朱西雷,葛葉剛,康琪,申大忠
(山東師范大學(xué)化學(xué)化工與材料科學(xué)學(xué)院,山東濟(jì)南 250014)
非接觸電導(dǎo)檢測(cè)器的設(shè)計(jì)與聯(lián)用技術(shù)進(jìn)展
朱西雷,葛葉剛,康琪,申大忠*
(山東師范大學(xué)化學(xué)化工與材料科學(xué)學(xué)院,山東濟(jì)南 250014)
毛細(xì)管電泳中的非接觸電導(dǎo)檢測(cè)技術(shù)自1998年問(wèn)世以來(lái)受到了廣泛的關(guān)注。隨著理論研究的深入,檢測(cè)器的設(shè)計(jì)不斷改進(jìn)以提高其響應(yīng)靈敏度,同時(shí)使它更便于和已有的儀器設(shè)備聯(lián)用,并應(yīng)用于微流控芯片電泳中。分析對(duì)象也從最初的小無(wú)機(jī)離子拓展到有機(jī)組分和生物大分子,隨著商品化檢測(cè)器的出現(xiàn),該技術(shù)趨于成熟。該文側(cè)重介紹近年來(lái)有關(guān)該傳感器的設(shè)計(jì)改進(jìn)、與其它檢測(cè)器聯(lián)用、與樣品富集技術(shù)聯(lián)合方面的研究和應(yīng)用進(jìn)展。
非接觸電導(dǎo)檢測(cè);毛細(xì)管電泳;微流控芯片電泳;聯(lián)用技術(shù)
combination technique
1998年Zemann[1]與do Lago[2]同時(shí)報(bào)道了一種可用于毛細(xì)管電泳的電容耦合非接觸電導(dǎo)檢測(cè)器(Capacitively coupled contactless conductivity detector,C4D),使非接觸電導(dǎo)法這一被冷落了近半個(gè)世紀(jì)的檢測(cè)技術(shù)再次受到關(guān)注。C4D的檢測(cè)靈敏度與紫外(UV)檢測(cè)器大致相同,但是紫外檢測(cè)需在毛細(xì)管上制備透光的窗口,去除保護(hù)層的毛細(xì)管很脆弱,并要求檢測(cè)光路的精密校準(zhǔn)。而C4D所用管狀電極,可以套在毛細(xì)管保護(hù)層外使用,并根據(jù)需要能沿毛細(xì)管滑動(dòng),制備更為簡(jiǎn)便,并可以用于內(nèi)徑10 μm的毛細(xì)管上,因此在檢測(cè)離子組分特別是那些缺乏紫外、熒光、電化學(xué)活性的無(wú)機(jī)小離子、有機(jī)離子組分方面具有一定的技術(shù)優(yōu)勢(shì)。與接觸電導(dǎo)檢測(cè)器相比,C4D的電極安放在毛細(xì)管外,既避免了在毛細(xì)管上鉆孔安放傳感電極的技術(shù)難題,同時(shí)還解決了與分離電壓隔離的問(wèn)題。電極不與溶液接觸,避免了溶液與電極表面的化學(xué)反應(yīng)、氣泡附著、結(jié)垢等影響電極穩(wěn)定性與重現(xiàn)性的問(wèn)題,因此在微通道這種特定環(huán)境下,C4D更具優(yōu)勢(shì)。
近年來(lái)有關(guān)C4D的研究與應(yīng)用的文獻(xiàn)報(bào)道很多,不少學(xué)者從不同角度對(duì)C4D的研究進(jìn)展進(jìn)行了總結(jié)[3~11]。該文選取部分有代表性的研究工作,簡(jiǎn)要介紹近幾年C4D在改進(jìn)構(gòu)造設(shè)計(jì)、與其它檢測(cè)器聯(lián)用和與樣品處理技術(shù)聯(lián)用方面的研究和應(yīng)用進(jìn)展。
圖1為do Lago課題組所報(bào)道的C4D檢測(cè)池的結(jié)構(gòu)示意圖,它與Zemann所報(bào)道的檢測(cè)池的差異在于在兩敏感電極之間增設(shè)了接地屏蔽板,這種構(gòu)造有效地降低了兩電極之間通過(guò)空氣的泄漏電流,能夠提高C4D的信噪比,成為后來(lái)C4D設(shè)計(jì)改造的基礎(chǔ)。
圖1 用于毛細(xì)管電泳檢測(cè)的C4D的構(gòu)造與原理示意圖(非比例尺)Fig.1Schematic diagram of a C4D cell in capillary electrophoresis(not to scale)
由圖1可見(jiàn),在CE中使用的C4D,其檢測(cè)池的構(gòu)造已大體固定,可變化的因素并不多,通常僅對(duì)電極長(zhǎng)度、電極間距、毛細(xì)管內(nèi)徑、外徑可以進(jìn)行優(yōu)化,因此有關(guān)C4D的設(shè)計(jì)改造偏向更便于在已有的毛細(xì)管電泳儀中使用和更好的響應(yīng)性能。
Tuma等[12]設(shè)計(jì)了如圖2所示的半圓電極型C4D檢測(cè)池,其特點(diǎn)是更換或移動(dòng)毛細(xì)管方便,尤其是采用電極在同側(cè)的構(gòu)造(I)時(shí)傳感電極位置不發(fā)生改變,它的檢測(cè)靈敏度略低于兩電極在異側(cè)的構(gòu)造(II),這種構(gòu)造的毛細(xì)管穩(wěn)定性良好,其固定模具有利于安放光導(dǎo)纖維實(shí)現(xiàn)C4D和UV檢測(cè)聯(lián)用。
圖2 半圓電極型C4D的構(gòu)造示意圖[12]Fig.2Scheme of C4D cell using semicircular electrodes and the electrode configuration[12]
Vuorinen等[13]將C4D集成在商品化毛細(xì)管電泳儀中的測(cè)試架內(nèi),在不影響UV檢測(cè)的情況下,同時(shí)獲得C4D的響應(yīng)信號(hào),測(cè)定其中無(wú)UV吸收的組分。Macka等[14]將C4D進(jìn)行了微型化設(shè)計(jì),使C4D更便于和其它檢測(cè)器聯(lián)用,檢測(cè)系統(tǒng)更加緊湊(見(jiàn)圖3)。
圖3 常規(guī)C4D(左)與微型化C4D(右)[14]Fig.3Photographs of conventional C4D(left)and micro-C4D(right)[14]
do Lago等[15]制造了一款非常緊湊的微型化C4D檢測(cè)系統(tǒng),將電極對(duì)和整個(gè)電路整合到一塊雙面印刷電路板上,整個(gè)檢測(cè)器的體積只有6.5 cm3。Knjazeva等[16]應(yīng)用PEEK材料毛細(xì)管-C4D分析檢測(cè)了肽、蛋白質(zhì)等其它生物樣品,并將其與傳統(tǒng)的石英毛細(xì)管柱進(jìn)行了比較,研究表明PEEK毛細(xì)管的陰極電滲流(EOF)非常低,即使在極限pH值下也非常穩(wěn)定,分離效率和分辨率要好于石英毛細(xì)管,保留時(shí)間、峰面積的重現(xiàn)性也優(yōu)于石英毛細(xì)管,并且PEEK毛細(xì)管所需實(shí)驗(yàn)條件也比較簡(jiǎn)單,不需要對(duì)管壁進(jìn)行復(fù)雜的修飾。
Yang等[17]將電感耦合式非接觸電導(dǎo)檢測(cè)器應(yīng)用于CE,該系統(tǒng)由高頻信號(hào)發(fā)生器、磁環(huán)、線圈、取樣電阻構(gòu)成(見(jiàn)圖4),該文對(duì)磁環(huán)直徑、毛細(xì)管的位置、線圈的匝數(shù)、激勵(lì)信號(hào)的電壓、頻率、取樣電阻等參數(shù)的影響進(jìn)行了測(cè)試和優(yōu)化,并用于無(wú)機(jī)離子、氨基酸的分離檢測(cè)。Pham等[18]構(gòu)建了利用C4D同時(shí)分別測(cè)定陰陽(yáng)離子的雙通道CE系統(tǒng),并成功檢測(cè)了地下廢水中的銨鹽。
