許改平,劉芳,吳興波,溫國勝,王玉魁,高巖,高榮孚,3,張汝民
(1.浙江農(nóng)林大學(xué) 亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江 臨安 311300;2.國家林業(yè)局 竹子研究開發(fā)中心,浙江 杭州 310012;3.北京林業(yè)大學(xué) 生物科學(xué)與技術(shù)學(xué)院,北京 100083)
低溫脅迫下毛竹葉片色素質(zhì)量分?jǐn)?shù)與反射光譜的相關(guān)性
許改平1,劉芳1,吳興波1,溫國勝1,王玉魁2,高巖1,高榮孚1,3,張汝民1
(1.浙江農(nóng)林大學(xué) 亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室培育基地,浙江 臨安 311300;2.國家林業(yè)局 竹子研究開發(fā)中心,浙江 杭州 310012;3.北京林業(yè)大學(xué) 生物科學(xué)與技術(shù)學(xué)院,北京 100083)
為了探討低溫處理后毛竹Phyllostachys edulis葉片反射光譜特性與色素質(zhì)量分?jǐn)?shù)的相互關(guān)系,篩選出能夠準(zhǔn)確監(jiān)測(cè)低溫脅迫下毛竹傷害程度的光譜參數(shù)。測(cè)定了低溫處理后毛竹葉片色素質(zhì)量分?jǐn)?shù)與反射光譜的變化參數(shù),分析葉片光譜反射率、微分光譜及特征參數(shù)與色素質(zhì)量分?jǐn)?shù)的相關(guān)性。結(jié)果表明:隨著溫度的降低,葉綠素a和類胡蘿卜素質(zhì)量分?jǐn)?shù)呈下降趨勢(shì)(P<0.01)。反射光譜參數(shù)光譜反射指數(shù)、改良紅邊比、色素比值指數(shù)、歸一化植被指數(shù)、紅邊歸一化指數(shù)、改良類胡蘿卜素指數(shù)和光化學(xué)反射指數(shù)等均隨著溫度的降低而降低(P<0.01);紅邊面積隨著脅迫加深不斷減小,紅邊位置向短波方向移動(dòng)。在綠光區(qū)和紅光區(qū),葉綠素a和類胡蘿卜素質(zhì)量分?jǐn)?shù)與光譜反射率及微分光譜顯著相關(guān)(P<0.05),且與大部分光譜參數(shù)達(dá)到極顯著相關(guān)(P<0.01),說明反射光譜特征及其參數(shù)可用來估算葉片色素質(zhì)量分?jǐn)?shù)。圖4表5參40
植物學(xué);毛竹;色素;低溫脅迫;反射光譜
葉片色素質(zhì)量分?jǐn)?shù)與其光合能力和營養(yǎng)狀況有較好的相關(guān)性,通常是植物環(huán)境脅迫的良好指示器[1],葉片光譜反射率測(cè)定是一種快捷無損估測(cè)葉片色素質(zhì)量分?jǐn)?shù)的方法[2]。研究表明,近紅外波段反射率(>750 nm)與700 nm和550 nm的比值(R750/R700,R750/R550)與植物葉片中葉綠素a和葉綠素a+b質(zhì)量分?jǐn)?shù)具有良好的相關(guān)性;綠度歸一化光譜指數(shù)(gNDVI)對(duì)葉綠素a的質(zhì)量分?jǐn)?shù)變化非常敏感[3]。修正型光譜指數(shù)(mSR705)和葉片衰老指數(shù)(PSRI)能夠很好地反應(yīng)葉片結(jié)構(gòu)和色素質(zhì)量分?jǐn)?shù)[4]。北美短葉松Pinus banksiana高光譜觀測(cè)顯示,光譜指數(shù)R750/R710對(duì)葉綠素敏感,可用于估測(cè)總?cè)~綠素質(zhì)量分?jǐn)?shù)[5]。當(dāng)植物在受到脅迫時(shí),葉片色素質(zhì)量分?jǐn)?shù)降低,色素質(zhì)量分?jǐn)?shù)與光譜反射率有顯著的相關(guān)性[6]??梢姽獠糠止庾V反射率的變化主要是由葉片的葉綠素質(zhì)量分?jǐn)?shù)對(duì)脅迫異常敏感所致,且對(duì)脅迫敏感的波段范圍主要集中在550 nm附近的綠光反射峰及700 nm附近的紅邊附近[7]。溫度水分雙重脅迫綜合作用于光譜反射率的光化學(xué)反射指數(shù)(PRI),葉片總?cè)~綠素質(zhì)量分?jǐn)?shù)與紅邊位置(λred)顯著相關(guān)[8]。溫度脅迫使葉片葉綠素降解,近紅外區(qū)域光譜反射率隨溫度脅迫程度的加劇而降低,λred向短波方向移動(dòng)[9]。這些研究表明:植物脅迫程度與其葉片中色素質(zhì)量分?jǐn)?shù)及光譜特征均有緊密的聯(lián)系。毛竹Phyllostachys edulis林是中國南方重要的森林資源,具有較高的社會(huì)、經(jīng)濟(jì)和生態(tài)效益,在竹產(chǎn)業(yè)中具有極其重要的地位。研究顯示:綠峰(Rg),紅谷(Rr),λred,紅邊振幅(Dλred)等可作為毛竹林光譜識(shí)別的主要參數(shù)[10]。毛竹葉片綠光區(qū)的光譜反射率隨葉綠素a、葉綠素b和類胡蘿卜素質(zhì)量分?jǐn)?shù)增加而逐漸降低,且色素與紅邊參數(shù)有極顯著的相關(guān)性[11]。低溫脅迫是毛竹生長過程中最為常見的脅迫類型,然而,在低溫脅迫下,毛竹葉片光合色素質(zhì)量分?jǐn)?shù)與反射光譜及相關(guān)參數(shù)的相關(guān)性研究未見報(bào)道。因此,本研究以3年生毛竹實(shí)生苗為研究對(duì)象,綜合分析低溫脅迫條件下葉片色素質(zhì)量分?jǐn)?shù)與反射光譜的相互關(guān)系,以探究毛竹低溫脅迫響應(yīng)機(jī)制。
