• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The infuence of silane coupling agent and poplar particles on the wettability, surface roughness, and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboard

    2014-04-19 10:10:38SeyedehMasoumehHafeziKazemDoosthoseini
    Journal of Forestry Research 2014年3期

    Seyedeh Masoumeh Hafezi ? Kazem Doosthoseini

    Introduction

    Approximately 95% of the lignocellulosic material available for particleboard production is wood.Decreasing availability of raw material and the need to conserve natural resources initiated research regarding the use of non-wood fbers in particleboard production (Dahmardeh Ghalehno et al.(2011).Cereal straw is annually-renewable and available in large quantities in many regions of world, the worldwide production of cereal straw is estimated at 1.5 billion m3annually (Grigoriou 2000).Cereal straw has high fibre content.Traditionally, straw feed to livestock, use as a fuel for heating and cooking, in India/Nepal, combine it with cattle dung to produce fuel farmers harvest grain, Also in no-till systems, it remains on the soil to be incorporated as a contributor to organic content.In North America, straw is baled for later use as bedding material and fodder.It typically burn or otherwise dispose the residues (stalks and husk).Burning wheat straw causes environmental problems such as air pollution, soil erosion and a decrease in soil biological activity (Grigoriou 2000).

    In the last two decades, use of straw has been gaining research attention as a potential alternative fbrous raw material replacing wood for making particleboards (Azizi et al.2011).However some problems still exist, including seasonality of availability, storage, scattered sources and bondability.Of these problems, bondability is a major unsolved technical problem, especially when urea-based resins are applied (Han et al.1999).Morphologically, straw is more complicated than wood.Straw contains a relatively large number of elements, including the actual fibers, parenchyma cells, vessel elements, and epidermal cells, which contain high amounts of ash and silica .The epidermal cells of straw are the outermost surface cells covered by a thin wax layer.This surface layer reduces absorbance by straw of moisture from water-based adhesives such as urea-formaldehyde (UF) resin (Markessini et al.1997).The layer therefore acts as a barrier to the gluing of straw with UF resin.Removing this bonding barrier layer from straw materials is a technical problem for performance enhancement of straw panels (Markessini et al.1997; Han et al.1999).Isocyanate is an alternative resin that can be used to improve the properties of these strawboards, but the use of isocyanate is hindered by its high cost; hence, it is not commonly utilized, especially in developing countries (Han et al.1999).In addition, silane coupling agents are generally added when using isocyanate because they improve the adhesion between organic and inorganic materials (Han et al.1998).We used silane cou-pling agents to modify the characteristics of the inorganic surface by fixing organic functional groups onto it (Han et al.1998).Particleboard is widely used as substrate for thin overlays such as laminates, resin impregnated papers, foils and as a direct fnish to surface uses including furniture, counter and desk tops, cabinets, foor, wall, ceiling panels, door skin and offce dividers.Roughness is a measure of the fne irregularities on a surface.The surface roughness of particleboard plays an important role since surface irregularities can show through thin overlays, reducing the fnal quality of the panel.When particleboard is used as substrate for surface coating, the particleboard surfaces must be capable of resisting peeling.Fine irregularities on the board surface will show through overlays, and this lowers the grade of the final product, and its quality, fnishing and gluing.Wettability is an index of how fast a liquid will wet and spread on the particleboard surface, or whether it will be repelled and not spread on the surface.Wettability is crucial for good adhesion in bonding between particleboard and coatings.Liquid surface coatings or adhesives must wet, fow and penetrate the cellular structure of wood to establish tight contact between molecules of the composite surface and its coating.The contact angle (CA) method is commonly used to determine the wettability of particleboard.A CA value of zero indicates perfect wetting of a surface.Liquids can wet surfaces at CA values less than 90° (Baharoglu et al.2011).

    Our objective was to investigate the infuence of silane coupling agents and percentages of poplar wood particles on the surface roughness, wettability and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboards.