圖4 電感耦合非接觸電導(dǎo)檢測(cè)器的原理圖[17]Fig.4The electric circuit of the electromagnetic induction detector[17]
和CE中C4D結(jié)構(gòu)變化有所不同,在微流控芯片電泳(MCE)中C4D可以和芯片的設(shè)計(jì)與加工同時(shí)進(jìn)行,因此改進(jìn)方案較多。2002年,Bastemeijer等[19]將非接觸電導(dǎo)檢測(cè)用于微芯片電泳,他們?cè)诓AЩ咨现苽淞艘环N四電極C4D檢測(cè)池(見(jiàn)圖5),敏感電極上覆蓋30 nm SiC絕緣層確保與溶液中的分離電壓隔離,因?yàn)檫@種裝置絕緣層薄,因此有良好的響應(yīng)靈敏度和線性關(guān)系,但電極加工制作工藝復(fù)雜而且要求很高,造價(jià)不菲。
圖5 用于MCE中的四電極C4D檢測(cè)器實(shí)物照片與構(gòu)造示意圖[19]Fig.5Schematic diagram of the four-electrode C4D in microchip electrophoresis[19]
相比之下,Wang等[20]提出的如圖6所示的C4D設(shè)計(jì)構(gòu)造,具有制備簡(jiǎn)單的優(yōu)點(diǎn),在MCE中得到了推廣應(yīng)用,該設(shè)計(jì)中使用金屬箔為電極,貼在微流控通道之上,不需要專(zhuān)門(mén)設(shè)計(jì)的芯片。
Kubáň等[21]研究了檢測(cè)池的尺寸、電極放置方式和操作參數(shù)對(duì)微流控芯片中C4D的輸出電壓、峰高和信噪比的影響,結(jié)果表明反向平行電極能得到更好的靈敏度。在C4D電極反向平行的情況下,絕緣層厚度從125 μm增大到425 μm,分析信號(hào)下降了75%。出于機(jī)械強(qiáng)度方面的考慮,MCE中蓋片不能太薄(>0.1 mm),但蓋片太厚會(huì)使C4D的靈敏度受到影響,因此,使用薄的絕緣層成為改進(jìn)C4D靈敏度的方式之一。如Tanyanyiwa等[22]使用如圖7(B)所示的溝槽蓋板構(gòu)造C4D,配合500 V的激勵(lì)電壓,有效提高了信噪比,測(cè)定K+、Na+、Mg2+的檢測(cè)下限分別達(dá)到0.49、0.41、0.35 μmol/L。
圖6 用于微流控芯片的C4D示意圖[20]Fig.6Microchip electrophoretic system with C4D[20]
圖7 蓋玻片上制備C4D(A)和溝槽C4D(B)[22]Fig.7Cross-sectional view of the two cell arrangements without(A)and with(B)troughs for the detector electrodes[22]
Chen等[23]設(shè)計(jì)了如圖8的C4D檢測(cè)系統(tǒng),芯片與檢測(cè)器獨(dú)立便于更換芯片,它們采用薄的玻璃覆蓋板降低管壁阻抗,比較了正弦、方波、三角波信號(hào)源對(duì)C4D響應(yīng)的影響,表明使用正弦波得到了最好的信噪比。Lichtenberg等[24]設(shè)計(jì)了如圖9所示的內(nèi)嵌電極式C4D,傳感電極與分離通道之間的絕緣層厚度僅10~15 μm,且電極寬度只有400 μm,不僅靈敏度高,而且池體積也小,但存在加工要求高的不足。Xu等[25]將絕緣層的厚度進(jìn)一步減小到1 μm,使C4D的檢測(cè)靈敏度與接觸電導(dǎo)法相同。
圖8 可替換MCE的C4D設(shè)計(jì)示意圖[23]Fig.8Schematic illustration for glass microchip system[23]
圖9 內(nèi)嵌電極式C4D的構(gòu)造結(jié)構(gòu)圖[24]Fig.9Schematic diagram of the integrated in-plane electrodes C4D[24]
Wang等[26]報(bào)道了一種適用于聚甲基異丙烯酸酯(PMMA)微芯片電泳非接觸電導(dǎo)檢測(cè)器的銀墨電極制備新方法,該方法使用絲網(wǎng)印刷技術(shù),可批量制備。Liu等[27]設(shè)計(jì)了一款絕緣層厚度可控的聚二甲基硅氧烷(PDMS)電泳芯片非接觸電導(dǎo)檢測(cè)器,它是將一層PDMS旋轉(zhuǎn)涂覆在一塊帶有Pt微電極的玻璃片上形成絕緣層,然后與另一塊帶有PDMS通道的蓋板粘合在一起形成微芯片,絕緣層的厚度可精確控制在微米以下,實(shí)驗(yàn)結(jié)果表明當(dāng)絕緣層厚度為0.6 μm時(shí),Na+檢測(cè)下限為0.07 μmol/L。
Mahabadi等[28]采用頂-底雙電極構(gòu)造,增加了敏感電極與溶液的耦合區(qū)間,相比單面C4D,其電力線在分離通道中的分布更為均勻,因此靈敏度也較單面C4D有所提高。Fercher等[29]報(bào)道了如圖10所示的差分C4D檢測(cè)系統(tǒng),在分離通道的兩端分別設(shè)置兩個(gè)不同的檢測(cè)區(qū)域,將兩C4D的輸出信號(hào)放大后相減,以差分信號(hào)用于分析測(cè)定,這種方式的優(yōu)點(diǎn)是可以抵消因雜散電容引起的高基線水平,減小基線漂移,從而提高信噪比和靈敏度30~60倍。
Kumar等[30]設(shè)計(jì)了一款微型化的便攜式MCE-C4D檢測(cè)系統(tǒng),將芯片、檢測(cè)電路都設(shè)計(jì)到一個(gè)便攜式的小盒子中,整個(gè)裝置尺寸為19 cm×12 cm×8 cm,C4D電極被集成在聚合物(PMMA)電泳芯片上,用USB與便攜式電腦相連接,用來(lái)提供電能、讀取數(shù)據(jù)和控制系統(tǒng),C4D檢測(cè)所用的高壓頻率為3.6 MHz。用該裝置在30 s內(nèi)分離了肼、甲基肼、1,1-2甲基肼,檢出限分別為12、36、340 ng/mL。Kang等[31]基于諧振原理的阻抗湮滅方法,將一壓電石英晶體諧振器引入非接觸電導(dǎo)檢測(cè)器中,使檢測(cè)電路總阻抗的虛部在諧振條件下為零,大大降低了整個(gè)電路的阻抗值,使檢測(cè)靈敏度得到較大提高,獲得了與接觸電導(dǎo)法相近的靈敏度。Huang等[32]開(kāi)發(fā)了一種適合在毫米級(jí)管內(nèi)測(cè)電導(dǎo)的新型C4D傳感器,引入串聯(lián)諧振原理和新的屏蔽結(jié)構(gòu)后,大大降低了在測(cè)量電導(dǎo)時(shí)耦合電容和雜散電容的不利影響,改進(jìn)了C4D傳感器的性能,可以在較大管道內(nèi)(內(nèi)徑為7.8 mm)實(shí)現(xiàn)電導(dǎo)測(cè)量。
圖10 雙C4D差分測(cè)量裝置及檢測(cè)電路示意圖[29]Fig.10Exploded view(A),enlarged detector areas(B,C)of the LTCC device(not to scale)and differential measurement setup with postamplification stage[29]