1.1 材料處理
供試材料為毛竹3年生實(shí)生苗,2012年4月中旬將其移入花盆(盆徑25 cm)中緩苗。6月中旬選取株高1.0 m,生長良好,無病蟲害的毛竹3株,放入人工氣候箱中,相對(duì)濕度為(60±3)%,光照條件為光照12 h/黑暗12 h,光照強(qiáng)度為1 000 μmol·m-2·s-1,適應(yīng)培養(yǎng)2 d后進(jìn)行溫度脅迫。處理溫度設(shè)有25℃,20℃,15℃,10℃和5℃等5個(gè)梯度,從25℃依次降低,以2℃·h-1過渡到下一溫度,在各溫度中處理24 h,選取毛竹植株中部當(dāng)年生枝條頂端向下第3~4片完整的功能葉片,測(cè)定各項(xiàng)指標(biāo)。
1.2 研究方法
1.2.1 葉綠素和類胡蘿卜素質(zhì)量分?jǐn)?shù)測(cè)定 稱取毛竹葉片0.2 g,剪碎后置于帶蓋的試管中,加5.0 mL體積分?jǐn)?shù)為80%的丙酮,室溫下遮光萃取至葉片完全變白后,分別在470,645和663 nm處測(cè)定其D(λ)值,按Lichtenthaler[12]的方法計(jì)算葉綠素a,葉綠素b和類胡蘿卜素質(zhì)量分?jǐn)?shù)。在各溫度中處理毛竹3株,取樣3次·株-1。
1.2.2 光譜數(shù)據(jù)采集 采用光譜分析儀(UniSpec-SC,美國產(chǎn))測(cè)定毛竹葉片在310~1 130 nm處的反射光譜數(shù)據(jù),采樣間隔1 nm,分辨率1 nm。測(cè)定時(shí)間為上午10:00-12:00,測(cè)定毛竹3株·次-1,選取葉子6片·株-1,取其平均值作為該溫度的光譜反射率。測(cè)量過程中及時(shí)進(jìn)行標(biāo)準(zhǔn)白板校正,用Multispec 5.1數(shù)據(jù)處理軟件讀取反射光譜原始數(shù)據(jù)。
1.2.3 光譜分析方法 光譜數(shù)據(jù)微分處理:將毛竹葉片反射光譜通過下列公式進(jìn)行一階微分處理得到微分光譜。
其中:λi為波段i處的波長值;Rλi為波長λi處的光譜反射率值;Δλ為波長λ(i-1)到λi的差值,由光譜采樣間隔而定。“三邊”參數(shù)計(jì)算方法:分別在490~530 nm,560~640 nm和680~750 nm范圍內(nèi)確定藍(lán)邊、黃邊和紅邊位置、幅值和面積。λred為紅光范圍內(nèi)一階導(dǎo)數(shù)光譜最大值所對(duì)應(yīng)的波長,Dλred為一階導(dǎo)數(shù)光譜的最大值,紅邊面積(Sred)為一階導(dǎo)數(shù)光譜線所包圍的面積。黃邊(黃邊位置λyellow,黃邊幅值Dλyellow,黃邊面積Syellow)和藍(lán)邊(藍(lán)邊位置λblue,藍(lán)邊幅值Dλblue,藍(lán)邊面積Sblue)參數(shù)與紅邊參數(shù)意義類似。根據(jù)葉片特征,篩選出較能反應(yīng)葉片特征結(jié)構(gòu)的光譜參數(shù)[2,13-22]及相關(guān)公式見表1。
1.3 數(shù)據(jù)處理
采用SPSS 13.0進(jìn)行數(shù)據(jù)處理和統(tǒng)計(jì)分析,用OriginPro 8.0軟件對(duì)光譜信息進(jìn)行去噪處理,提取出與葉綠素有關(guān)的特征波段,并進(jìn)行繪圖。
降低企業(yè)物資積壓,需要不斷探索和循序漸進(jìn),只有具備健全完善的制度、扎實(shí)有序的工作和嚴(yán)格科學(xué)的管理,加強(qiáng)物資供應(yīng)隊(duì)伍的建設(shè),努力打造一支學(xué)習(xí)型物資供應(yīng)隊(duì)伍,才能減少物資積壓的產(chǎn)生,安全、及時(shí)、經(jīng)濟(jì)地保證物資供應(yīng),增強(qiáng)企業(yè)在市場(chǎng)經(jīng)濟(jì)中的競(jìng)爭力。
表1 反射光譜參數(shù)Table 1 Reflectance spectrum parameters
2.1 低溫脅迫對(duì)毛竹葉片光合色素質(zhì)量分?jǐn)?shù)的影響
