楊君
摘 要:在傳統(tǒng)數(shù)學(xué)教學(xué)模式中大致上是依照著教師進(jìn)行知識(shí)講解舉例子,學(xué)習(xí)接受知識(shí)并依葫蘆畫(huà)瓢的進(jìn)行練習(xí),在課后完成相關(guān)知識(shí)的習(xí)題達(dá)到掌握和鞏固知識(shí)點(diǎn)的目的,這種學(xué)習(xí)的模式不利于學(xué)生培養(yǎng)其數(shù)學(xué)思維能力。通過(guò)長(zhǎng)時(shí)間的數(shù)學(xué)教學(xué)實(shí)踐顯示,要想讓學(xué)生在接受知識(shí)的同時(shí)還能不斷提高自身數(shù)學(xué)思維能力的培養(yǎng)教師在進(jìn)行數(shù)學(xué)教學(xué)過(guò)程中應(yīng)該對(duì)所要講授的一些數(shù)學(xué)概念和理論等適當(dāng)?shù)倪M(jìn)行變式。在相關(guān)的實(shí)踐過(guò)程中已經(jīng)證明了進(jìn)行變式教學(xué)能夠更加有力的幫助學(xué)生深刻的認(rèn)識(shí)到數(shù)學(xué)問(wèn)題的本質(zhì),培養(yǎng)學(xué)生的數(shù)學(xué)能力。
關(guān)鍵詞:高中數(shù)學(xué);數(shù)學(xué)課堂;變式教學(xué);案例解析
中圖分類(lèi)號(hào):G632 文獻(xiàn)標(biāo)識(shí)碼:B 文章編號(hào):1002-7661(2014)04-205-01
在本文中主要是針對(duì)數(shù)學(xué)教學(xué)中一些普遍的問(wèn)題進(jìn)行變式教學(xué),通過(guò)變式教學(xué)的效果與傳統(tǒng)教學(xué)效果進(jìn)行比較,在其中發(fā)現(xiàn)變式教學(xué)的優(yōu)越性。教師應(yīng)該對(duì)所要進(jìn)行的課題進(jìn)行精心的設(shè)計(jì)和變式,一步步的引導(dǎo)學(xué)生在一系列的變化中發(fā)現(xiàn)問(wèn)題本質(zhì)的不變性,在本質(zhì)不變的前提下探索變化的事物規(guī)律,從而不僅牢固的掌握到所學(xué)的知識(shí)還能不斷提升自身的數(shù)學(xué)思維能力。
一、高中數(shù)學(xué)課堂變式教學(xué)的必然性
1、新課堂教育改革的需要
隨著國(guó)家對(duì)教育界中提出新課堂教學(xué)改革,在高中教育中不斷的進(jìn)行了翻天覆地的變化。國(guó)家的教育水平是國(guó)家今后在國(guó)際中發(fā)展的基礎(chǔ)關(guān)系這國(guó)家的未來(lái)。我國(guó)學(xué)生在進(jìn)行基礎(chǔ)教育的階段基本上大多數(shù)時(shí)間都是在課堂中度過(guò)的,因此課堂教學(xué)對(duì)學(xué)生的成長(zhǎng)發(fā)展具有很大的影響,在新課標(biāo)的課堂教學(xué)中進(jìn)行變式教學(xué)突破傳統(tǒng)教學(xué)顯得尤為重要。
2、當(dāng)今社會(huì)對(duì)人才培養(yǎng)的需要
現(xiàn)代化社會(huì)對(duì)于人才的需要非常迫切,但是由于社會(huì)在不斷發(fā)展,要求適應(yīng)現(xiàn)代化社會(huì)的人才類(lèi)型也越來(lái)越復(fù)雜化,學(xué)生在進(jìn)行基礎(chǔ)教育的過(guò)程就是為今后成才奠定基礎(chǔ)。學(xué)生不僅要注重知識(shí)的積累更重要的是要注重自身全面發(fā)展,培養(yǎng)學(xué)生各方面全面發(fā)展就必須在課堂教學(xué)中轉(zhuǎn)變教學(xué)觀念,進(jìn)行變式教學(xué),不斷提高學(xué)生創(chuàng)新思維的培養(yǎng),培養(yǎng)出適應(yīng)現(xiàn)代化社會(huì)發(fā)展需要的人才。
二、變式教學(xué)案例解析
1、“同角三角函數(shù)基本關(guān)系式”的案例
在這個(gè)案例中首先是明確教學(xué)的目標(biāo),教學(xué)目標(biāo)是要通過(guò)學(xué)生猜想出兩個(gè)計(jì)算的公式再運(yùn)用數(shù)形結(jié)合的數(shù)學(xué)思想讓學(xué)生了解到原始公式的得來(lái)過(guò)程,在推導(dǎo)公式的過(guò)程中理解同角三角函數(shù)的基本關(guān)系式。進(jìn)行這類(lèi)教學(xué)目標(biāo)的大致過(guò)程基本為“培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式”。讓學(xué)生在大致掌握到基本的公式和解題思路后通過(guò)一系列的練習(xí)訓(xùn)練和變式練習(xí)來(lái)提高學(xué)生的思維能力和解題能力。