Wang等[33]設(shè)計(jì)了一種應(yīng)用于MCE的壁面射流型C4D電導(dǎo)檢測(cè)器,并用該裝置分離檢測(cè)了爆炸相關(guān)物質(zhì)甲基銨、銨、鈉離子,與普通的非接觸電導(dǎo)檢測(cè)相比靈敏度提高了10倍以上。Blanco等[34]采用一種簡(jiǎn)易的連續(xù)注射CE-C4D裝置,快速分析簡(jiǎn)易爆炸裝置(IEDs)中殘余物的無(wú)機(jī)陰離子,分析時(shí)間為90 s,檢測(cè)下限為23~50 μg/L。Zhao等[35]設(shè)計(jì)了一種新型基于氧化銦錫(ITO)鍍膜玻璃的MCE-C4D,該芯片通過(guò)絲網(wǎng)印刷和蝕刻技術(shù)制成,具有很高的穩(wěn)定性和重現(xiàn)性,用該芯片檢測(cè)復(fù)方藥物中的氨基比林、咖啡因,兩種物質(zhì)可在1 min內(nèi)得到完全分離,檢出限分別為8、3 μg/mL。
Lima等[36]將同軸電極整合到了微芯片上,并證明將這種電極應(yīng)用到壓力驅(qū)動(dòng)流平臺(tái)的C4D上可有效提高靈敏度和檢測(cè)能力。Thredgold等[37]在聚二甲基硅氧烷(PDMS)微芯片上為C4D制備了注入式金屬鎵電極,具有制造工藝快速、簡(jiǎn)便的優(yōu)點(diǎn)。Zheng等[38]設(shè)計(jì)了可獲得更高靈敏度的雙輸入電容耦合非接觸電導(dǎo)檢測(cè)器(DIC4D)裝置,該檢測(cè)器由兩個(gè)輸入電極和一個(gè)輸出電極組成,當(dāng)對(duì)每個(gè)輸入電極施加具有相同幅度和不同相位的兩個(gè)交流電壓時(shí),利用不同相位的兩個(gè)信號(hào)的疊加,減小了輸出電極的等效電阻,提高了檢測(cè)靈敏度。
C4D的傳感電極不與待測(cè)溶液接觸,無(wú)需光學(xué)檢測(cè)窗口,位置可以移動(dòng),這些特點(diǎn)使它與其它檢測(cè)器具有良好的兼容性,在CE或MCE中將C4D與其它檢測(cè)器聯(lián)用,可以檢測(cè)同種或不同種類(lèi)的組分,提供更多的化學(xué)信息,提高分析方法的選擇性,近年來(lái)這方面的研究報(bào)道呈增長(zhǎng)趨勢(shì)。Wang等[39]設(shè)計(jì)了一種應(yīng)用于芯片毛細(xì)管電泳的非接觸電導(dǎo)/安培雙檢測(cè)器裝置,在一個(gè)分離通道上的這兩種檢測(cè)模式可以同時(shí)檢測(cè)被分析物的離子和電活性特征,有利于提高重現(xiàn)性,增強(qiáng)峰確認(rèn)能力,兩個(gè)檢測(cè)器相互獨(dú)立進(jìn)行相關(guān)組分檢測(cè)。Tuma等[40]比較了C4D和二極管矩陣光度檢測(cè)器(DAD)的性能,實(shí)驗(yàn)條件是以乙酸為背景電解質(zhì),CE分離肌胺酸酐、精氨酸以及3-甲基組氨酸,研究發(fā)現(xiàn)兩種檢測(cè)器的實(shí)驗(yàn)條件類(lèi)似,可以作為CE的雙重檢測(cè)器。乙酸濃度的變化對(duì)C4D的噪聲影響要小于DAD檢測(cè)器,但對(duì)它的響應(yīng)影響要大,乙酸濃度高時(shí)C4D的檢測(cè)效果要好于DAD,反之DAD的檢測(cè)效果更好。Vázquez等[41]改進(jìn)了C4D/安培雙檢測(cè)器檢測(cè)系統(tǒng)設(shè)計(jì),分析檢測(cè)過(guò)氧化亞硝酸鹽的降解產(chǎn)物NO2-、NO3。
Zikmundova等[42]應(yīng)用UV/非接觸電導(dǎo)檢測(cè)器同時(shí)測(cè)定了膳食食品中的脯氨酸、酪氨酸,這兩種物質(zhì)在毛細(xì)管中未完全分離,但其中一種物質(zhì)在兩個(gè)檢測(cè)池中都有響應(yīng),而另一種物質(zhì)僅在一個(gè)檢測(cè)池中有信號(hào)。Shen等[43]報(bào)道了一種使用于微流控芯片系統(tǒng)的復(fù)合檢測(cè)裝置(見(jiàn)圖11),激光誘導(dǎo)熒光檢測(cè)器(LIF)的檢測(cè)位點(diǎn)與C4D的檢測(cè)位點(diǎn)一致。激光誘導(dǎo)熒光檢測(cè)器采用共聚焦原理,非接觸電導(dǎo)檢測(cè)器可以移動(dòng),檢測(cè)中兩種檢測(cè)方式取長(zhǎng)補(bǔ)短,相互支持。
Liu等[44]報(bào)道了一種適用于微芯片電泳的熒光(FD)/C4D便攜式檢測(cè)裝置,該裝置中兩檢測(cè)器檢測(cè)位置一致并且同時(shí)響應(yīng),熒光檢測(cè)器采用二極管為光源,采用平面光電二極管采集熒光,兩個(gè)檢測(cè)器的同時(shí)使用并且可同時(shí)檢測(cè)樣品的熒光和帶電性質(zhì)。Ryvolova等[45]將C4D檢測(cè)器、UV檢測(cè)器、熒光檢測(cè)器安裝在同一檢測(cè)池上,可將其應(yīng)用于CE、毛細(xì)管電色譜、液相色譜上進(jìn)行多信號(hào)同時(shí)檢測(cè)。
圖11 共聚焦LIF-C4D系統(tǒng)結(jié)構(gòu)示意圖[43]Fig.11Schematic setup of confocal LIF-C4D system[43]
C4D與樣品處理技術(shù)特別是在線樣品處理技術(shù)聯(lián)用,提高分析的靈敏度、選擇性、分析速度、準(zhǔn)確度等,這是近年來(lái)C4D研究工作的主要方向。
Sedyohutomo等[46]設(shè)計(jì)了一種離子色譜的新型抑制單元,用來(lái)降低背景電導(dǎo)以提高檢測(cè)物的響應(yīng)信號(hào),用C4D進(jìn)行離子檢測(cè),六種常規(guī)離子F-、Cl-、NO2-、Br-、NO3-、SO42-的檢測(cè)下限在ng/mL水平。Braz等[47]建立了基于氣體擴(kuò)散-C4D檢測(cè)的銨離子測(cè)定系統(tǒng),注射體積為100 μL,檢測(cè)限為0.8 μmol/L。Ding等[48]將固相微萃取(SPE)用于MCE-C4D系統(tǒng)來(lái)分析游泳池水消毒時(shí)產(chǎn)生的二氯乙酸、三氯乙酸,檢出限分別為38、62 mg/L,分析時(shí)間小于3 min。Teerasong等[49]報(bào)道了一種無(wú)試劑順序注射檢測(cè)方法,用以同時(shí)檢測(cè)軟飲料中的含糖量、色度和二氧化碳含量,通過(guò)蒸發(fā)液相中的二氧化碳,再使其溶解到接受器水流中,其電導(dǎo)率發(fā)生變化,由C4D在線檢測(cè)電導(dǎo)率。Coelho等[50]設(shè)計(jì)了一種能與CE匹配的毛細(xì)管膜擴(kuò)散洗滌器,用來(lái)處理空氣樣品,然后將其與CE-C4D分離檢測(cè)系統(tǒng)相連,可測(cè)定室外空氣中的甲醛、甲酸、乙酸、氨含量。