葉綠素質(zhì)量分?jǐn)?shù)是表征毛竹葉片光合作用狀況的主要指標(biāo)。在溫度脅迫下,毛竹葉片葉綠素a,葉綠素b及類胡蘿卜素質(zhì)量分?jǐn)?shù)變化基本一致,均隨著溫度降低而逐漸降低(表2)。當(dāng)溫度降到15℃時(shí),葉綠素a和類胡蘿卜素有極顯著的降低(P<0.01),分別比25℃時(shí)降低了4.2%和10.9%;當(dāng)溫度達(dá)到5℃時(shí),葉綠素a和類胡蘿卜素質(zhì)量分?jǐn)?shù)比對(duì)照25℃時(shí)分別降低了6.9%和23.1%;與葉綠素a和類胡蘿卜素相比,葉綠素b變化趨勢(shì)不明顯。
表2 低溫脅迫對(duì)毛竹葉片色素質(zhì)量分?jǐn)?shù)的影響Table 2 Effects of low temperature stress on pigments content in Phyllostachys edulis leaves
2.2 低溫脅迫對(duì)毛竹葉片反射光譜的影響
2.2.1 低溫脅迫對(duì)毛竹葉片光譜反射率的影響 低溫脅迫顯著影響毛竹葉片的光譜反射特征,在不同波段區(qū)域光譜響應(yīng)不同(圖1)。在680 nm附近的紅光區(qū)域和490 nm的藍(lán)光區(qū)域有吸收低谷,而在550 nm處有反射峰,在近紅外區(qū)域,由于沒有葉片色素的吸收,反射率增加,使得780~1 000 nm波段出現(xiàn)較高的反射平臺(tái)[23]。隨著溫度的降低,反射光譜在藍(lán)光區(qū)(525~605 nm)存在明顯差異,其次是黃光區(qū)(605~655 nm)和近紅外區(qū)(750~1 000 nm)。毛竹葉片的反射率在460~680 nm波段隨溫度降低而逐漸升高,10℃時(shí)出現(xiàn)顯著增加,在波長550 nm處,當(dāng)溫度降低到5℃時(shí),反射率比對(duì)照25℃提高了24.5%(P<0.01);在750~1 000 nm波段,反射率隨溫度降低而降低。
2.2.2 低溫脅迫對(duì)毛竹葉片反射光譜“三邊”參數(shù)的影響 在分析光譜數(shù)據(jù)過程中,對(duì)原始光譜數(shù)據(jù)進(jìn)行微分變換,以減少背景噪聲的影響,從而提高參數(shù)的監(jiān)測(cè)效果。將低溫脅迫后毛竹葉片的反射光譜數(shù)據(jù)進(jìn)行一階導(dǎo)數(shù)處理,結(jié)果如圖2所示。不同溫度處理的毛竹葉片在680~760 nm波段內(nèi)都只有1個(gè)峰值。隨著溫度的降低,λred逐漸向短波方向移動(dòng)(表3)。Sred隨之減小,15℃時(shí)差異顯著。Sblue隨著溫度降低呈現(xiàn)出逐漸增加的趨勢(shì),而λblue則逐漸減?。沪藋ellow隨溫度降低而減小,而Syellow和Dλyellow則隨著溫度的降低呈現(xiàn)先升高后降低的趨勢(shì)。無論是藍(lán)邊還是黃邊,最明顯的變化都出現(xiàn)在5℃時(shí)(表3)。
圖1 低溫脅迫對(duì)毛竹葉片反射光譜的影響Figure 1 Effects of low temperature stress on reflectance spectra in Phyllostachys edulis leaves
圖2 低溫脅迫下毛竹葉片的微分光譜Figure 2 First derivative of reflectance spectra in Ph.edulis leaves under low temperature stresss
表3 低溫脅迫對(duì)毛竹葉片“三邊”參數(shù)的影響Table 3 Effects of low temperature stress on“three edge”parameters in Ph.edulis leaves
2.2.3 低溫脅迫對(duì)毛竹葉片反射光譜參數(shù)的影響 光譜參數(shù)是綠色植物的光譜反射特征,是反映植物生長狀況的最常用光譜變量。本試驗(yàn)中篩選出的葉綠素、類胡蘿卜素和花青素的相關(guān)光譜參數(shù),均隨著溫度降低有顯著地增加或降低,且大部分參數(shù)的變化幅度達(dá)到了極顯著(P<0.01)水平。表4可知:光譜反射指數(shù)、改良紅邊比、色素比值指數(shù)a、色素比值指數(shù)b、歸一化植被指數(shù)、紅邊歸一化指數(shù)、色素歸一化指數(shù)a、色素歸一化指數(shù)等葉綠素相關(guān)參數(shù),及反射光譜比分析、色素比值指數(shù)、改良的類胡蘿卜素指數(shù)、光化學(xué)反射指數(shù)等類胡蘿卜素相關(guān)參數(shù)隨溫度的降低而降低;反射光譜比率分析a、紅綠比指數(shù)和反射光譜比率分析b隨著溫度降低而升高;除反射光譜比率分析a外,各光譜參數(shù)變化均達(dá)極顯著(P<0.01)水平。
2.3 低溫脅迫下毛竹葉片色素質(zhì)量分?jǐn)?shù)與反射光譜特征的相關(guān)性