在進(jìn)行變式教學(xué)中首先教師要針對(duì)同角三角函數(shù)相關(guān)問(wèn)題進(jìn)行提問(wèn)如:任意一個(gè)角α的三角函數(shù)數(shù)值的定義是什么等,通過(guò)此類(lèi)問(wèn)題的提出教師再組織學(xué)生成立一個(gè)討論小組,并適當(dāng)?shù)膶?duì)這些小組進(jìn)行逐步的引導(dǎo),逐漸得出證明同角三角函數(shù)的兩種關(guān)系式。在講解同一題目時(shí)教師能夠通過(guò)這題的深刻講解讓學(xué)生首先掌握到相關(guān)的知識(shí)點(diǎn),再針對(duì)同一問(wèn)題不斷的進(jìn)行相應(yīng)的變式,通過(guò)變式不斷轉(zhuǎn)換問(wèn)題,讓學(xué)生在轉(zhuǎn)換的問(wèn)題中不斷運(yùn)用所學(xué)到的相關(guān)知識(shí)進(jìn)行解答,在解答過(guò)程中逐漸了解到問(wèn)題的本質(zhì)是沒(méi)有變的,變的知識(shí)問(wèn)題的形式,掌握到了相關(guān)知識(shí)點(diǎn)無(wú)論問(wèn)題怎么轉(zhuǎn)變都能夠通過(guò)相關(guān)的知識(shí)去解答。
2、“已知解析式求函數(shù)定義域”的案例
在此案例中數(shù)學(xué)教師主要是通過(guò)教授學(xué)生掌握好函數(shù)定義域的球閥,主要是分式函數(shù)、根式函數(shù)并且理解函數(shù)定義域的集中常見(jiàn)的類(lèi)型。在教學(xué)過(guò)程中教師通常會(huì)發(fā)現(xiàn)學(xué)生對(duì)于這類(lèi)問(wèn)題中往往會(huì)出現(xiàn)計(jì)算錯(cuò)誤,集中函數(shù)類(lèi)型的定義域定義理解不清楚等方面的問(wèn)題。教師在針對(duì)此類(lèi)問(wèn)題中,對(duì)于這個(gè)知識(shí)點(diǎn)的學(xué)習(xí)首先引出相關(guān)的問(wèn)題,在相關(guān)問(wèn)題提出后再結(jié)合實(shí)際的例題對(duì)學(xué)生進(jìn)行詳細(xì)的講解,首先要學(xué)生明確什么是函數(shù)的定義域這一概念“使得函數(shù)解析式有意義的所有實(shí)數(shù)x的集合,是函數(shù)的定義域”。掌握到函數(shù)定義域概念后能讓學(xué)生在學(xué)習(xí)過(guò)程中不至于將知識(shí)點(diǎn)弄混。
教師在針對(duì)函數(shù)定義域解析的問(wèn)題中首先講解一道涉及面較廣的函數(shù)定義域解析例題,在通過(guò)對(duì)學(xué)生的詳細(xì)講解后讓學(xué)生初步對(duì)定義域的求解過(guò)程和不同類(lèi)型定義域求解方式都有一定的掌握再通過(guò)同一道題進(jìn)行相應(yīng)的變式分析,讓學(xué)生在變式過(guò)程中通過(guò)不斷的練習(xí)慢慢理解不同類(lèi)型的函數(shù)定義域應(yīng)該采用何種解題手法去解決。這種變式的教學(xué)方式不僅能夠節(jié)省教師的精力和時(shí)間,還能讓學(xué)生在有限的教學(xué)課堂中增加練習(xí)的力度,在充分的練習(xí)中鞏固當(dāng)節(jié)課所學(xué)到的知識(shí),提高教師的教學(xué)質(zhì)量和學(xué)生的學(xué)習(xí)效率。
總結(jié):高中數(shù)學(xué)在傳統(tǒng)的教學(xué)模式中無(wú)法有效的提高學(xué)生的數(shù)學(xué)思維能力,對(duì)于這種模式中培養(yǎng)出來(lái)的學(xué)生不能完全適應(yīng)現(xiàn)代化社會(huì)對(duì)于人才類(lèi)型的需求,為了響應(yīng)新課標(biāo)的要求和現(xiàn)代化社會(huì)對(duì)于人才的需求在基礎(chǔ)教育過(guò)程中教師要不斷的改善教學(xué)方式,符合現(xiàn)代化教育理念的發(fā)展,在高中數(shù)學(xué)課堂教學(xué)中實(shí)施變式教學(xué),通過(guò)變式教學(xué)的優(yōu)勢(shì)逐漸培養(yǎng)學(xué)生的數(shù)學(xué)思維和各方面能力的培養(yǎng),完善我國(guó)基礎(chǔ)教育的教學(xué)體制。
參考文獻(xiàn):
[1]. 陳競(jìng)科.中職數(shù)學(xué)變式教學(xué)的策略研究[D].蘇州大學(xué).2011
[2]. 朱延剛.利用變式教學(xué)促進(jìn)高中生數(shù)學(xué)理解的研究[D].山東師范大學(xué).2010