    Materials and methods

    Wheat straw and poplar wood particles

    We obtained poplar logs from forests in northern Iran.The agricultural lignocellulosic fber was from wheat straw (Triticum aestivum L.) in Karaj, near Tehran.We prepared straw and poplar particles using a Pallmann knife ring flaker.All particles were air-dried to about 3% moisture content.Subsequently, we screened particles by handle sieve and oversize and undersize particles were removed.The average size of straw particles was 34 mm × 2.56 mm × 0.33 mm and that of poplar particles was 23 mm × 5.6 mm × 0.85 mm.Slenderness ratios for wheat straw and poplar particles were 80 and 27, respectively.The fractional analysis of straw particles in comparison to poplar particles is listed in Table 1.

    Table 1: Fractional (%) weights of straw and poplar wood particles

    Silane coupling agent

    We used amino silane coupling agent NH2-C3H6-Si (OC2H5)3in our assessment of the properties of the straw/poplar wood particleboards.The silane coupling agents (Merck Chemistry Company, Germany) had molar mass of 221.37 g·mol-1, density of 0.95 g·cm-3at 20°C, boiling point of 217°C, flash point of 93°C, pH (20 g·mol-1, H2O, 20°C) of 11, solubility temperature of 20°C, and ignition temperature of 300°C.

    UF resin

    We obtained commercial UF resin from Tiran Chemistry Company, Iran.The resin was water dispersed with a solid content of 62%, viscosity of 125 cp, gelation time of 54 s, pH of 7.5 and mass of 1.28 g/cm3.

    Board manufacture

    The UF resin was sprayed onto the particles in a blender at 10% resin content based on the oven-dried weight of particles.Silane coupling agent was mixed with the UF resin prior to blending, based on the weight of the resin solid.Based on the weight of the resin solid, 1% of NH4Cl was added as the curing catalyst.Sample boards were pressed into hand-formed mats 14 mm thick using distance bars at 180°C for 5 min and mats were pressed under a pressure of 35 kg·cm-2.The board size was 400 mm × 400 mm × 14 mm with targeted density of 0.70 g·cm-3.We tested four ratios of straw to poplar (100/0, 85/15, 70/30 and 55/45) and three levels of coupling agent (0, 5% and 10%).Our experimental schedule is shown in Table 3.

    Mechanical and physical testing

    Prior to testing the physical and mechanical properties of sample boards, the boards were conditioned at (20±1)°C and (65±5)% relative humidity (RH) until they reached a constant weight.The surface properties of the samples were determined by the use of a fne stylus proflometer (Mitutoyo SJ-201P).Based on these variables, 12 board formulations were manufactured with three boards of each type, resulting in 36 boards in total.Three samples were used from each type of panel for surface roughness measurements.Three roughness parameters described by DIN 4768 standard (1990) as average roughness (Ra), mean peak-to-valley height (Rz), and root mean square roughness (Rq) were measured to evaluate the surface properties of the panels.Surface roughness parameters were calculated from digital information.The vertical displacement of the stylus was converted into an electrical signal by a linear displacement detector before the signal was amplifed and converted into digital information.Rais the arithmetic mean of the absolute values of the profle deviations from the mean and is the most commonly used parameter in surface fnish measurement.The surface roughness of the samples was measured to a sensitivity of 0.5 μm.Measuring speed, pin diameter and pin top angle of the tool were 0.5 mm·s-1, 4 μm and 90°C, respectively.The length of tracing line (Lt) and cut-off were 12.5 mm and 2.5 mm (γ), respectively.Measuring force of the scanning arm on the samples was 4 mN (0.4 gf).Measurements were done at room temperature and the pin was calibrated before the tests (Jarusombuti et al.2010).

    The wetting behavior of the particleboard samples was characterized by the contact angle method (goniometer technique).The contact angles were obtained using a KSV Cam-101.By the sessile drop method, the most widely used procedure, the contact angle was determined simply by aligning a tangent with the sessile drop profle at the point of contact with the solid surface.The drop image was stored using a video camera and an image analysis system calculated the contact angle (h) from the shape of the distilled water drop at room temperature.An imaging system was used to measure contact angle, shape, and size of water droplets for the tested sample surfaces.The image of the liquid drop was captured by a video camera and the contact angle was measured by digital image-analysis software.After a 5 μL droplet of the distilled water was placed on the sample surface, contact angles from the images were measured at one ffth of a second.Three board samples measuring 50 mm × 50 mm × 14 mm were used from each type of formulation for contact angle measurements (Ayrilmis and Winandy 2010).

