• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      木薯蔗糖合酶(SuSy)基因的表達分析及SuSy1和SuSy4編碼序列的克隆

      2014-04-29 13:55:11方開星等
      熱帶作物學報 2014年10期
      關鍵詞:基因克隆木薯

      方開星等

      摘 要 依據擬南芥6個蔗糖合酶基因序列搜索木薯基因組數(shù)據庫,獲得了6個木薯蔗糖合酶基因亞型。 將6個木薯蔗糖合酶基因亞型的外顯子-內含子結構進行分析,結合其它物種蔗糖合酶基因的氨基酸序列構建進化樹,將木薯蔗糖合酶基因可分為三類,分別為 SuSy1/SuSy4,SuSy2/SuSy3和SuSy5/SuSy6。以木薯KU50的功能葉和5個不同時期塊根的RNA為模板,利用RT-PCR的方法對蔗糖合酶基因家族進行表達分析,確定了SuSy1和SuSy4高表達的亞型,克隆并獲得了SuSy1和SuSy4基因的編碼區(qū)序列,對獲得的序列進行同源性和功能結構域分析表明,2條序列的氨基酸同源性為97%,并且有相同的功能結構域。

      關鍵詞 木薯;蔗糖合酶;RT-PCR;基因克隆

      中圖分類號 TS231 文獻標識碼 A

      Abstract According to the six subunit sequences of sucrose synthase gene in Arabidopsis, six sucrose synthase genes were identified in cassava by searching the cassava genome database. The exon-intron structures of the six sucrose synthases in cassava were analyzed and the evolutiontree was then constructed based on the sucrose synthase protein sequences from various species which divided the sucrose synthase genes into three subgroups: SuSy1/SuSy4, SuSy2/SuSy3, and SuSy5/SuSy6, respectively. Expression analysis of six different SuSy subunits through RT-PCR in cassava KU50 function leave and roots of five different periods, the result showed that SuSy1 and SuSy4 were high expression subunits. And then, the full-length CDS of SuSy1 and SuSy4 were cloned and the homology and functional domain were analysis, the results showed that the homology between two sequences were 97% and two sequences had the same functional domain.

      Key words Cassava; Sucrose synthase; Prokaryotic expression; Gene cloning

      doi 10.3969/j.issn.1000-2561.2014.10.010

      植物蔗糖合成酶(Sucrose Synthase;SuSy E.C.2.4.4.13)是由分子量約為83~100 ku的亞基構成的四聚體[1],是植物淀粉代謝的關鍵酶之一,催化以下可逆反應:果糖+UDPG←→蔗糖+UDP。SuSy主要在植物體內有2種存在形式,大部分以可溶狀態(tài)存在于細胞質中,不溶性的SuSy則附著在細胞膜上。

      自1955年Cardini[2]等首次在小麥胚芽中發(fā)現(xiàn)以來,目前國內外研究者已經成功地將SuSy基因從馬鈴薯[3]、玉米[4]、甜菜[5]、胡蘿卜[6]和甘蔗[7]等作物中克隆出來。Zrenner[8]的研究結果表明,在馬鈴薯塊莖中反義表達SuSy,淀粉累積受到抑制,總干重下降,可溶性蛋白減少,產量下降。Baroja-Femandez E[9]在馬鈴薯中過表達SuS4,發(fā)現(xiàn)馬鈴薯塊莖中蔗糖合酶的酶活提高,ADPG和UDPG含量提高,淀粉含量增加,馬鈴薯干重也比野生型的多。在番茄中反義表達SuSy,蔗糖合酶活性明顯下降,蔗糖卸載能力降低,植株生長率減慢,座果數(shù)減少,成熟后每株的結果數(shù)下降[10]。說明SuSy參與調控蔗糖的輸入,影響植株的生長發(fā)育。Chourey等[11]在玉米中研究發(fā)現(xiàn),有3個基因編碼SuSy基因,Shl突變可使SuSy酶活性急劇下降,使胚乳細胞發(fā)育受阻,淀粉含量下降。這些結果均表明SuSy能夠影響庫容并參與淀粉的合成。

      木薯是熱帶、亞熱帶地區(qū)一種重要的高淀粉作物[12]。木薯塊根的化學成分、淀粉含量及特征對于全球熱帶地區(qū)的食物、生物能源與工業(yè)原料生產都具有重要意義[13]。迄今為止,對木薯淀粉生物合成途徑及相關酶基因的研究少數(shù)報道,而有關木薯蔗糖合酶的研究未見報道。本文對木薯基因組數(shù)據庫搜索,挖掘潛在的木薯SuSy亞型,并通過表達差異分析篩選出高表達的亞型,可為進一步研究木薯SuSy的功能及調控奠定基礎。