2.3.1 色素質(zhì)量分?jǐn)?shù)與光譜反射率的相關(guān)性 對(duì)低溫脅迫后毛竹葉色素質(zhì)量分?jǐn)?shù)與光譜反射率進(jìn)行相關(guān)分析表明(圖3),波長小于710 nm,毛竹葉葉綠素a,葉綠素a+b和類胡蘿卜素質(zhì)量分?jǐn)?shù)與反射率呈負(fù)相關(guān),且于452~700 nm的反射率達(dá)顯著(P<0.05)相關(guān),在620 nm處相關(guān)系數(shù)最大。光譜反射率與除葉綠素b外的各色素質(zhì)量分?jǐn)?shù)均顯著相關(guān),葉綠素a與光譜反射率的相關(guān)系數(shù)較類胡蘿卜素要高;波長大于710 nm,葉綠素a,葉綠素b,葉綠素a+b和類胡蘿卜素質(zhì)量分?jǐn)?shù)與光譜反射率呈正相關(guān),且均達(dá)到極顯著(P<0.01)水平。
表4 低溫處理后毛竹葉片的反射光譜參數(shù)變化Table 4 Effects of low temperature stress on reflectance spectrum parameters in Phyllostachys edulis leaves
圖3 毛竹葉片色素質(zhì)量分?jǐn)?shù)與光譜反射率的相關(guān)性Figure 3 Correlation between reflectance spectra and pigment content in Phllostachys edulis leaves
圖4 毛竹葉片色素質(zhì)量分?jǐn)?shù)與微分光譜的相關(guān)性Figure 4 Correlation between derivative spectra and pigment content in Ph.edulis leaves
2.3.3 色素質(zhì)量分?jǐn)?shù)與光譜特征參數(shù)的相關(guān)性 相關(guān)分析表明:毛竹葉片絕大多數(shù)參數(shù)都與葉綠素a,葉綠素a+b及類胡蘿卜素質(zhì)量分?jǐn)?shù)之間存在極顯著(P<0.01)的相關(guān)性(表5)。葉綠素a,葉綠素a+b及類胡蘿卜素質(zhì)量分?jǐn)?shù)與光譜反射指數(shù)、改良紅邊比、色素比值指數(shù)b、色素歸一化指數(shù)b、歸一化植被指數(shù)、紅邊歸一化指數(shù)、反射光譜比分析、色數(shù)比值指數(shù)、改良的類胡蘿卜素指數(shù)、光化學(xué)反射指數(shù)、λred,Dλred和Sred等光譜參數(shù)極顯著正相關(guān),其中與光化學(xué)反射指數(shù)相關(guān)系數(shù)最小,與Sred的相關(guān)系數(shù)最大。葉綠素a,葉綠素a+b及類胡蘿卜素質(zhì)量分?jǐn)?shù)與反射光譜比分析a、反射光譜比分析b、紅綠比指數(shù)呈負(fù)相關(guān),其中與紅綠比指數(shù)相關(guān)系數(shù)最小,與反射光譜比分析b的相關(guān)系數(shù)最大。葉綠素b與除Dλred,Sred以外的各參數(shù)均未達(dá)到顯著相關(guān),與前面葉綠素b質(zhì)量分?jǐn)?shù)和反射率及微分光譜相關(guān)性未達(dá)顯著水平相一致。
毛竹葉片葉綠素a和類胡蘿卜素質(zhì)量分?jǐn)?shù)隨溫度降低而降低,是由于植物色素的合成過程,絕大部分都要有酶的參與,低溫降低了葉綠體中一系列合成酶的活性[24];再者,低溫脅迫引起葉片葉綠體結(jié)構(gòu)變形、膜系統(tǒng)受到破壞,體內(nèi)活性氧積累過多,從而加速了色素的降解[25],因此低溫脅迫下的色素質(zhì)量分?jǐn)?shù)的降低,不僅是合成受阻,而且存在色素分解的加劇。植物色素是植物體內(nèi)主要的吸收光能物質(zhì),其質(zhì)量分?jǐn)?shù)往往是植物環(huán)境脅迫、光合能力等生理狀態(tài)的良好指示劑[26],因而常用于監(jiān)測(cè)植物長勢(shì)、估算植被光合效率和生物量[27]。毛竹葉片葉綠素b變化不明顯,這與前人的研究結(jié)果有所不同,可能是低溫處理時(shí)間太短,葉綠素b對(duì)低溫脅迫不敏感,也可能與毛竹苗生長階段和葉片發(fā)育狀況有關(guān)。有待進(jìn)一步研究探討。
表5 毛竹葉片反射光譜參數(shù)與色素質(zhì)量分?jǐn)?shù)的相關(guān)性Table 5 Correlation between reflectance spectrum parameters and pigment contents in Phyllostachys edulis leaves