    The hardness behavior of the particleboard samples was characterized by Instron 4486 instrument and the Brinel method as described by ASTM 1037 standards (1990).Three samples of 50 mm × 50 mm × 14 mm were used from each type of board formulation for hardness measurements.

    Statistical analysis

    The experiment was designed as factorial using a completely randomized design arrangement.The Duncan method was used to compare means (p <0.05).Statistical analysis was conducted using SPSS? software.

    Results and discussion

    Physical properties

    Surface roughness

    Surface quality of sample particleboards increased with increasing ratios of poplar to straw and increasing levels of silane coupling agents (p < 0.05 in both cases, Figs.1, 2 and 3).

    Increased concentrations of silane coupling agents reduced surface roughness as indexed by Rq values.This might have been due to better interfacial interaction between wheat straw and UF resin.The boards made with 10% silane coupling agent and 30% poplar particles had the smoothest surfaces.A typical commercially manufactured particleboard could have Ra values ranging from 3 to 6 μm (H?z?roglu 1996).Our samples exceeded this range, suggesting that the surfaces of our panels was too rough to be accepted as a substrate without preparatory sanding.However, if the panels were sanded with a sequence of 150, 180 and 220 grit sandpaper, their surfaces could be improved to meet the requirements for substrates for overlays (Hiziroglu and Holcomb 2005).

    Fig.1: Surface roughness (Ra) of boards

    Fig.2: Surface roughness (Rq) of boards

    Fig.3: Surface roughness (Rz) of boards

    Wettability

    Panels made from 15% poplar particles and 10% silane coupling agent had the highest contact angles (Fig.4).This might have been due to reduced bonding between the wheat straw particles in 100% straw board, which increased water diffusion into this type of panel.

    Adding poplar particles to a level of 30% had the positive effect of reducing wettability.This might have been due to better bonding between poplar particles than between straw particles because of the waxy layer on the latter, and the resulting improvement in compression during the pressing stage due to the greater proportion of poplar particles.Increasing moisture content of wood from 40% to 60% significantly improved wettability and caused smoother surfaces.(Baharoglu et al.2011).

    Fig.4: Wettability (contact angle) of boards

    Mechanical properties: Hardness

    Silane concentration had no effect on particleboard quality but the addition of poplar particles into wheat straw particleboard signifcantly increased hardness (Fig.5).

    Fig.5: The Hardness (Ha) of boards

    In general, boards made with greater proportions of poplar exhibited greater hardness than control samples.Maximum hardness was 4.56 N for board with 30% poplar particles and 5% silane coupling agent level.Adding poplar particles increased hardness duo to the greater compression of poplar particles in compaction with wheat straw particles during pressing.In addition, higher density in poplar particles in compression with straw particles can be a good reason for illustrating this increasing.Doosthosseini and Abdolzadeh (2010) reported that the use of recycled corrugated containers (RCCs) improved the hardness of wood composites due to improved compaction of RCCs and better compression during pressing.

    Conclusion

    Wettability and hardness of wheatstraw particleboard were signifcantly improved by the addition of poplar particles.Adding poplar particles from 15% to 45% signifcantly increased hardness, while adding poplar particles to 30% improved wettability.The addition of silane coupling agents resulted in smoother particleboard surfaces.

    Panels made with 30% poplar particles and 5% silane coupling agent had greater hardness and less surface roughness, but panels made with 15% poplar particles and 10% silane coupling agent level had less wettability.

    In general, the addition of silane coupling agent resulted in better particleboard characteristics because of better adhesion between the UF resin and the straw particles.

    Ayr?lm?s N, Winandy JE.2010.Effects of post heat treatment on surface Characteristics and adhesive bonding performance of MDF.Materials and Manufacturing Processes, 24: 594–599.