Mark等[51]建立了一種通過(guò)超聲輔助萃取、頂空單滴微萃取(SDME)來(lái)凈化和濃縮樣品,然后利用MCE-C4D技術(shù)來(lái)測(cè)定海產(chǎn)品降解過(guò)程中產(chǎn)生的不穩(wěn)定脂肪胺的新方法,用分離通道長(zhǎng)度為8.7 cm的PMMA芯片分離了五種不穩(wěn)定的短鏈脂肪胺,分離時(shí)間小于40 s,檢測(cè)限低于0.4 pg/mL。Wei等[52]聯(lián)用SPE方法在線濃縮水楊酸和山梨酸,使檢測(cè)下限達(dá)到0.05和0.08 μmol/L,并用于醬油中水楊酸和山梨酸的含量測(cè)定。Mai等[53]將SPE在線濃縮裝置加入該系統(tǒng)中,富集因子在百倍以上,整個(gè)裝置可以在無(wú)人干預(yù)下運(yùn)行,用于布洛芬等藥物分析,直接測(cè)定的檢測(cè)下限在5 μmol/L,在線富集后達(dá)到nmol/L量級(jí)。隨后該課題組對(duì)順序進(jìn)樣裝置進(jìn)行了微型化設(shè)計(jì),采用壓縮空氣為動(dòng)力自動(dòng)上樣,整個(gè)裝置集成在45 cm×35 cm×15 cm的手提箱中,總重量約8 kg,在電池供電模式下能連續(xù)工作9 h,并根據(jù)具體情況分析任務(wù),優(yōu)化上樣系統(tǒng),以達(dá)到快速高效分離。完成分離4種陰離子(Cl-,NO3-,SO42-, NO2-)僅需16 s,檢測(cè)下限在1 μmol/L以下[54]。Liu等[55]利用膜電解萃取技術(shù)(EME)作為一種新穎樣品準(zhǔn)備技術(shù)純化和富集了唾液樣品中的鹽酸丁二胺、1,5-戊二胺、亞精胺和精胺,亞精胺的富集因子可達(dá)106,檢出限范圍在1.4~7.0 ng/mL。Wu等[56]利用連續(xù)緩沖液-液萃取和聚酰胺聚合物輔助CE-C4D測(cè)定了食物油中的游離脂肪酸,在18 min內(nèi)分離出了10種脂肪酸,檢出限范圍為0.46 ~3.28 μmol/L。Lemos等[57]通過(guò)超聲萃取將原生橄欖油中的Na+、K+、Ca2+和Mg2+提取到水溶液中,并利用CE-C4D進(jìn)行分析,3 min內(nèi)很好的分離了這些金屬離子,Na+、K+、Ca2+和Mg2+的檢出限分別為0.029、0.029、0.033和0.044 mg/kg。
See等[58]利用無(wú)極性變換的大體積進(jìn)樣、場(chǎng)放大樣品堆積兩種在線富集技術(shù),富集了飲用水中草甘膦、抗草丁膦、氨基磷酸,并用CE-C4D進(jìn)行了分離和檢測(cè),在優(yōu)化的條件下,采用大體積進(jìn)樣的CE-C4D方法,靈敏度提高48~53倍,檢出限在1.7~11 mg/L之間,而用場(chǎng)放大CE-C4D方法的檢出限達(dá)到0.1~2.2 mg/L,靈敏度增大25 0~1 000倍。Lau等[59]利用場(chǎng)放大樣品注射在線富集技術(shù)富集了實(shí)際樣品中的Cr3+,Pb2+,Hg2+, Ni2+等四種重金屬離子,并用CE-C4D進(jìn)行了分離和檢測(cè),富集倍數(shù)達(dá)9萬(wàn)倍,檢測(cè)限達(dá)到0.005~ 2.32 μg/L。See等[60]利用陽(yáng)離子載體聚合膜結(jié)合電場(chǎng)驅(qū)動(dòng)富集目標(biāo)陰離子,再結(jié)合大體積進(jìn)樣堆積技術(shù),提高了毛細(xì)管電泳C4D檢測(cè)的靈敏度,對(duì)草甘膦和甲胺磷酸的檢測(cè)下限達(dá)到0.8和1.5 ng/mL。Tuma等[61]利用新型大體積堆積進(jìn)樣(LVSS)的CE-C4D檢測(cè)了中腦導(dǎo)水管周?chē)屹|(zhì)(PAG)微透析液中的神經(jīng)遞質(zhì)氨基丁酸、甘氨酸和谷氨酸,檢出限分別為9、10和15 nmol/L。Gao等[62]利用CE-C4D通過(guò)強(qiáng)場(chǎng)樣品注射(FESI)在線預(yù)富集方法測(cè)定了四種β2-興奮劑:鹽酸特比萘芬、異丙喹喘寧、福莫特羅和鹽酸班布特羅,檢測(cè)限達(dá)到0.02 mg/L,比傳統(tǒng)無(wú)預(yù)富集過(guò)程的CE-C4D的檢測(cè)靈敏度提高了30~40倍。Ji等[63]利用有效的樣品處理和場(chǎng)放大進(jìn)樣富集在線技術(shù)與CE-C4D聯(lián)用分析牛奶樣品中三聚氰胺的含量,檢測(cè)限為0.015 mg/kg,相對(duì)標(biāo)準(zhǔn)偏差在6%以下。
Partyka等[64]利用瞬間等速電泳預(yù)富集(t-ITP)毛細(xì)管電泳分離研究了季銨鹽標(biāo)記的陽(yáng)離子衍生低聚糖,在15 min內(nèi)實(shí)現(xiàn)25種低聚糖的分離與C4D檢測(cè),檢測(cè)下限達(dá)到1×10-8mol/L。Li等[65]利用CE-C4D結(jié)合殼聚糖與表面活性劑輔助樣品堆積技術(shù),在線毛細(xì)管電泳富集了高原紫花苜蓿根系的四種有機(jī)酸即烏頭酸,沒(méi)食子酸,檸檬酸和L-蘋(píng)果酸,檢測(cè)限在2.4~54 ng/mL,富集倍數(shù)在3×102~1.5×104。Keyon等[66]利用逆流瞬時(shí)等速電泳(TITP)-CZE-C4D技術(shù),將樣品中高濃度鈉離子作為主導(dǎo)離子,L-丙氨酸作為終止電解質(zhì)(TE)和背景電解質(zhì),分析了麻痹性貝類(lèi)毒素(PSTs),檢測(cè)限分別為0.07~1 μg/mL,可測(cè)得海鮮樣品中的PSTs。Strychalski等[67]將C4D用于梯度淋洗移動(dòng)邊界電泳(GEMBE)中檢測(cè)復(fù)雜生物樣品如細(xì)胞核血樣中的無(wú)機(jī)陰離子,在梯度淋洗中通過(guò)微分信號(hào)得到各組分的色譜峰。Strieglerova′等[68]利用電隔膜技術(shù)凈化和預(yù)富集人體液中的鋰離子后,用CE-C4D技術(shù)進(jìn)行分離和檢測(cè),檢出限為9 nmol/L,采用此方法測(cè)定了尿液、血漿、血清、血液整體中的鋰離子含量。采用電膜萃取人體液樣品中的17種未衍生的氨基酸,用CE-C4D進(jìn)行了分離檢測(cè),對(duì)人血清、血漿、全血中的12種氨基酸進(jìn)行了分離檢測(cè)[69]。
Kiplagat等[70]將一個(gè)開(kāi)管預(yù)處理柱直接與毛細(xì)管柱相連,然后將血清、血漿等樣品直接注入開(kāi)管柱,經(jīng)表面修飾的熔融石英毛細(xì)管柱會(huì)選擇吸附干擾基質(zhì),小的無(wú)機(jī)陽(yáng)離子則會(huì)進(jìn)入到分析柱進(jìn)行直接測(cè)定。Pham等[71]用CE-C4D檢測(cè)了人血清中的游離丙戊酸和總丙戊酸,樣品用量為140 μL,在毛細(xì)管電泳分離前,先用分散液液微萃取去除樣品中的生物基質(zhì),其中游離丙戊酸與蛋白結(jié)合丙戊酸通過(guò)離心超濾法分離,濾液酸化后萃??;總丙戊酸采用直接將血清酸化后萃取測(cè)定,檢測(cè)下限是0.08 μg/mL,可以用于兒科病人的常規(guī)藥物檢測(cè)。Santos等[72]將薄層電化學(xué)流通池-毛細(xì)管電泳-非接觸電導(dǎo)檢測(cè)聯(lián)用,實(shí)現(xiàn)了脂肪醇類(lèi)中性組分的測(cè)定,在電化學(xué)池中脂肪醇被氧化成對(duì)應(yīng)的脂肪酸,衍生化過(guò)程僅需1 min,然后將靠近電極表面的溶液以壓力進(jìn)樣方式導(dǎo)入毛細(xì)管,2.5 min內(nèi)分離四種脂肪酸,全自動(dòng)的流通系統(tǒng)分析速度達(dá)到12樣/h,檢測(cè)下限為5×10-5mol/L。
圖12 順序進(jìn)樣壓力輔助CE-C4D結(jié)構(gòu)框圖[74]Fig.12Schematic drawing of the SIA–CE-C4D-system for pressure-assisted capillary electrophoresis[74]