低溫脅迫下毛竹葉片光譜顯著差異主要在可見光區(qū),且隨溫度降低而升高。植物綠光區(qū)(525~605 nm)及紅光到近紅外波段(680~750 nm)的反射率突變區(qū)域,包含著豐富的信息[28]。研究顯示溫度脅迫后的水稻Oryza sativa在近紅外區(qū)反射率隨溫度脅迫程度的加劇而降低,可見光區(qū)與之相反[9],這與毛竹葉片研究一致。毛竹葉片光譜參數(shù)光譜反射指數(shù)、改良紅邊比、色素比值指數(shù)b、歸一化植被指數(shù)、紅邊歸一化指數(shù)、色素比值指數(shù)a、色素歸一化指數(shù)b、反射光譜比率分析、色數(shù)比值指數(shù)、改良的類胡蘿卜素指數(shù)、光化學(xué)反射指數(shù)和Sred等,在低溫脅迫下變化尤為明顯(表4),其中反射光譜比分析[29]、色素比值指數(shù)[15]、色素比值指數(shù)[15]、光譜反射指數(shù)[13]和Sred[30]等表現(xiàn)光譜特征優(yōu)于其他參數(shù),可作為監(jiān)測(cè)依據(jù)。
毛竹葉片25℃時(shí)紅光吸收較多。隨著溫度降低,葉結(jié)構(gòu)的破壞和葉綠素減少,導(dǎo)致紅邊區(qū)域吸收能力降低,反射增加,紅邊向短波方向移動(dòng),Sred也隨之減小。葉綠素的吸收光譜區(qū)主要是在550~750 nm波段,生長旺盛時(shí)紅光吸收較多[31-32],紅光區(qū)光譜特征,可指示葉綠素質(zhì)量分?jǐn)?shù)的變化情況[33-34]??梢姽夂徒t外區(qū)域是色素感受脅迫的敏感區(qū)域,色素質(zhì)量分?jǐn)?shù)與一階微分光譜在紅邊(695~754 nm)內(nèi)相關(guān)性最高[35]。毛竹葉片綠光區(qū)光譜反射率與色素質(zhì)量分?jǐn)?shù)(除葉綠素b外)呈顯著負(fù)相關(guān),紅邊(680~780 nm)內(nèi)一階微分值,與葉片色素(除葉綠素b外)質(zhì)量分?jǐn)?shù)達(dá)極顯著相關(guān),與前人有相似的結(jié)果。紅光波段和綠光波段在評(píng)價(jià)毛竹長勢(shì)上是十分有用的。
光譜參數(shù)由光譜反射曲線衍生而來,在表現(xiàn)植物生長狀況上更為具體和更具指向性,光譜反射指數(shù)、改良紅邊比、色數(shù)比值指數(shù)b、歸一化植被指數(shù)、紅邊歸一化指數(shù)、色素比值指數(shù)a、色素歸一化指數(shù)b、反射光譜比率分析、色數(shù)比值指數(shù)、光化學(xué)反射指數(shù)及Sred等毛竹光譜參數(shù)與色素質(zhì)量分?jǐn)?shù)(除葉綠素b外)表現(xiàn)顯著相關(guān)性。研究顯示植物葉片色素質(zhì)量分?jǐn)?shù)與光譜參數(shù)也有著緊密的關(guān)系[33,36],光譜參數(shù)、改良的類胡蘿卜素指數(shù)、歸一化植被指數(shù)及色素歸一化指數(shù)a、色素歸一化指數(shù)b可用來分析葉綠素a、葉綠素b和葉綠素a+b質(zhì)量分?jǐn)?shù),反射光譜比分析、光化學(xué)反射指數(shù)、改良的類胡蘿卜素指數(shù)及紅綠比指數(shù)可用來監(jiān)測(cè)類胡蘿卜素和花青素質(zhì)量分?jǐn)?shù)[37]。λred,Sred,紅邊歸一化指數(shù),紅邊斜率(Srg)[38],修正的簡單化值植被指數(shù)(mSR705)和修正的歸一化差值植被指數(shù)(mND705)[4]等幾個(gè)反射光譜特征參數(shù)均與葉綠素質(zhì)量分?jǐn)?shù)存在指數(shù)函數(shù)關(guān)系。紅邊參數(shù)λred,Dλred,Sred由于充分發(fā)揮了微分技術(shù)的優(yōu)勢(shì),對(duì)植株生化組分的估測(cè)具有較高的能力[28,39],毛竹葉片紅邊參數(shù)與色素質(zhì)量分?jǐn)?shù)極顯著的相關(guān)性也充分印證了這一點(diǎn),其數(shù)值大小受葉綠素及其葉片結(jié)構(gòu)的影響,對(duì)脅迫最為敏感[40],采用光譜參數(shù)法估測(cè)毛竹葉片色素質(zhì)量分?jǐn)?shù)是切實(shí)可行的。
低溫脅迫下毛竹葉片色素和光譜特征均有顯著差異,且葉片色素質(zhì)量分?jǐn)?shù)與反射光譜及各參數(shù)有極顯著的相關(guān)性,可通過葉片光譜特征以及反射光譜比分析、色素歸一化指數(shù)、色數(shù)比值指數(shù)、紅邊歸一化指數(shù)和Sred等光譜參數(shù),方便快捷地反映毛竹生長狀況。
[1]RICHARDSON A D,DUIGAN S P,BERLYN G P.An evaluation of noninvasive methods to estimate foliar chlorophyll content[J].New Phytol,2002,153(1):185-194.