    Azizi Kh, Tabarsa T, Ashori A.2011.Performance characterizations of particleboards made with wheat straw and waste veneer splinters.Composites Part B: Engineering, 42(7): 2085–2089.

    Baharoglu M, G?kay N, Sar? B, Bardak S, Ayr?lm?s N.2011.The infuence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability and formaldehyde emission of particleboard composite.Composites Part B: Engineering, 43(5): 2448?2457.

    Dahmardeh Ghalehno M, Madhoushi M, Tabarsa T, Nazerian M.2011.The manufacture of particleboards using mixture of read (surface layer) and commercial species (middle layer).European Journal of Wood and Wood Products, 69(3): 341?344.

    Doosthoseini K, Abdolzadeh H.2010.Investigation on the feasibility of utilization wood and OCC fiber on the surface layer of particleboard and their effects on surface hardness and roughness.Iranian Journal of Wood and Paper Science Research, 25(1): 62?69.

    Grigoriou AH.2000.Straw-wood composites bonded with various adhesive systems.Wood Science and Technology, 34: 355–365.

    Han GP, Zhang CW, Zhang DM, Umemura K, Kawai S.1998.Upgrding of urea formaldehyde-bonded reed and wheat straw particle boards using silane coupling agents.Journal of Wood Science and Technology, 44(4): 282–286.

    Han GP, Umemura K, Kawai S, Kajita H.1999.Improvement mechanism of bond ability in UF bonded reed and wheat straw boards by silane coupling agent and extraction treatments.Journal of Wood Science and Technology, 45(4): 299?305.

    H?z?roglu S.1996.Surface roughness analysis of wood composites: a stylus method.Forest Products Journal, 46(7/8): 67–72.

    H?z?roglu S, Holcomb R.2005.Some of the properties of the three-layer particleboard made of eastern red cedar.Building and Environment, 40(5): 719–723.

    Jarusombuti S, Ayr?lm?s N, Bauchongkol P, Fueangvivat V.2010.Surface characteristics and overlaying properties of MDF panels from thermally treated rubberwood fbers.Bioresources, 5(2): 968–978.

    Markessini E, Roffael E, Rigal L.1997.Panels from annual plant fibers bonded with urea formaldehyde resins.In: Proceedings of 31st international particleboard composite materials symposium, April 8?10, Washington State University, pp.147?160.