Hauser課題組[73]設(shè)計(jì)了如圖12的順序上樣裝置,可實(shí)現(xiàn)陰、陽(yáng)離子的同時(shí)測(cè)定,所用毛細(xì)管內(nèi)徑為10 μm,有效地減少了樣品帶的擴(kuò)散,該系統(tǒng)可以組合出幾種進(jìn)樣與測(cè)量方式,如將樣品用壓力推到毛細(xì)管中間,在電泳下陰、陽(yáng)離子分別在毛細(xì)管兩端檢測(cè);陰、陽(yáng)離子兩端進(jìn)樣,C4D在毛細(xì)管中間檢測(cè)與對(duì)應(yīng)兩端分別檢測(cè),以及壓力輔助的電泳分離模式。當(dāng)同時(shí)存在壓力驅(qū)動(dòng)和電驅(qū)動(dòng)兩種力場(chǎng),對(duì)于分離度良好的峰,可以優(yōu)化分析時(shí)間,對(duì)于分離不好的體系則可以延長(zhǎng)分離時(shí)間以改善色譜峰分離效果[74]。
Kiplagat等[75]設(shè)計(jì)了一種便攜式開(kāi)管毛細(xì)管柱離子色譜C4D檢測(cè)裝置,通過(guò)USB與手提電腦相連,進(jìn)行檢測(cè)和數(shù)據(jù)采集,用低電導(dǎo)率的有機(jī)酸做洗脫液,同時(shí)分離了一價(jià)、二價(jià)陽(yáng)離子,在30 min內(nèi)分離了六種常見(jiàn)陽(yáng)離子,檢測(cè)下限小于μg/mL。Kubáň等[76]設(shè)計(jì)了一種結(jié)構(gòu)緊湊的C4D儀器裝置,用來(lái)分析實(shí)際的化學(xué)降解劑與分解產(chǎn)物,該裝置可以從各種固體基質(zhì)如混凝土、磚塊、土壤、植物中提取樣本,并從中萃取出甲氟膦酸異丙酯、甲氟磷酸異己酯、甲硫膦酸丙胺乙酯進(jìn)行原位分析檢測(cè),整個(gè)過(guò)程包括儀器啟動(dòng)、樣品萃取、完成分析檢測(cè)總用時(shí)5 min,該裝置的進(jìn)樣方法重現(xiàn)性良好。Nguyen等[77]研制了帶有微型高壓C4D的便攜式半自動(dòng)化CE儀器,此CE-C4D系統(tǒng)利用氣動(dòng)操作控制溶液沖洗過(guò)程,通過(guò)轉(zhuǎn)動(dòng)電子開(kāi)關(guān)控制不同的操作,如:沖洗毛細(xì)管、接口沖洗和電泳分離,與其它復(fù)雜系統(tǒng)相比,此方法是一個(gè)經(jīng)濟(jì)簡(jiǎn)單實(shí)用的操作方案。
Kubáň等[78]開(kāi)發(fā)了一種直接注入人體血樣分析甲酸鹽的方法,用于快速識(shí)別甲醇中毒,把包含滲析膜的樣品預(yù)處理裝置結(jié)合到CE-C4D上,將血樣中的小離子經(jīng)滲透膜電動(dòng)注入分離毛細(xì)管,滲透膜將紅細(xì)胞、蛋白質(zhì)、脂類(lèi)和其它高分子化合物等基質(zhì)組分保留在處理室內(nèi),不干擾隨后的CE分離,將甲酸鹽從其它小陰離子中分離出來(lái),在原始血樣中甲酸鹽的檢測(cè)限和定量限分別為15 μmol/L和50 μmol/L。Anouti等[79]基于中心切割技術(shù)應(yīng)用兩個(gè)C4D檢測(cè)器建立了一種分析氨基酸對(duì)應(yīng)異構(gòu)體的新方法,該方法應(yīng)用一根毛細(xì)管和手性、非手性兩種電解質(zhì),在第一維方向上氨基酸在非手性電解質(zhì)中進(jìn)行分離,選擇合適區(qū)帶的分析物在第二維上進(jìn)行手性氨基酸的分離,此法可用于分離多種氨基酸的對(duì)應(yīng)異構(gòu)體。
除用于電泳及色譜檢測(cè)器外,C4D的非分析測(cè)定應(yīng)用也有文獻(xiàn)報(bào)道。如利用移動(dòng)式C4D對(duì)毛細(xì)管整體柱色譜固定相進(jìn)行無(wú)損掃描分析,可以探測(cè)固定相的均勻性。這種無(wú)損新檢測(cè)技術(shù)可應(yīng)用于毛細(xì)管柱、微流控芯片固定相化學(xué)和物理性質(zhì)的研究,還可應(yīng)用于液相、氣相色譜,毛細(xì)管區(qū)帶電泳或電色譜,用以評(píng)估表面的化學(xué)改性以優(yōu)化步驟、評(píng)估覆蓋度及化學(xué)或物理活性等[6]。Nehme′等[80]將沉積5層聚電解質(zhì)的毛細(xì)管充滿水后,利用C4D進(jìn)行了評(píng)價(jià),通過(guò)連續(xù)掃描發(fā)現(xiàn),相比較未修飾的毛細(xì)管,電導(dǎo)率有明顯提高,然后隨時(shí)間延長(zhǎng)電導(dǎo)率有所降低,但10 min后電導(dǎo)率降低速率明顯減小,說(shuō)明由于聚電解質(zhì)長(zhǎng)鏈纏繞涂覆在壁上使電介質(zhì)層加厚。Walsh等[81]通過(guò)光引發(fā)反應(yīng)制備了聚苯乙烯-二乙烯苯整體柱,制造過(guò)程中依靠C4D來(lái)優(yōu)化改進(jìn)制造方法,用C4D測(cè)定流體電阻數(shù)據(jù)來(lái)評(píng)估整體柱的滲透性,用沿毛細(xì)管軸向的電導(dǎo)剖面圖來(lái)評(píng)估側(cè)面的均勻性,結(jié)果表明整體柱在聚合過(guò)程中沿軸向旋轉(zhuǎn),在整個(gè)長(zhǎng)度上分布均勻。Collins等[82]利用C4D監(jiān)測(cè)了石英毛細(xì)管內(nèi)聚合整體柱固定相的聚合過(guò)程,在固定相生長(zhǎng)過(guò)程中,聚合物生長(zhǎng)減少了溶液在毛細(xì)管中所占比例,而溶液與聚合物的阻抗存在差異,因此可用C4D監(jiān)測(cè)其生長(zhǎng)過(guò)程,并通過(guò)移動(dòng)C4D了解其均勻性。Wang等[83]用C4D檢測(cè)技術(shù)測(cè)定了毫米粗的管道內(nèi)氣液兩相流中單個(gè)氣泡的移動(dòng)速率,該新方法結(jié)合了C4D檢測(cè)和速率測(cè)量的相關(guān)原理,采用五電極構(gòu)成雙C4D,利用速率測(cè)量與速度測(cè)量相互關(guān)聯(lián)的理論,結(jié)合電導(dǎo)檢測(cè)器獲得的兩個(gè)電導(dǎo)信號(hào)實(shí)現(xiàn)了氣泡速率的測(cè)量。
C4D作為一種通用型離子檢測(cè)器,雖然靈敏度與熒光尤其是激光誘導(dǎo)熒光檢測(cè)器、安培檢測(cè)器、質(zhì)譜檢測(cè)器相比偏低,和UV的靈敏度大抵相當(dāng),但傳感器構(gòu)造簡(jiǎn)單,對(duì)于一些常見(jiàn)的無(wú)機(jī)離子,特別是缺乏紫外吸收、熒光、或電化學(xué)活性的離子,有一定的技術(shù)優(yōu)勢(shì)。C4D所用管狀電極,可以套在毛細(xì)管保護(hù)層外使用,制備更為簡(jiǎn)便,并可以用于內(nèi)徑10 μm的毛細(xì)管上。與接觸電導(dǎo)檢測(cè)器相比,C4D的電極套在毛細(xì)管外,既避免了在毛細(xì)管上鉆孔安放傳感電極的技術(shù)難題,同時(shí)還解決了與分離電壓隔離的問(wèn)題,電極不與溶液接觸,避免了溶液與電極表面的化學(xué)反應(yīng)、氣泡附著、結(jié)垢等影響電極穩(wěn)定性與重現(xiàn)性的問(wèn)題,因此在微通道這種特定環(huán)境下,C4D更具優(yōu)勢(shì)。此外,C4D無(wú)需光學(xué)檢測(cè)窗口,位置可以移動(dòng),這些特點(diǎn)使它與其它檢測(cè)器具有良好的兼容性,在CE或MCE中將C4D與其它檢測(cè)器聯(lián)用,可以檢測(cè)同種或不同種類(lèi)的組分,提供更多的化學(xué)信息,提高分析方法的選擇性。近年來(lái)C4D研究工作的主要方向是與樣品處理技術(shù)特別是在線樣品處理技術(shù)聯(lián)用,提高分析的靈敏度、選擇性、分析速度、準(zhǔn)確度等。