[2]SIMS D A,GAMON J A.Relationships between leaf pigment content and spectral reflectance across a wide range of species,leaf structures and developmental stages[J].Remote Sens Environ,2002,81(2/3):337-354.
[3]GITELSON A A,GITZT Y,MERZLYYAK M N.Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves[J].J Physiol,2003,160(3):271-282.
[4]CASTRO K L,SANCHEZ-AZOFEIFA G A.Changes in spectral properties,chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves[J].Sensors,2008,8(1):51-69.
[5]MOORTHY I,MILLER J R,NOLAND T L.Estimating chlorophyll concentration in conifer needles with hyperspectral data:an assessment at the needle and canopy level[J].Remote Sens Environ,2008,112(6):2824-2838.
[6]NIEMANN K O.Remote sensing of forest stand age using airborne spectrometer date[J].Photogr Eng Remote Sens,1995,61(9):1119-1127.
[7]CARTER G A,KNAPP A K.Leaf optical properties in higher plants:linking spectral characteristics to stress and chlorophyll concentration[J].Am J Bot,2001,88:677-684.
[8]JULIO O,LEONOR O M,ANABELA R.Reflectance indices as nondestructive indicators of the physiological status ofCeratonia siliquaseedlings under varying moisture and temperature regimes[J].Funct Plant Biol,2012,39(7):588-597.
[9]程高峰,張佳華,李秉柏,等.不同溫度處理下水稻高光譜及紅邊特征分析[J].江蘇農(nóng)業(yè)學(xué)報(bào),2008,24(5):573-580.
CHENG Gaofeng,ZHANG Jiahua,LI Bingbai,et al.Hyperspectral and red edge characteristics for rice under different temperature stress levels[J].Jiangsu J Agric Sci,2008,24(5):573-580.
[10]官鳳英,鄧旺華,范少輝,等.毛竹林光譜特征及其與典型植被光譜差異分析[J].北京林業(yè)大學(xué)學(xué)報(bào),2012,34(3):31-35.
GUAN Fengying,DENG Wanghua,F(xiàn)AN Shaohui,et al.Spectral characteristics ofPhyllostachys pubescensstand and its differential analysis with typical vegetation[J].J Beijing For Univ,2012,34(3):31-35.
[11]高培軍,董大川,何仁華,等.不同氮肥水平與毛竹林反射光譜的關(guān)系[J].北京林業(yè)大學(xué)學(xué)報(bào),2011,33(6):53-57.
GAO Peijun,DONG Dachuan,HE Renhua,et al.Effact of diffrent fertilizer supplies on relectance spectrum in leavesPhyllostachys pubescens[J].J Beijing For Univ,2011,33(6):53-57.
[12]LICHTENTHALER H K.Chlorophylls and cartenoids:pigments of photosynthetic biomembranes[J].Methods Enzymol,1987,148:350-382.
[13]GITELSON A A,MERZLYAK M N.Spectral reflectance changes associated with autumn senescence ofAesculus hippocastanumL.andAcer PlatanoidesL.leaves spectral features and relation to chlorophyll estimation[J].J Plant Physiol,1994,143:286-292.
[14]BLACKBURN G A.Quantifying chlorophylls and caroteniods at leaf and canopy scales:an evaluation of some hyperspectral approaches[J].Remote Sens Environ,1998,66(3):273-285.
[15]BLACKBURN G A.Spectra lindices for estimating photosynthetic pigment cincentrations:a test using senescent tree leaves[J].Int J Remote Sens,1998,19(4):657-675.
[16]BLACKBURN G A.Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves[J].Remote Sens Environ,1999,70(2):224-237.
