-2099.
[18]Agrawal P G.Nonlinear fiber optics:third edition& applications of nonlinear fiber optics[M].Jia Dongfang,Yu Zhenhong,Tan Bin,et al,trans.Beijing:Publishing House of Elecronics Industry.(in Chinese).
Agrawal P G.非線性光纖光學(xué)原理及應(yīng)用[M].賈東方,余震虹,談 斌,等譯.北京:電子工業(yè)出版社.
[19]Hult J.A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers [J].Journal of Lightwave Technology,2007,25(12):3770-3775.
[20]Ta'Eed V,Baker N J,F(xiàn)u L B,et al.Ultrafast all-optical chalcogenide glass photonic circuits[J].Optics Express,2007,15(15):9205-9221.
[21]Lamont M R E,Luther-Davies B,Choi D Y,et al.Supercontinuum generation in dispersion engineered highly nonlinear(γ=10/W/m)As2S3chalcogenide planar waveguide[J].OpticsExpress,2008,16(19):14938-14944.
[22]Granzow N,Stark S P,Schmidt M A,et al.Supercontinuum generation in chalcogenide-silica step-index fibers[J].Optics Express,2011,19(21):21003-21010.
[23]Lehtonen M,Genty G,Ludvigsen H,et al.Supercontinuum generation in a highly birefringent microstructured fiber[J].Applied Physics Letters,2003,82(14):2197-2199.
2013-10-22;Revised:2014-03-29;
2014-04-06
Numerical simulation on supercontinuum generation in an As2S3-silica hybrid glass fiber
Yan Peiguang?,Lin Rongyong,Dong Ruijuan,Zhang Genlin,Li Huiquan,and Huang Shisheng
Shenzhen Key Laboratory of Laser Engineering,Shenzhen University 518060,P.R.China
A new As2S3-silica hybrid grass fiber was designed.The corresponding dispersion properties were realized by adjusting the fiber core diameter in the wavelength range from 1 000 nm to 6 000 nm.The simulation results have shown that two zero dispersion wavelengths could be achieved with a core diameter of 1.2 μm and the anomalous dispersion in this fiber design was from 1 450 nm to 2 870 nm.The characteristics of mid-infrared supercontinuum generation from this As2S3-silica hybrid grass fiber are analyzed by changing the pump pulse parameters,i.e.peak pump power and the full width at half maximum of the pulse at 2 μm wavelength.
optoelectronic and laser technology;mid-infrared supercontinuum;As2S3-silica hybrid grass fiber;zero dispersion wavelength;anomalous dispersion;peak power;full width at half maximum
TN 248
A
10.3724/SP.J.1249.2014.03293
Foundation:National Natural Science Foundation of China(61275144);Shenzhen Science and Technology Research Foundation for Basic Project(JCYJ20120613172042264)
?
Professor Yan Peiguang.E-mail:yanpg@szu.edu.cn
:Yan Peiguang,Lin Rongyong,Dong Ruijuan,et al.Numerical simulation on supercontinuum generation in an As2S3-silica hybrid glass fiber[J].Journal of Shenzhen University Science and Engineering,2014,31(3):293-298.(in Chinese)
國家自然科學(xué)基金資助項(xiàng)目 (61275144);深圳市基礎(chǔ)研究計(jì)劃資助項(xiàng)目 (JCYJ20120613172042264)
閆培光 (1977—),男 (漢族),山東省濰坊市人,深圳大學(xué)教授.E-mail:yanpg@szu.edu.cn
引 文:閆培光,林榮勇,董瑞娟,等.基于混合玻璃光纖中超連續(xù)譜產(chǎn)生的數(shù)值模擬[J].深圳大學(xué)學(xué)報(bào)理工版,2014,31(3):293-298.
【中文責(zé)編:英 子;英文責(zé)編:雨 辰】