[1]Zemann A J,Schnell E,Volgger D,et al.Contactless conductivity detection for capillary electrophoresis[J]. Anal.Chem.,1998,70:563~567.
[2]Da Silva J A F,do Lago C L.An oscillometric detector for capillary electrophoresis[J].Anal.Chem.,1998,70: 4 339~4 343.
[3]Kubáň P,Hauser P C.A review of the recent achievements in capacitively coupled contactless conductivity detection[J].Anal.Chim.Acta,2008,607:15~29.
[4]Kubáň P,Hauser P C.Ten years of axial capacitively coupled contactlessconductivity detection for CZE-a review[J].Electrophoresis,2009,30:176~188.
[5]Elbashir A A,Aboul-Enein H Y.Applications of capillary electrophoresis with capacitively coupled contactless conductivity detection(CE-C4D)in pharmaceutical and biological analysis[J].Biomed.Chromatogr.,2010,24: 1 038~1 044.
[6]Connolly D,Floris P,Nesterenko P N,et al.Non-invasive characterization of stationary phases in capillary flow systems using scanning capacitively coupled contactless conductivity detection(sC4D)[J].Trac-Trends in Anal. Chem.,2010,29:870~884.
[7]Kubáň P,Hauser P C.Capacitively coupled contactless conductivity detection for microseparation techniques–recent developments[J].Electrophoresis,2011,32:30~ 42.
[8]Opekar F,Stulik K.Some important combinations of detection techniques for electrophoresis in capillaries andon chips with emphasis on electrochemical principles[J]. Electrophoresis,2011,32:795~810.
[9]Elbashir A A,Aboul-Enein H Y.Recent advances in applications of capillary electrophoresis with capacitively coupled contactless conductivity detection(CE-C4D):an update[J].Biomed.Chromatogr.,2012,26:990~1 000.
[10]Coltro W K T,Lima R S,Segato T P,et al.Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development[J].Anal.Methods,2012,4:25~33.
[11]Kubáň P,Hauser P C.Contactless conductivity detection for analytical techniques:Developments from 2010 to 2012[J].Electrophoresis,2013,34:55~69.
[12]Tuma P,Opekar F,Jelínek I.A contactless conductometric detector with easily exchangeable capillary for capillary electrophoresis[J].Electroanalysis,2001,13:989~ 992.
[13]Vuorinen P S,Jussila M,Siren H,et al.Integration of a contactless conductivity detector into a commercial capillary cassette Detection of inorganic cations and catecholamines[J].J.Chromatogr.A,2003,99:45~52.
[14]Macka M,Hutchinson J,Zemann A,et al.Miniaturized movable contactless conductivity detection cell for capillary electrophoresis[J].Electrophoresis,2003,24:2 144 ~2 149.
[15]Francisco K J M,Lucio C,do Lago C L.A compact and high-resolution version of a capacitively coupled contactless conductivity detector[J].Electrophoresis,2009, 30:3 458~3 464.
[16]Knjazeva T,Kulp M,Kaljurand M.CE separation of various analytes of biological origin using polyether ether ketone capillaries and contactless conductivity detection [J].Electrophoresis,2009,30:424~430.
[17]Yang X J,Chen Z G,Liu C,et al.Electromagnetic induction detector for capillary electrophoresis and its application in pharmaceutical analysis[J].Talanta,2010,82: 1 935~1 942.
[18]Pham T T T,Mai T D,Nguyen T D,et al.Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions[J].Anal.Chim.Acta,2014,841:77-83.