    欧美黑人欧美精品刺激| 91在线观看av| 欧美+亚洲+日韩+国产| 久久中文看片网| 大陆偷拍与自拍| 大香蕉久久成人网| 级片在线观看| 日韩中文字幕欧美一区二区| 色综合亚洲欧美另类图片| 国产亚洲精品久久久久5区| 亚洲成av人片免费观看| 级片在线观看| 黄网站色视频无遮挡免费观看| 日本 av在线| 搡老妇女老女人老熟妇| 校园春色视频在线观看| 欧美性长视频在线观看| av中文乱码字幕在线| 亚洲熟妇中文字幕五十中出| 99精品久久久久人妻精品| 精品久久久久久久久久免费视频| 少妇粗大呻吟视频| 久久久久久久午夜电影| e午夜精品久久久久久久| 真人做人爱边吃奶动态| 国产精品久久久久久亚洲av鲁大| 久久中文字幕一级| 狂野欧美激情性xxxx| 亚洲午夜理论影院| 国产97色在线日韩免费| 丁香六月欧美| 亚洲少妇的诱惑av| 久久人妻熟女aⅴ| 夜夜夜夜夜久久久久| 精品高清国产在线一区| 国产三级在线视频| 最近最新中文字幕大全免费视频| www.精华液| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 免费观看人在逋| 性少妇av在线| 天天一区二区日本电影三级 | 国产成人啪精品午夜网站| 日韩国内少妇激情av| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 欧美老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美日韩高清在线视频| 自线自在国产av| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 一级毛片精品| 日本五十路高清| 精品久久久久久久毛片微露脸| 一进一出抽搐动态| 最新美女视频免费是黄的| 日日夜夜操网爽| av天堂久久9| 国产亚洲欧美精品永久| 天堂影院成人在线观看| 亚洲国产欧美网| 亚洲一区二区三区不卡视频| 搞女人的毛片| 97人妻天天添夜夜摸| 国产精品一区二区精品视频观看| 夜夜看夜夜爽夜夜摸| 亚洲精品国产区一区二| 999精品在线视频| ponron亚洲| 亚洲国产看品久久| av视频在线观看入口| 亚洲欧美精品综合久久99| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 禁无遮挡网站| 日韩大尺度精品在线看网址 | 99久久精品国产亚洲精品| 亚洲av片天天在线观看| 久久国产精品男人的天堂亚洲| 搡老妇女老女人老熟妇| 制服人妻中文乱码| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 热re99久久国产66热| 韩国精品一区二区三区| 性色av乱码一区二区三区2| 欧美成人免费av一区二区三区| 99国产精品一区二区三区| 在线视频色国产色| 1024视频免费在线观看| 免费一级毛片在线播放高清视频 | 日韩av在线大香蕉| 伦理电影免费视频| 91九色精品人成在线观看| 纯流量卡能插随身wifi吗| 国产三级黄色录像| 99久久综合精品五月天人人| 午夜两性在线视频| 长腿黑丝高跟| e午夜精品久久久久久久| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| 久久亚洲真实| 午夜免费鲁丝| 欧美av亚洲av综合av国产av| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av | 亚洲人成电影观看| 日日爽夜夜爽网站| 搡老岳熟女国产| 久久久久久久精品吃奶| 精品国产乱子伦一区二区三区| 午夜福利高清视频| 免费看美女性在线毛片视频| 久久午夜综合久久蜜桃| 免费在线观看视频国产中文字幕亚洲| 国产私拍福利视频在线观看| 精品一区二区三区四区五区乱码| 午夜福利影视在线免费观看| 一a级毛片在线观看| av超薄肉色丝袜交足视频| 最近最新中文字幕大全电影3 | 天天躁狠狠躁夜夜躁狠狠躁| 日韩大码丰满熟妇| 丝袜美足系列| 精品国产一区二区三区四区第35| 青草久久国产| 美国免费a级毛片| 日韩 欧美 亚洲 中文字幕| 18美女黄网站色大片免费观看| 91老司机精品| 99国产极品粉嫩在线观看| 免费观看人在逋| 欧美国产日韩亚洲一区| 黑人巨大精品欧美一区二区蜜桃| a级毛片在线看网站| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线| 色播亚洲综合网| 欧美大码av| 午夜精品国产一区二区电影| а√天堂www在线а√下载| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| 人成视频在线观看免费观看| 欧美最黄视频在线播放免费| 欧美在线黄色| 一进一出抽搐动态| 国产精品亚洲一级av第二区| 国产精品精品国产色婷婷| 亚洲一区高清亚洲精品| 成人特级黄色片久久久久久久| 色综合站精品国产| 高清在线国产一区| 国产三级在线视频| 