      1 材料與方法

      1.1 材料

      1.1.1 植物材料 利用高淀粉木薯品種KU50進行木薯蔗糖合酶基因家族成員的表達分析。木薯品種KU50分別取出芽后70、120、180、240、280 d的塊根和180 d的功能葉為研究材料。每次采樣選取3株長勢相近的木薯植株,取3株相同的組織部位混勻后迅速放入液氮罐速凍,回實驗室后置于-80 ℃冰箱保存或馬上進行RNA提取。

      1.1.2 菌株和試劑 大腸桿菌菌株DH5α為作者所在實驗室保存。RNA plant Plus植物RNA提取試劑購自天根生化科技,Prime STAR HS DNA Polymerase和反轉錄試劑盒[FasT Quant RT Kit(With gDNase)]購自寶生物,普通瓊脂糖凝膠DNA片段回收試劑盒(Gel Extraction Kit)購自OMEGA公司,其他藥品試劑均為進口或國產分析純。

      1.2 方法

      3 討論與結論

      蔗糖合酶是植物中一個重要的代謝酶。能夠將光合作用產生的蔗糖分解成合成淀粉的底物,從而影響庫容大小。自從1955年在小麥中發(fā)現(xiàn)以來,已在45個物種中發(fā)現(xiàn)80多個SuSy成員。在擬南芥和水稻中均有6個蔗糖合酶基因亞型。通過對木薯基因組進行Blast,在木薯中確定了6個木薯蔗糖合酶成員。已知SuSy家族可分為雙子葉SuSyA族、雙子葉SuSyl族、單子葉族、NG(New Group)族四個亞族,通過進化樹分析可以把木薯SuSy基因家族分為雙子葉SuSyA族、雙子葉SuSyl族、NG(New Group)族三個亞族,其中SuSy1和SuSy4與楊樹的SuSy1同源性高,它們屬于SuSyl族;SuSy2和SuSy3與蓖麻蔗糖合酶2和楊樹SuSy3同源性高,屬于雙子葉SuSyA族;SuSy5和SuSy6和擬南芥SuSy6同源性高,屬于NG(New Group)族。

      通過對木薯蔗糖合酶基因家族的內含子-外顯子結構進行分析可知,蔗糖合酶6個亞基可能是由3個基因進化而來,其中木薯SuSy1和SuSy4是由同一個基因進化而來;SuSy 2和SuSy3 ,SuSy5和SuSy6分別是由另外一個基因進化而來。原始基因通過突變改變原來的堿基或者通過插入和缺失基因片段從而進化成另外一個基因。木薯SuSy1和SuSy4編碼的開放閱讀框長度及氨基酸個數(shù)一樣,它們之間的差異是由個別堿基突變而導致氨基酸的變異,而木薯SuSy3是通過缺失外顯子和5′UTR與SuSy2區(qū)別開來。

      不同植物具有不同數(shù)目的蔗糖合酶基因,而且表達也各異。如玉米中存在3個SuSy[14],SH1能夠在幼苗和胚乳中表達;SuS1在 幼苗、胚、根、莖和葉中表達[15-16];SuS3在胚乳、胚珠、根和幼芽中表達。胡蘿卜中有2個SuSy基因,一個在花中特異表達,另一個在莖、根、花和成熟的種子中表達[17]。另外在擬南芥、水稻、菜豆、梨、胡蘿卜、玉米、馬鈴薯、番茄、甜菜和甘蔗中都有蔗糖合酶基因家族表達分析的報道[18-23]。本研究中對木薯SuSy基因家族的6個不同亞型在不同組織和部位進行表達分析,結果表明,木薯SuSy基因家族的基因表達同其他物種一樣存在特異性,SuSy1,SuSy3和SuSy4在180 d時,功能葉和不同時期的塊根中均有表達,且SuSy1和SuSy4的表達量明顯高于其他亞型的表達,這說明SuSy1和SuSy4可能在功能葉和塊根的蔗糖分解過程中起到主要作用;在功能葉和塊根中蔗糖合酶均有表達,說明蔗糖的分解代謝在功能葉和塊根中同時存在,因此蔗糖合酶在“源”和“庫”器官中均起到重要作用。

      參考文獻

      [1] Moriguchi T, Yamaki S. Purification and characterization of sucrose synthase from peach(Prunuspirsica)fruit[J]. Plant Cell Physiol, 1988, 29: 1 361-1 366.

      [2] Cardini C E, Leloir L F, Chiriboga J. The bio-synthesis of sucrose[J]. J Biol Chem, 1955, 241: 149-155.

      [3] Salanoubat M, Billiard G. Molecular cloning and sequencing of sucrose synthase cDNA from potato: preliminary characterization of sucrose synthase mRNA distribution[J]. Gene, 1987, 60: 47-56.

      [4] McCarty D R, Shaw J R, Hannah L C. The cloning genetic mapping and expression of the constitutive sucrose synthase locus of maize[J]. Proceed National Academy Sci USA, 1986, 88: 9 099-9 103.