[19]Bastemeijer J,Lubking W,Laugere F,et al.Electronic protection methods for conductivity detectors in micro capillary electrophoresis devices[J].Sens.Actotors B, 2002,83:98~103.
[20]Pumera M,Wang J,Opekar F,et al.Contactless Conductivity Detector for Microchip Capillary Electrophoresis [J].Anal.Chem.,2002,74:1 968~1 973.
[21]Kubáň P,Hauser P C.Effects of the cell geometry and operating parameters on the performance of an external contactless conductivity detector for microchip electrophoresis[J].Lab Chip,2005,5:407~412.
[22]Tanyanyiwa J,Hauser P C.High-voltage capacitively coupled contactless conductivity detection for microchip capillaryelectrophoresis[J].Anal.Chem.,2002,74: 6 378~6 382.
[23]Chen Z,Li Q,Li O,et al.A thin cover glass chip for contactless conductivity detection in microchip capillary electrophoresis[J].Talanta,2007,71:1 944~1 948.
[24]Lichtenberg J,De Rooij N F,Verpoorte E.A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection[J].Electrophoresis,2002,23:3 769~3 778.
[25]Xu Y,Liang J,Liu H T,et al.Characterization of a capacitance-coupled contactless conductivity detection system with sidewall electrodes on a low-voltage-driven electrophoresis microchip[J].Anal.Bioanal.Chem., 2010,397:1 583~1 593.
[26]Wang J,Chen G,Chatrathi M P,et al.Screen-Printed Contactless Conductivity Detector for Microchip Capillary Electrophoresis[J].Electroanalysis,2008,20:2 416 ~2 421.
[27]Liu J S,Xu F,Wang S F,et al.A polydimethylsiloxane electrophoresis microchip with a thickness controllable insulating layer for capacitatively coupled contactless conductivity detection[J].Electrochemistry Communications,2012,25:147~150.
[28]Mahabadi K A,Rodriguez I,Lim C Y,et al.Capacitively coupled contactless conductivity detection with dual topbottom cell configuration for microchip electrophoresis [J].Electrophoresis,2010,31:1 063~1 070.
[29]Fercher G,Haller A,Smetana W,et al.End-to-end differential contactless conductivity sensor for microchip capillaryelectrophoresis[J].Anal.Chem.,2010,82: 3 270~3 275.
[30]Kumar A,Burns J,Hoffmann W,et al.Determination of hydrazines by chip electrophoresis with contactless conductivity detection[J].Electrophoresis,2011,32:920~ 925.
[31]Kang Q,Shen D Z,Li Q L,et al.Reduction of the impedance of a contactless conductivity detector for microchip capillary electrophoresis:compensation of the electrode impedance by addition of a series inductance from a piezoelectric quartz crystal[J].Anal.Chem.,2008,80:7 826~7 832.
[32]Huang Z,Long J,Xu W,et al.Design of capacitively coupled contactless conductivity detection sensor[J].Flow Measurement and Instrumentation,2012,27:67~70.
[33]Wang J,Chen G,Muck A.Wall-jet conductivity detector for microchip capillary electrophoresis[J].Talanta, 2009,78:207~211.
[34]Blanco G A,Nai Y H,Hilder E F,et al.Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection[J].Anal.Chem.,2011,83:9 068~ 9 075.
[35]Zhao J,Chen Z G,Li X C,et al.A novel microchip based on indium tin oxide coated glass for contactless conductivity detection[J].Talanta,2011,85:2 614~2 619.
[36]Lima R,Piazzetta M,Gobbi A,et al.Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis[J].Chem.Commun.,2013, 49:11 382~11 384.
[37]Thredgold L,Khodakov D,Ellis A,et al.On-chip capacitively coupled contactless conductivity detection using“injected”metal electrodes[J].Analyst,2013,138: 4 275~4 279.
[38]Zheng H,Li M,Dai J Y,et al.Double input capacitively coupled contactless conductivity detector with phase shift [J].Anal.Chem.,2014,86:10 065~10 070.
[39]Wang J,Pumera M.Dual conductivity/amperometric detection system for microchip capillary electrophoresis[J]. Anal.Chem.,2002,74:5 919~5 923.
[40]Tuma P,Opekar F,Samcová E,et al.A comparison of the properties of contactless conductivity and diode-array photometric detectors in analyses of low-molecular,biologically active substances by capillary electrophoresis in acetic acid solutions[J].Electroanalysis,2008,20:477~ 484.
[41]Vázquez M,Frankenfeld C,Coltro W K T,et al.Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips[J].Analyst,2010,135:96~103.
[42]Zikmundová J,Tuma P,Opekar F.A dual spectrophotometric/contactless conductivity detector for CE determination of incompletely separated amino acids[J].J.Sep. Sci.,2008,31:353~355.
[43]Shen F,Yang M,Yu Y,et al.Simultaneous laser-induced fluorescence and contactless-conductivity detection for microfluidic chip[J].Chin.Chem.Lett.,2008,19:1 333~ 1 336.
[44]Liu C,Mo Y Y,Chen Z G,et al.Dual fluorescence/contactless conductivity detection for microfluidic chip[J]. Anal.Chim.Acta.,2008,621:171~177.
[45]Ryvolova M,Preisler J,Foret F,et al.Combined contactless conductometric photometric and fluorimetric single point detector for capillary separation methods[J].Anal. Chem.,2010,82:129~135.
[46]Sedyohutomo A,Lim L W,T Takeuchi.Development of packed-column suppressor system for capillary ion chromatography and its application to environmental waters [J].J.Chromatogr.A,2008,1203:239~242.
[47]Braz H L,Ito D T,Silva J A F,et al.Trace levels determination of ammonium by flow injection analysis using gasdiffusion and capacitively coupled contactless conductivity detection[J].Electroanalysis,2008,20:477~484.
[48]Ding Y S,Rogers K.Determination of haloacetic acids in water using solid-phase extraction/microchip capillary electrophoresis with capacitively coupled contactless conductivitydetection[J].Electrophoresis,2010,31: 2 602~2 607.
[49]Teerasong S,Chan-Eam S,Sereenonchai K,et al.A reagent-free SIA module for monitoring of sugar,color and dissolved CO2content in soft drinks[J].Anal.Chim. Acta,2010,668:47~53.
[50]Coelho L H G,Melchert W R,Rocha F R,et al.Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde,formic acid,acetic acid and ammonia in outdoor air[J].Talanta,2011,83:84~92.
[51]Mark J J P,Kumar A,Demattio H,et al.Combination of headspace single-drop microextraction,microchip electrophoresis and contactless conductivity detection for the determination of aliphatic amines in the biodegradation process of seafood samples[J].Electroanalysis,2011, 23:161~168.
[52]Wei R X,Li W H,Yang L R,et al.Online preconcentration in capillary electrophoresis with contactless conductivity detection for sensitive determination of sorbic and benzoic acids in soy sauce[J].Talanta,2011,83:1 487~ 1 490.
[53]Mai T D,Bomastyk B,Duong H A,et al.Automated capillary electrophoresis with on-line preconcentration by solid phase extraction using a sequential injection manifold and contactless conductivity detection[J].Anal. Chim.Acta.,2012,727:1~7.
[54]Mai T D,Pham T T T,Pham H V,et al.Portable capillaryelectrophoresis instrument with automated injector and contactless conductivity detection[J].Anal.Chem., 2013,85:2 333~2 339.
[55]Liu Y,Zhang X L,Guo L,et al.Electromembrane extraction of salivary polyamines followed by capillary zone electrophoresis with capacitively coupled contactless conductivity detection[J].Talanta,2014,128:386~392.