亚洲色图 男人天堂 中文字幕| 精品高清国产在线一区| 亚洲片人在线观看| 黄色片一级片一级黄色片| 中文字幕精品免费在线观看视频| 午夜免费观看网址| 久久久国产成人精品二区| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 很黄的视频免费| 岛国在线观看网站| 女性生殖器流出的白浆| 黄色丝袜av网址大全| 国产成人欧美| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 成人三级黄色视频| 99精品久久久久人妻精品| 不卡av一区二区三区| 免费av毛片视频| 一进一出抽搐动态| 9热在线视频观看99| 一二三四社区在线视频社区8| 日本vs欧美在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 美女扒开内裤让男人捅视频| 亚洲伊人色综图| 免费人成视频x8x8入口观看| 亚洲中文日韩欧美视频| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 九色亚洲精品在线播放| or卡值多少钱| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 男女之事视频高清在线观看| www.熟女人妻精品国产| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美日韩在线播放| 女人高潮潮喷娇喘18禁视频| 欧美在线黄色| 免费观看人在逋| 国产麻豆69| 我的亚洲天堂| 一级黄色大片毛片| 欧美av亚洲av综合av国产av| 色综合站精品国产| 久9热在线精品视频| 日本在线视频免费播放| 美女国产高潮福利片在线看| 日本五十路高清| 黄色视频不卡| 国产精华一区二区三区| 多毛熟女@视频| 国产精品免费视频内射| 亚洲视频免费观看视频| 国产成人欧美在线观看| 黄色 视频免费看| 国产av精品麻豆| 久久草成人影院| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看| 国产精品秋霞免费鲁丝片| 又黄又爽又免费观看的视频| 淫秽高清视频在线观看| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 最近最新中文字幕大全免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 午夜免费成人在线视频| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 一区二区三区精品91| 91九色精品人成在线观看| 欧美激情 高清一区二区三区| 在线av久久热| 日韩欧美国产一区二区入口| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 一个人免费在线观看的高清视频| 国产99久久九九免费精品| 在线观看一区二区三区| 桃色一区二区三区在线观看| 午夜视频精品福利| 亚洲人成电影观看| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 午夜免费鲁丝| 亚洲第一青青草原| 久久久久久亚洲精品国产蜜桃av| 91在线观看av| 啦啦啦免费观看视频1| av在线天堂中文字幕| 久久久国产成人精品二区| 色婷婷久久久亚洲欧美| 亚洲美女黄片视频| 精品国产乱码久久久久久男人| 99久久精品国产亚洲精品| 在线国产一区二区在线| 天天躁夜夜躁狠狠躁躁| 久久久水蜜桃国产精品网| 国产成人av教育| 国产成人免费无遮挡视频| 免费不卡黄色视频| 欧美国产精品va在线观看不卡| 99re在线观看精品视频| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 国产高清视频在线播放一区| 成年人黄色毛片网站| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 日日夜夜操网爽| 久久精品国产清高在天天线| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 精品欧美国产一区二区三| 国产精品一区二区精品视频观看| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 国产又色又爽无遮挡免费看| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 国产欧美日韩综合在线一区二区| 精品一区二区三区视频在线观看免费| 亚洲国产精品成人综合色| 91精品国产国语对白视频| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 乱人伦中国视频| 欧美色视频一区免费| 精品不卡国产一区二区三区| 欧美成人一区二区免费高清观看 | 大型av网站在线播放| 国产日韩一区二区三区精品不卡| 