[17]CHAPPELLE E W,KIM M S,MCMURTREYⅢJ E.Ratio analysis of reflectance spectra(RARS):an algorithm for the remotely estimation of the concentration of chlorophyll a,chlorophyll b,and carotenoids in soybean leaves[J].Remote Sens Environ,1992,39(3):239-247.
[18]GAMON J A,SERRANO L,SURFUS J S.The photochemical reflectance index:an opdicator of photosyntheticradiation use efficiency across species,functional types and nutrient levels[J].Oecologia,1997,112:492-501.
[19]GAMON J A,SURFUS J S.Assessing leaf pigment content and activity with a reflectometer[J].New Phytiologost,1999,143:105-117.
[20]MERZLYAK M N,GITELSON A A,CHIVKUNOVA O B,et al.Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J].Physiol Plantarum,1999,106:135-141.
[21]GITELSON A A,KEYDAN G P,MERZLYAK M N.Three-band model for noninvasive estimation of chlorophyll, carotenoids,and anthocyanin contents in higher plant leaves[J].Geophys Res Letters,2006,33:L11402.
[22]GAMON J A,PENUELAS J,F(xiàn)IELD C B.A narrow-waveband spectral index that tacks diurnal changes in photosynthetic efficiency[J].Remote Sens Environ,1992,41(1):35-44.
[23]薛利紅,曹衛(wèi)星,羅衛(wèi)紅,等.小麥葉片氮素狀況與光譜特性的相關(guān)研究明[J].植物生態(tài)學(xué)報(bào),2004,28(2):172-177.
XUE Lihong,CAO Weixing,LUO Weihong,et al.Correlation between leaf nitrogen status and canopy spectral characteristics in wheat[J].Chin J Plant Ecol,2004,28(2):172-177.
[24]OSORIO M L,OSORIO J,VIEIRA A C,et al.Influence of enhanced temperature on photosynthesis,photooxidative damage,and antioxidant strategies inCeratonia siliquaL.seedlings subjected to water deficit and rewatering[J].Photosynthetica,2011,49:3-12.
[25]孫富,楊麗濤,謝曉娜,等.低溫脅迫對(duì)不同抗寒性甘蔗品種幼苗葉綠體生理代謝的影響[J].作物學(xué)報(bào),2012,38(4):732-739.
SUN Fu,YANG Litao,XIE Xiaona,et al.Effect of chilling stress on physiological metabolism in chloroplasts of seedlings of sugarcane varieties with different chilling resistance[J].Acta Agron Sin,2012,38(4):732-739.
[26]RICHARDSON A D,DUIGAN S P,BERLYN G P.An evaluation of noninvasive methods to estimate foliar chloro-phyll content[J].New Phytologist,2002,153(1):185-194.
[27]NAIDU R A,PERRY E M,PIERCE F J,et al.The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berricd wine grape culrivars[J].Computer Electron Agric,2009,66(1):38-45.
[28]HORLER D N H,DOCKRAY M,BARBER J.The red edge of plant leaf reflectance[J].Int J Remote Sens1983,4(2):273-288.
[29]CHAPPELLE E W,KIM M S,McMURTREY III J E,et al.Ratio analysis of reflectance spectra(RARS):an algorithm for the remotely estimation of the concentration of chlorophyll a,chlorophyll b,and carotenoids in soybean leaves[J].Remote Sens Environ,1992,39(3):239-247.
[30]MUTANGA O,SKIDMORE A K.Red edge shift and biochemical content in grass canopies[J].ISPRS J Photogr Remote Sen,2007,62(1):34-42.
[31]馮偉,朱艷,田永超,等.基于高光譜遙感的小麥葉片氮積累量[J].生態(tài)學(xué)報(bào),2008,28(1):23-32.
FENG Wei,ZHU Yan,TIAN Yongchao,et al.Monitoring leaf nitrogen accumulation with hyperspectral remote sensing in wheat[J].Acta Ecol Sin,2008,28(1):23-32.
[32]BLACKBURN G A,F(xiàn)ERWERDA J G.Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis[J].Remote Sens Environ,2008,112(4):1614-1632.
[33]GITELSON A A,MERZLYAK M N.Signature analysis of leaf reflectance spectra:algorithm development for remote sensing of chlorophyll[J].J Plant Physiol,1996,148(3/4):494-500.
[34]GARBULSKY M F,PENUELAS J,GAMON J,et al.The photochemical reflectance index(PRI)and the remote sensing of leaf,canopy and ecosystem radiation use efficiencies:a review and meta-analysis[J].Remote Sens Environ,2011,115(2):281-297.
[35]馮銳,張玉書,于文穎,等.遼西不同針葉被害率的油松冠層光譜特征[J].應(yīng)用生態(tài)學(xué)報(bào),2012,23(7):1774-1780.
FENG Rui,ZHANG Yushu,YU Wenying,et al.Spectral characteristics ofPinus tabulaeformiscanopy with different damaged rates of needle leaf in western Liaoning Province,Northeast China[J].Chin J Appl Ecol,2012,23(7):1774-1780.