[56]Wu J Q,Ge Y,Qin W D.Combination of Running-Buffer-Mediated Extraction andPolyamidoamine-Dendrimer-Assisted Capillary Electrophoresis for Rapid and Sensitive Determination of Free Fatty Acids in Edible Oils[J].J.Agric.Food Chem,2014,62:4 104~4 111.
[57]Lemos M A T,Pinheiro A M,Cassella R J,et al.Simultaneous determination of potassium,sodium,calcium,and magnesium in virgin olive oils by capillary electrophoresis with capacitively coupled contactless conductivity detection[J].Anal.Methods,2014,6:3 629~3 633.
[58]See H H,Hauser P C,Ibrahim W A W,et al.Rapid and direct determination of glyphosate,glufosinate,and aminophosphonic acid by online preconcentration CE withcontactlessconductivitydetection[J].Electrophoresis,2010,31:575~582.
[59]Lau H F,Quek N M,Law W S,et al.Optimization of separation of heavy metals by capillary electrophoresis withcontactlessconductivitydetection[J].Electrophoresis,2011,32:1 190~1 194.
[60]See H H,Hauser P C.Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane[J].Anal.Chem.,2011,83:7 507~ 7 513.
[61]Tuma P,Sustková-Fiˇserová M,Opekar F.Large-volume sample stacking for in vivo monitoring of trace levels of γ-aminobutyric acid,glycine and glutamate in microdialysates of periaqueductal gray matter by capillary electrophoresis with contactless conductivity detection [J].J.Chromatogr.A,2013,1303:94~99.
[62]Gao F,Wu M L,Zhang Y,et al.Sensitive determination of four β2-agonists in pig feed by capillary electrophoresis using on-line sample preconcentration with contactless conductivity detection[J].J.Chromatogr.B,2014, 973:29~32.
[63]Ji Y L,Chen X W,Zhang Z B,et al.Efficient sample clean-up and online preconcentration for sensitive determination of melamine in milk samples by capillary electrophoresis with contactless conductivity detection[J].J. Sep.Sci.,2014,37:3 000~3 006.
[64]Partyka J,Foret F.Cationic labeling of oligosaccharides for electrophoretic preconcentration and separation with contactless conductivity detection[J].J.Chromatogr.A, 2012,1267:116~120.
[65]Li X,Ju Y Y,Xu Y Y,et al.On-line capillary electrophoresis enrichment by combining chitosan trapping with surfactant assisted sample stacking for the ultratrace determination of organic acids in Plateau alfalfa roots[J]. Anal.Chim.Acta,2013,789:100~106.
[66]Keyon A,Guijt K,Bolch C,et al.Transientisotachophoresis-capillary zone electrophoresis with contactless conductivity and ultraviolet detection for the analysis of paralytic shellfish toxins in mussel samples[J].J. Chromatogr.A,2014,1364:295~302.
[67]Strychalski E A,Henry A C,Ross D.Expanding the capabilities of microfluidic gradient elution moving boundary electrophoresis for complex samples[J].Anal. Chem.,2011,83:6 316~6 322.
[68]Strieglerová L,Kubáň P,Bocek P.Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoreticdeterminationoflithium[J].Electrophoresis,2011,32:1 182~1 189.
[69]Strieglerová L,Kubáň P,Bocek P.Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection[J].J.Chromatogr.A,2011, 1218:6 248~6 255.
[70]Kiplagat I K,Doan T K O,Kubáň P,et al.Use of disposable open tubular ion exchange pre-columns for in-line clean-up of serum and plasma samples prior to capillary electrophoretic analysis of inorganic cations[J].J.Chromatogr.A,2011,1218:856~859.
[71]Pham T T T,See H H,Morand R,et al.Determination of free and total valproic acid in human plasma by capillary electrophoresis with contactless conductivity detection [J].J.Chromatogr.B,2012,907:74~78.
[72]Santos M S F,Lopes F S,Vidal D T R,et al.From sample processing to quantification:A full electrochemical approach for neutral analyte derivatization,capillary electrophoresis separation,and contactless conductivity detection[J].Anal.Chem.,2012,84:7 599~7 602.
[73]Mai T D,Hauser P C.Simultaneous separations of cations and anions by capillary electrophoresis with contactless conductivity detection employing a sequential injection analysis manifold for flexible manipulation of sample plugs[J].J.Chromatogr.A,2012,1267:266~272.
[74]Mai T D,Hauser P C.Pressure-assisted capillary elec-trophoresis for cation separations using a sequential injection analysis manifold and contactless conductivity detection[J].Talanta,2011,84:1 228~1 233.
[75]Kiplagat I K,Kuban P,Pelcova P,et al.Portable, lightweight,low power,ion chromatographic system with open tubular capillary columns[J].J.Chromatogr.A, 2010,1217:5 116~5 123.
[76]Kuban P,Seiman A M,Makarotseva N,et al.In situ determination of nerve agents in various matrices by portable capillary electropherograph with contactless conductivity detection[J].J.Chromatogr.A,2011,1218: 2 618~2 625.
[77]Nguyen T A H,Pham T N M,Doan T T,et al.Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of β-agonists in pharmaceutical and pigfeed samples[J].J.Chromatogr.A,2014,1360:305~311. [78]Kubáň P,Bocek P.Direct analysis of formate in human plasma,serum and whole blood by in-line coupling of microdialysis to capillary electrophoresis for rapid diagnosis of methanol poisoning[J].Anal.Chim.Acta, 2013,768:82~89.
[79]Anouti S,Vandenabeele-Trambouze O,Cottet H.Heartcutting 2D-CE with on-line preconcentration for the chiral analysis of native amino acids[J].Electrophoresis, 2010,31:1 029~1 035.
[80]Nehme R,Perrin C,Cottet H,et al.Influence of polyelectrolyte capillary coating conditions on protein analysis in CE[J].Electrophoresis,2009,30:1 888~1 896.
[81]Walsh Z,Levkin P A,Jain V,et al.Visible light initiated polymerization of styrenic monolithic stationary phases using 470 nm light emitting diode arrays[J].J.Sep.Sci., 2010,33:61~67.
[82]Collins D A,Nesterenko E P,Brabazon D,et al.In-process phase growth measurement technique in the fabrication of monolithic porous layer open tubular(monoPLOT) columns using capacitively coupled contactless conductivity[J].Analyst,2013,138:2 540~2 545.
[83]Wang B L,Zhou Y,Ji H F,et al.Measurement of bubble velocity using capacitively coupled contactless conductivity detection(C4D)technique[J].Particuology,2013, 11:198~203.
Proceedings of contactless conductivity detector in designs and combinations in detection and preconcentration techniques
Zhu Xi-lei,Ge Ye-gang,Kang Qi,Shen Da-zhong*
(College of Chemistry,Chemical Engineering and Materials Science,Shandong Normal University, Jinan 250014,China)
The popularity of contactless conductivity detection in capillary electrophoresis has been growing steadily since its introduction in 1998.Improvements have been made in the design of the detector in order to facilitate its handling,to allow easy incorporation into available instruments or to achieve higher sensitivity.The understanding of its fundamental working principles has been advanced and the detection approach has also been transferred to lab-on-chip devices.The range of applications has been extended greatly from the initial work on small inorganic ions to include organic species and biomolecules.Commercial devices are now available and the method can be considered a mature detection technique.In this article,the achievements in design of the detector, combination with other detection methods and sample preconcentration techniques are reviewed.
contactless conductivity detection;capillary electrophoresis;microchip capillary electrophoresis;
國(guó)家自然科學(xué)基金資助項(xiàng)目(21275091,21175084)
*通訊聯(lián)系人,E-mail:dzshen@sdnu.edu.cn