国产私拍福利视频在线观看| 国产精品一区二区在线不卡| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 国产一区在线观看成人免费| 老司机福利观看| 成人国产一区最新在线观看| 国产色视频综合| 亚洲欧美日韩另类电影网站| 亚洲精品久久国产高清桃花| 在线观看免费视频日本深夜| 亚洲人成电影观看| 成人特级黄色片久久久久久久| 亚洲国产欧美一区二区综合| 超碰成人久久| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 国产私拍福利视频在线观看| 最近最新中文字幕大全电影3 | 亚洲无线在线观看| 国产成人免费无遮挡视频| 一二三四社区在线视频社区8| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 色综合欧美亚洲国产小说| 村上凉子中文字幕在线| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 日本vs欧美在线观看视频| 亚洲 国产 在线| 69精品国产乱码久久久| 日韩免费av在线播放| 麻豆国产av国片精品| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av| 亚洲午夜精品一区,二区,三区| 国产伦人伦偷精品视频| 岛国在线观看网站| 亚洲国产欧美一区二区综合| 亚洲五月色婷婷综合| a级毛片在线看网站| 亚洲av五月六月丁香网| av超薄肉色丝袜交足视频| 9热在线视频观看99| 国产成人精品久久二区二区91| 欧美绝顶高潮抽搐喷水| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 极品教师在线免费播放| 久久 成人 亚洲| 欧美日本中文国产一区发布| 真人做人爱边吃奶动态| 久久久精品欧美日韩精品| 麻豆一二三区av精品| АⅤ资源中文在线天堂| 高潮久久久久久久久久久不卡| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看 | 免费在线观看完整版高清| 国产精品美女特级片免费视频播放器 | 精品国产国语对白av| 国产av一区二区精品久久| 精品国产一区二区久久| 久久国产精品影院| 国产精品av久久久久免费| 欧美久久黑人一区二区| 在线视频色国产色| av福利片在线| 激情在线观看视频在线高清| 女性生殖器流出的白浆| svipshipincom国产片| 成人永久免费在线观看视频| 婷婷六月久久综合丁香| 日本vs欧美在线观看视频| 午夜两性在线视频| 两个人视频免费观看高清| 精品卡一卡二卡四卡免费| 久久精品影院6| 欧美中文综合在线视频| 国产欧美日韩一区二区三区在线| 国产精品秋霞免费鲁丝片| 亚洲精品在线观看二区| 欧美丝袜亚洲另类 | 午夜久久久久精精品| 午夜免费观看网址| 日韩大尺度精品在线看网址 | 国产精品乱码一区二三区的特点 | 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 纯流量卡能插随身wifi吗| 人人妻人人澡人人看| 日韩免费av在线播放| 午夜精品久久久久久毛片777| 久久久久久人人人人人| 一进一出抽搐动态| 国产99白浆流出| 久久久久久久精品吃奶| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| 久久国产亚洲av麻豆专区| 国产成年人精品一区二区| 国产99久久九九免费精品| 国产精品日韩av在线免费观看 | 免费搜索国产男女视频| 亚洲熟女毛片儿| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 热99re8久久精品国产| 午夜免费成人在线视频| 成人亚洲精品av一区二区| 黄色女人牲交| 啦啦啦观看免费观看视频高清 | 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 一级a爱视频在线免费观看| 18禁裸乳无遮挡免费网站照片 | 女人高潮潮喷娇喘18禁视频| 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 一级毛片精品| 欧美日韩乱码在线| 久热爱精品视频在线9| 久久久久九九精品影院| 亚洲全国av大片| 久久久久久亚洲精品国产蜜桃av| 在线观看免费视频网站a站| 国产精品 欧美亚洲| 亚洲,欧美精品.