[36]BUSCH F,HUNER N P A,ENSMINGER I.Biochemical constrains limit the potential of the photochemical reflectance index as a predictor of effective quantum efficiency of photosynthesis during the winter spring transition in Jack pine seedlings[J].Funct Plant Biol,2009,36:1016-1026.
[37]薛中財(cái),高輝遠(yuǎn),彭濤,等.光譜分析在植物生理生態(tài)研究中的應(yīng)用[J].植物生理學(xué)報(bào),2011,47(4):313 -320.
XUE Zhongcai,GAO Huiyuan,PENG Tao,et al.Application of spectral reflectance on research of plant ecophysiology[J].Plant Physiol J,2011,47(4):313-320.
[38]杜華強(qiáng),葛宏立,范文義,等.馬尾松針葉光譜特征與其葉綠素含量間關(guān)系研究[J].光譜學(xué)與光譜分析,2009,29(11):3033-3037.
DU Huaqiang,GE Hongli,F(xiàn)AN Wenyi,et al.Study on relationships between total chlorophyll with hyperspectral features for leaves ofPinus massonianaforest[J].Spectr Spectr Anal,2009,29(11):3033-3037.
[39]BLACKBURN G A.Wavelet decomposition of hyperspectral data:a novel approach to quantifying pigment concentrations in vegetation[J].Int J Remote Sens,2007,28(12):2831-2855.
[40]王秀珍,黃敬峰,李云梅,等.水稻生物化學(xué)參數(shù)與高光譜遙感特征參數(shù)的相關(guān)分析[J].農(nóng)業(yè)工程學(xué)報(bào),2003,19(2):144-148.
WANG Xiuzhen,HUANG Jingfeng,LI Yunmei,et al.Correlation between chemical contents of leaves and characteristic variables of hyperspectra on rice field[J].Transe Chin Soc Agric Eng,2003,19(2):144-148.
Pigment content correlated to reflectance spectrums in Phyllostachys edulis leaves stressed by low temperature
XU Gaiping1,LIU Fang1,WU Xingbo1,WEN Guosheng1,WANG Yukui2,GAO Yan1,
GAO Rongfu1,3,ZHANG Rumin1
(1.The Nurturing Station for the State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Lin’an 311300,Zhejiang,China;2.China Bamboo Research Center,Hangzhou 310012,Zhejiang,China;3.College of Biological Sciences and Biotechnology,Beijing Forestry University,Beijing 100083,China)
The reflectance spectrum for photosynthetic pigments ofPhyllostachys edulis,a widely distributed,important bamboo with high economic value in China,has a close relationship to the growth process ofP. edulisleaves.To evaluate the relationship between reflectance spectra characteristics and pigment content,and to seek sensitive spectral parameters for exact estimations of damage inP.edulisleaves stressed by low temperature,pigment content and reflectance spectra indexes,such as spectral reflectance index wavelength of 705 nm(SR705),modified spectral ratio(mSR),pigment-specific simple ratio(PSSR),normalized difference vegetation index(NDVI),red NDVI(rNDVI),memory carotenoid reflectance index(Mcri),and photochemical reflectance index(PRI),inP.edulisleaves under low temperature stress were tested and a correlation analysis was used for comparison.Results showed that as temperature deceased,chlorophyll a content and carotenoids in the leaves significantly decreased(P<0.01).As the stress level increased,reflectance spectrum parameters(SR705,mSR,PSSR,NDVI,rNDVI,Mcri,and PRI)significantly decreased(P<0.01).The red-edge area(Sred)decreased,and the red-edge inflection(λred)position movedtoward the short-wave direction with increasing stress.Significant correlations(P<0.05)were found for chlorophyll a content,carotenoids in the leaves and reflectance spectra characteristics,and first derivative of reflectance spectra at the wavelength regions for blue edge and red edge.Moreover,correlations were significant(P<0.01)between pigment content and spectral characteristic parameters of SR705(r=0.709),rNDVI(r= 0.724),Mcri(r=0.706),andSred(r=0.706).These reflectance spectrum parameters(PSSR,NDVI,rNDVI,and Sred)could be used to evaluate leaf pigment content.[Ch,4 fig.5 tab.40 ref.]
botany;Phyllostachys edulis;pigment;low temperature stress;reflectance spectrum
S718.43;S795.7
A
2095-0756(2014)01-0028-09
10.11833/j.issn.2095-0756.2014.01.005
2013-01-09;
2013-04-28
國家自然科學(xué)基金資助項(xiàng)目(30972397,31270497,31270756);浙江省科技計(jì)劃項(xiàng)目(2012F20025);浙江農(nóng)林大學(xué)科研發(fā)展基金資助項(xiàng)目(2010FR058)
許改平,從事園林植物栽培管理研究。E-mail:pingping963220@163.com。通信作者:張汝民,教授,博士,從事植物生理生態(tài)等研究。E-mail:ruminzhang@sohu.com