      [5] Hesse H, Willmitzer L. Expression analysis of a sucrose synthase gene from sugar beet(Beta vulgaris L.)[J]. Plant Mol Biol, 1996, 30: 863-872.

      [6] Sebkova V, Unger C, Hardegger M. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota[J]. Plant Physiology, 1955, 108: 75-83.

      [7] Lingle S E, Dyer j M. Cloning and expression of sucrose synthase cDNA from sugarcane[J]. Plant Physiology, 2001, 158: 129-131.

      [8] Zrenner R, Salanoubat M, Willmitzer L, et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants(Solariumtuberosum L.)[J]. Plant J, 1995, 7: 97-107.

      [9] Baroja-Femandez E, Munoz F J, Montero M, et al. Enhancing sucrose synthase activity in transgenic potato(Solarium tuberosum L.)tubers results in increased levels of starch, ADP-glucose and UDP-glucose and total yield[J]. Plant Cell Physiol, 2009, 50(9): 1 651-1 662.

      [10] D'Aoust M A, Yelle S, Quoc B N. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit[J]. Plant Cell, 1999, 11: 2 407-2 418.

      [11] Chourey P S, Taliercio E W, Carlson J. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis[J]. Mol Gen Genet, 1998, 259(1): 88-96.

      [12] Jansson C, Westerbergh A, Zhang J M, et al. Cassava, a potential biofuel crop in(the)People's Republic of China[J]. Applied Energy, 2009, 86: s95-s99.

      [13] 楊麗英, Sriroth K, Piyachomkwan K, 等. 泰國木薯淀粉特性研究[J]. 云南大學學報(自然科學版), 2003, 25(增刊): 110-114.

      [14] Medberry S L, Olszewski N E. Identification of cis-elements involved in commelina yellow mottle virus promoter activity[J]. Plant J, 1993, 3: 619-626.

      [15] Wu B, Pan R Q, Lu R, et al. Deletion analysis and functional studies of the promoter from commelina yellow mottle virus[J].Acta Microbiologica sinica, 1999, 39: 15-21.

      [16] Yuan Z Q, Jia Y T, Wu J H, et al. Comparison of three phloem-specific promoters in transgenic tobacco plants[J]. J Agriculurual Biotechnology, 2002, 10(1): 6-9.

      [17] Bostwick D E, Dannenhoffer J M, Skaggs M I, et al. Pumpkin phloem lectin genes are specifically Expressed in companion cells[J]. Plant cell, 1992, 4: 1 539-1 548.

      [18] Graham M W, Craig S, Waterhouse P M. Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plant[J].Plant Mol Biol, 1997, 33(4): 729-735.

      [19] Tornero P, Conejero V, Vera P. Phloem-specific expression of a plant homeobox gene during secondary phases of vascular development[J]. Plant J, 1996, 9: 639-648.

      [20] Brears T, Walker E, Coruzzi G A. Promoter sequence involved in cell-specific expression of the pea glutamine synthase GS3A gene in organs of transgenic tobacco and alfafa[J]. Plant J, 1991, 1: 235-244.

      [21] Jiang H, Qin H M, Yu H M, et al. Cloning and function of the phloem protein gene promoter from cucubita maxima[J]. J Agriculural Biotechnology, 1997, 7(1): 63-68.

      [22] Jiang H, Qin H M, Tian Y C. Cloning of a promoter fragment of bark storage protein gene form populous deltoids and its function in transgenic tobacco plants[J]. Scientia silvae sinicae, 1999, 35(5): 46-50.

      [23] Torres-Schumann S, Ringli C, Heierli D, et al. In vitro binding of the tomato bZIP transcriptional activator VSF-1 to a regulatory element that controls xylem-specific gene expression[J]. Plant J, 1996, 9: 283-296.

      猜你喜歡
      基因克隆木薯
      刮木薯
      柬埔寨拜靈木薯喜獲大豐收,市場價格保持穩(wěn)定
      挖木薯
      三個小麥防御素基因的克隆及序列分析
      山桃醇腈酶基因PdHNL1的克隆、序列分析與原核表達
      紅花低分子量油體蛋白基因的克隆與系統(tǒng)進化分析
      葡萄查耳酮合酶基因克隆及其進化分析
      木薯的味道
      大埔县| 二连浩特市| 永济市| 新化县| 竹北市| 棋牌| 罗源县| 望江县| 确山县| 德阳市| 黄冈市| 冕宁县| 天等县| 高雄县| 兴化市| 诏安县| 日照市| 兴国县| 庆安县| 集贤县| 乾安县| 中阳县| 荔浦县| 青阳县| 伽师县| 泸定县| 涟源市| 灵武市| 醴陵市| 通化市| 双城市| 大荔县| 太仆寺旗| 玉树县| 富民县| 垦利县| 天门市| 茌平县| 自治县| 樟树市| 乐安县|