| 色播亚洲综合网| 一边摸一边做爽爽视频免费| 99在线视频只有这里精品首页| 成人av一区二区三区在线看| 99久久精品国产亚洲精品| 97人妻精品一区二区三区麻豆 | 国产精品野战在线观看| 91成年电影在线观看| 9191精品国产免费久久| videosex国产| 免费在线观看视频国产中文字幕亚洲| 1024视频免费在线观看| 国产高清视频在线播放一区| 欧美丝袜亚洲另类 | 日日夜夜操网爽| 国产精品自产拍在线观看55亚洲| 激情在线观看视频在线高清| 欧美乱妇无乱码| 老汉色∧v一级毛片| 女警被强在线播放| 波多野结衣av一区二区av| 午夜福利成人在线免费观看| 深夜精品福利| 成人精品一区二区免费| 国产伦人伦偷精品视频| 亚洲欧美激情在线| 美女 人体艺术 gogo| 一级a爱片免费观看的视频| 国产精品久久电影中文字幕| 亚洲熟妇中文字幕五十中出| 一本综合久久免费| a级毛片在线看网站| 欧美亚洲日本最大视频资源| 老司机午夜十八禁免费视频| 国产主播在线观看一区二区| 欧美最黄视频在线播放免费| 免费女性裸体啪啪无遮挡网站| 午夜激情av网站| 91国产中文字幕| 波多野结衣高清无吗| 色av中文字幕| 欧美黄色片欧美黄色片| 9191精品国产免费久久| 最近最新免费中文字幕在线| 欧美一区二区精品小视频在线| 亚洲一区高清亚洲精品| 午夜免费观看网址| 久久久久久久久中文| 国产成人精品无人区| 国产午夜福利久久久久久| 很黄的视频免费| 午夜a级毛片| 我的亚洲天堂| 欧美激情高清一区二区三区| 国产亚洲精品久久久久久毛片| bbb黄色大片| 欧美在线黄色| 欧美一级a爱片免费观看看 | 女性生殖器流出的白浆| 一边摸一边抽搐一进一出视频| 禁无遮挡网站| 国产亚洲精品第一综合不卡| 日韩欧美国产在线观看| 国产一区二区激情短视频| 欧美精品啪啪一区二区三区| 香蕉国产在线看| 99国产极品粉嫩在线观看| 亚洲国产精品久久男人天堂| 美女高潮到喷水免费观看| 国产精品乱码一区二三区的特点 | 国产三级在线视频| 欧美大码av| 亚洲人成77777在线视频| 曰老女人黄片| 一级作爱视频免费观看| 精品国产一区二区三区四区第35| 看免费av毛片| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 亚洲成国产人片在线观看| 亚洲成人国产一区在线观看| 国产熟女xx| 这个男人来自地球电影免费观看| 人人妻,人人澡人人爽秒播| 色尼玛亚洲综合影院| 国产一区二区三区综合在线观看| 欧美精品啪啪一区二区三区| 男人操女人黄网站| 啦啦啦免费观看视频1| 欧美一级a爱片免费观看看 | 国产精品精品国产色婷婷| 一级黄色大片毛片| 日韩一卡2卡3卡4卡2021年| 男人舔女人下体高潮全视频| 精品国产乱子伦一区二区三区| 男女之事视频高清在线观看| 999精品在线视频| 久久草成人影院| 亚洲成av片中文字幕在线观看| 一本大道久久a久久精品| 禁无遮挡网站| 国产精品久久久av美女十八| 国内精品久久久久精免费| 精品免费久久久久久久清纯| 麻豆久久精品国产亚洲av| 亚洲欧美精品综合久久99| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 欧美老熟妇乱子伦牲交| av天堂久久9| 日本精品一区二区三区蜜桃| 国产aⅴ精品一区二区三区波| 国产一卡二卡三卡精品| 黑人欧美特级aaaaaa片| 美女高潮喷水抽搐中文字幕| 中文字幕久久专区| 美女高潮到喷水免费观看| 亚洲国产日韩欧美精品在线观看 | 久久婷婷人人爽人人干人人爱 | 欧美激情 高清一区二区三区| 91老司机精品| 国产一区二区三区综合在线观看| 中文字幕高清在线视频| 午夜福利免费观看在线| 搞女人的毛片| 久久久久久久久久久久大奶| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久av美女十八| 国产激情欧美一区二区| 久久久久久久精品吃奶| www.自偷自拍.com| 最新美女视频免费是黄的| 91av网站免费观看| 亚洲成人久久性| 日韩欧美在线二视频| 亚洲人成77777在线视频| 亚洲成人免费电影在线观看| 中文字幕色久视频| 久久香蕉国产精品| 侵犯人妻中文字幕一二三四区| 夜夜夜夜夜久久久久| 亚洲成av片中文字幕在线观看| 日韩精品中文字幕看吧| 可以在线观看的亚洲视频| 日韩欧美一区二区三区在线观看| 99久久99久久久精品蜜桃| 在线观看午夜福利视频| 在线视频色国产色| 中文字幕av电影在线播放| 亚洲精华国产精华精| 亚洲av成人不卡在线观看播放网| 国产aⅴ精品一区二区三区波| 性色av乱码一区二区三区2| 纯流量卡能插随身wifi吗| 国内久久婷婷六月综合欲色啪| 亚洲av电影在线进入| 久久香蕉精品热| 欧美一级毛片孕妇| 90打野战视频偷拍视频| 精品国产亚洲在线| 亚洲精品国产一区二区精华液| 一个人免费在线观看的高清视频| 精品国产亚洲在线| 亚洲avbb在线观看| 极品教师在线免费播放| 麻豆久久精品国产亚洲av| 日本在线视频免费播放| 欧美激情高清一区二区三区| 老熟妇仑乱视频hdxx| 欧美中文综合在线视频| av在线天堂中文字幕| 每晚都被弄得嗷嗷叫到高潮| 色尼玛亚洲综合影院| 国产亚洲精品久久久久5区| 天天躁夜夜躁狠狠躁躁| 搡老妇女老女人老熟妇| 老熟妇仑乱视频hdxx| 久久午夜综合久久蜜桃| 两个人视频免费观看高清| 乱人伦中国视频| 欧美成人一区二区免费高清观看 | 黑人欧美特级aaaaaa片|